1
|
Sabadini JB, Oliveira CLP, Loh W. Do ethoxylated polymeric coacervate micelles respond to temperature similarly to ethoxylated surfactant aggregates? J Colloid Interface Sci 2025; 678:1012-1021. [PMID: 39232474 DOI: 10.1016/j.jcis.2024.08.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
HYPOTHESIS Ethoxylated complex coacervate core micelles (C3Ms), formed by the electrostatic coacervation of a charge-neutral diblock copolymer and an oppositely charged homopolymer, exhibit morphology governed by molecular packing principles. Additionally, this morphology is temperature-dependent, leading to transitions similar to those observed in classical ethoxylated surfactant aggregates. EXPERIMENTS To explore the thermal effects on the size and morphology of C3Ms, we employed dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), and cryogenic transmission electron microscopy (cryo-TEM). These techniques were applied to C3Ms formed by copolymers with varying poly(ethylene oxide) (EO) lengths. FINDINGS Increasing the temperature-induced a transition from spherical to elongated aggregates, contingent on the EO block length. This morphological transition in EO-containing C3Ms parallels the behavior of classical ethoxylated surfactant aggregates. Despite the fundamental differences between hydrophobically driven and electrostatic coacervate micelles, our findings suggest that similar molecular packing principles are universally applicable across both systems. Our results offer valuable insights for predicting the structural properties of these coacervate platforms, which is crucial for envisioning their future applications.
Collapse
Affiliation(s)
- Júlia Bonesso Sabadini
- Institute of Chemistry, University of Campinas (UNICAMP), P.O Box 6154, Campinas, SP, Brazil.
| | | | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O Box 6154, Campinas, SP, Brazil.
| |
Collapse
|
2
|
Notarmuzi D, Bianchi E. Liquid-liquid phase separation driven by charge heterogeneity. COMMUNICATIONS PHYSICS 2024; 7:412. [PMID: 39802629 PMCID: PMC11721519 DOI: 10.1038/s42005-024-01875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/14/2024] [Indexed: 01/16/2025]
Abstract
Despite the intrinsic charge heterogeneity of proteins plays a crucial role in the liquid-liquid phase separation (LLPS) of a broad variety of protein systems, our understanding of the effects of their electrostatic anisotropy is still in its early stages. We approach this issue by means of a coarse-grained model based on a robust mean-field description that extends the DLVO theory to non-uniformly charged particles. We numerically investigate the effect of surface charge patchiness and net particle charge on varying these features independently and with the use of a few parameters only. The effect of charge anisotropy on the LLPS critical point is rationalized via a thermodynamic-independent parameter based on orientationally averaged pair properties, that estimates the particle connectivity and controls the propensity of the liquid phase to condensate. We show that, even though directional attraction alone is able to lower the particle bonding valence-thus shifting the critical point towards lower temperatures and densities-directional repulsion significantly and systematically diminishes the particle functionality, thus further reducing the critical parameters. This electrostatically-driven shift can be understood in terms of the additional morphological constraints introduced by the directional repulsion, that hinder the condensation of dense aggregates.
Collapse
Affiliation(s)
- Daniele Notarmuzi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
| | - Emanuela Bianchi
- Institut für Theoretische Physik, TU Wien, Wiedner Hauptstraße 8-10, A-1040 Wien, Austria
- CNR-ISC, Uos Sapienza, Piazzale A. Moro 2, 00185 Roma, Italy
| |
Collapse
|
3
|
Shi Y, Zhang T, Guo R, Zhang Z, McCahill AL, Tang Y, Liskey SE, Yang DB, Kloxin CJ, Saven JG, Pochan DJ. Ordered assemblies of peptide nanoparticles with only positive charge. Nat Commun 2024; 15:10057. [PMID: 39567535 PMCID: PMC11579329 DOI: 10.1038/s41467-024-54340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Surface charge patchiness of different charge types can influence the solution behaviours of colloidal particles and globular proteins. Herein, coiled-coil 'bundlemer' nanoparticles that display only a single type of surface charge (SC) are computationally designed to compare their solution behaviours to mixed charge-type (MC) counterparts with both positively and negatively charged side chains. Nematic and columnar liquid crystal phases are discovered in low concentrations of SC particles, indicative of particle end-to-end stacking into columns combined with lateral electrostatic repulsion between columns, while MC particles with the same net charge and particle shape produced only amorphous, soluble aggregates. Similarly, porous lattices are formed in mixtures of SC/MC particles of opposite charges while MC/MC mixtures of opposite charges produce only amorphous aggregates. The lattice structure is inferred with a machine learning optimization approach. The differences between SC and MC particle behaviours directly show the importance of surface electrostatic patchiness.
Collapse
Affiliation(s)
- Yi Shi
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Tianren Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Rui Guo
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Zihan Zhang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Amanda L McCahill
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Yao Tang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Sabrina E Liskey
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
| | - Dai-Bei Yang
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher J Kloxin
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA.
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| |
Collapse
|
4
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
5
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Katsenou N, Spiliopoulos N, Anastassopoulos DL, Papagiannopoulos A, Toprakcioglu C. pH-response of protein-polysaccharide multilayers adsorbed on a flat gold surface: A surface plasmon resonance study. Biopolymers 2024; 115:e23609. [PMID: 38899576 DOI: 10.1002/bip.23609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Polysaccharide-protein multilayers (PPMLs) consisting of bovine serum albumin (BSA) and chondroitin sulfate (CS) are assembled in acidic solution (pH 4.2) via layer-by-layer deposition method. The formation of PPMLs on gold surface and their responsiveness to pH change from 4.2 to 7 is investigated by Surface Plasmon Resonance Spectroscopy. The buildup of the multilayer at pH 4.2 exhibits non-linear growth while the formation of the first layers is strongly affected by the physicochemical properties of the gold surface. Neutral solution (pH 7) affects the interactions between the biopolymers and results in a partially disassemble (disintegration) of the multilayer film. On one hand, the single pair of layers, BSA-CS and the double pair of layers, (BSA-CS)2, assemblies are stable in neutral pH, a result that will be of interest for biomedical applications. On the other hand, multilayer films consisting of more than four layers that is (BSA-CS)2
Collapse
|
7
|
Tian Z, Jiang X, Chen Z, Huang C, Qian F. Quantifying Protein Shape to Elucidate Its Influence on Solution Viscosity in High-Concentration Electrolyte Solutions. Mol Pharm 2024; 21:1719-1728. [PMID: 38411904 DOI: 10.1021/acs.molpharmaceut.3c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Therapeutic proteins with a high concentration and low viscosity are highly desirable for subcutaneous and certain local injections. The shape of a protein is known to influence solution viscosity; however, the precise quantification of protein shape and its relative impact compared to other factors like charge-charge interactions remains unclear. In this study, we utilized seven model proteins of varying shapes and experimentally determined their shape factors (v) based on Einstein's viscosity theory, which correlate strongly with the ratios of the proteins' surface area to the 2/3 power of their respective volumes, based on protein crystal structures resolved experimentally or predicted by AlphaFold. This finding confirms the feasibility of computationally estimating protein shape factors from amino acid sequences alone. Furthermore, our results demonstrated that, in high-concentration electrolyte solutions, a more spherical protein shape increases the protein's critical concentration (C*), the transition concentration beyond which protein viscosity increases exponentially relative to concentration increases. In summary, our work elucidates protein shape as a key determinant of solution viscosity through quantitative analysis and comparison with other contributing factors. This provides insights into molecular engineering strategies to optimize the molecular design of therapeutic proteins, thus optimizing their viscosity.
Collapse
Affiliation(s)
- Zhou Tian
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Xuling Jiang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Chengnan Huang
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| | - Feng Qian
- School of Pharmaceutical Sciences, Beijing Frontier Research Center for Biological Structure, and Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
8
|
Hlushko R, Pozharski E, Prabhu VM, Andrianov AK. Directly visualizing individual polyorganophosphazenes and their single-chain complexes with proteins. COMMUNICATIONS MATERIALS 2024; 5:36. [PMID: 38817739 PMCID: PMC11139433 DOI: 10.1038/s43246-024-00476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/07/2024] [Indexed: 06/01/2024]
Abstract
Polyorganophosphazenes are water-soluble macromolecules with immunoadjuvant activity that self-assemble with proteins to enable biological functionality. Direct imaging by cryogenic electron microscopy uncovers the coil structure of those highly charged macromolecules. The successful visualization of individual polymer chains within the vitrified state is achieved in the absence of additives for contrast enhancement and is attributed to the high mass contrast of the inorganic backbone. Upon assembly with proteins, multiple protein copies bind at the single polymer chain level resulting in structures reminiscent of compact spherical complexes or stiffened coils. The outcome depends on protein characteristics and cannot be deduced by commonly used characterization techniques, such as light scattering, thus revealing direct morphological insights crucial for understanding biological activity. Atomic force microscopy supports the morphology outcomes while advanced analytical techniques confirm protein-polymer binding. The chain visualization methodology provides tools for gaining insights into the processes of supramolecular assembly and mechanistic aspects of polymer enabled vaccine delivery.
Collapse
Affiliation(s)
- Raman Hlushko
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States of America
| | - Edwin Pozharski
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States of America
| | - Vivek M. Prabhu
- Materials Science and Engineering Division, Material Measurement Laboratory, National Institute of Standards and Technology‡, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States of America
| | - Alexander K. Andrianov
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland 20850, United States of America
| |
Collapse
|
9
|
Sathyavageeswaran A, Bonesso Sabadini J, Perry SL. Self-Assembling Polypeptides in Complex Coacervation. Acc Chem Res 2024; 57:386-398. [PMID: 38252962 DOI: 10.1021/acs.accounts.3c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Intracellular compartmentalization plays a pivotal role in cellular function, with membrane-bound organelles and membrane-less biomolecular "condensates" playing key roles. These condensates, formed through liquid-liquid phase separation (LLPS), enable selective compartmentalization without the barrier of a lipid bilayer, thereby facilitating rapid formation and dissolution in response to stimuli. Intrinsically disordered proteins (IDPs) or proteins with intrinsically disordered regions (IDRs), which are often rich in charged and polar amino acid sequences, scaffold many condensates, often in conjunction with RNA.Comprehending the impact of IDP/IDR sequences on phase separation poses a challenge due to the extensive chemical diversity resulting from the myriad amino acids and post-translational modifications. To tackle this hurdle, one approach has been to investigate LLPS in simplified polypeptide systems, which offer a narrower scope within the chemical space for exploration. This strategy is supported by studies that have demonstrated how IDP function can largely be understood based on general chemical features, such as clusters or patterns of charged amino acids, rather than residue-level effects, and the ways in which these kinds of motifs give rise to an ensemble of conformations.Our laboratory has utilized complex coacervates assembled from oppositely charged polypeptides as a simplified material analogue to the complexity of liquid-liquid phase separated biological condensates. Complex coacervation is an associative LLPS that occurs due to the electrostatic complexation of oppositely charged macro-ions. This process is believed to be driven by the entropic gains resulting from the release of bound counterions and the reorganization of water upon complex formation. Apart from their direct applicability to IDPs, polypeptides also serve as excellent model polymers for investigating molecular interactions due to the wide range of available side-chain functionalities and the capacity to finely regulate their sequence, thus enabling precise control over interactions with guest molecules.Here, we discuss fundamental studies examining how charge patterning, hydrophobicity, chirality, and architecture affect the phase separation of polypeptide-based complex coacervates. These efforts have leveraged a combination of experimental and computational approaches that provide insight into molecular level interactions. We also examine how these parameters affect the ability of complex coacervates to incorporate globular proteins and viruses. These efforts couple directly with our fundamental studies into coacervate formation, as such "guest" molecules should not be considered as experiencing simple encapsulation and are instead active participants in the electrostatic assembly of coacervate materials. Interestingly, we observed trends in the incorporation of proteins and viruses into coacervates formed using different chain length polypeptides that are not well explained by simple electrostatic arguments and may be the result of more complex interactions between globular and polymeric species. Additionally, we describe experimental evidence supporting the potential for complex coacervates to improve the thermal stability of embedded biomolecules, such as viral vaccines.Ultimately, peptide-based coacervates have the potential to help unravel the physics behind biological condensates, while paving the way for innovative methods in compartmentalization, purification, and biomolecule stabilization. These advancements could have implications spanning medicine to biocatalysis.
Collapse
Affiliation(s)
- Arvind Sathyavageeswaran
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 10003, United States
| | - Júlia Bonesso Sabadini
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 10003, United States
- Institute of Chemistry, University of Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 10003, United States
| |
Collapse
|
10
|
Shobade SO, Zabotina OA, Nilsen-Hamilton M. Plant root associated chitinases: structures and functions. FRONTIERS IN PLANT SCIENCE 2024; 15:1344142. [PMID: 38362446 PMCID: PMC10867124 DOI: 10.3389/fpls.2024.1344142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
Chitinases degrade chitin, a linear homopolymer of β-1,4-linked N-acetyl-D-glucosamine (GlcNAc) residues found in the cell walls of fungi and the exoskeletons of arthropods. They are secreted by the roots into the rhizosphere, a complex and dynamic environment where intense nutrient exchange occurs between plants and microbes. Here we modeled, expressed, purified, and characterized Zea mays and Oryza sativa root chitinases, and the chitinase of a symbiotic bacterium, Chitinophaga oryzae 1303 for their activities with chitin, di-, tri-, and tetra-saccharides and Aspergillus niger, with the goal of determining their role(s) in the rhizosphere and better understanding the molecular mechanisms underlying plant-microbe interactions. We show that Zea mays basic endochitinase (ZmChi19A) and Oryza sativa chitinase (OsChi19A) are from the GH19 chitinase family. The Chitinophaga oryzae 1303 chitinase (CspCh18A) belongs to the GH18 family. The three enzymes have similar apparent K M values of (20-40 µM) for the substrate 4-MU-GlcNAc3. They vary in their pH and temperature optima with OsChi19A activity optimal between pH 5-7 and 30-40°C while ZmChi19A and CspCh18A activities were optimal at pH 7-9 and 50-60°C. Modeling and site-directed mutation of ZmChi19A identified the catalytic cleft and the active residues E147 and E169 strategically positioned at ~8.6Å from each other in the folded protein. Cleavage of 4-MU-GlcNAc3 was unaffected by the absence of the CBD but diminished in the absence of the flexible C-terminal domain. However, unlike for the soluble substrate, the CBD and the newly identified flexible C-terminal domain were vital for inhibiting Aspergillus niger growth. The results are consistent with the involvement of the plant chitinases in defense against pathogens like fungi that have chitin exoskeletons. In summary, we have characterized the functional features and structural domains necessary for the activity of two plant root chitinases that are believed to be involved in plant defense and a bacterial chitinase that, along with the plant chitinases, may participate in nutrient recycling in the rhizosphere.
Collapse
Affiliation(s)
- Samuel O. Shobade
- Ames National Laboratory, U. S. Department of Energy, Ames, IA, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Olga A. Zabotina
- Ames National Laboratory, U. S. Department of Energy, Ames, IA, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Marit Nilsen-Hamilton
- Ames National Laboratory, U. S. Department of Energy, Ames, IA, United States
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
11
|
Popova TO, Borisov OV, Zhulina EB. Polyelectrolyte Brushes with Protein-Like Nanocolloids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1232-1246. [PMID: 38176061 DOI: 10.1021/acs.langmuir.3c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Electrostatic interaction of ampholytic nanocolloidal particles (NPs), which mimic globular proteins, with polyelectrolyte brushes is analyzed within mean-field Poisson-Boltzmann approximation. In accordance with experimental findings, the theory predicts that an electrostatic driving force for the particle uptake by the brush may emerge when the net charge of the particle in the buffer and the charge of the brush are of the same sign. The origin of this driving force is change in the ionization state of weak cationic and anionic groups on the NP surface provoked by interaction with the brush. In experimental systems, the ionic interactions are complemented by excluded-volume, hydrophobic, and other types of interactions that all together control NP uptake by or expulsion from the brush. Here, we focus on the NP-brush ionic interactions. It is demonstrated that deviation between the buffer pH and the NP isoelectric point, considered usually as the key control parameter, does not uniquely determine the insertion free energy patterns. The latter depends also on the proportion of cationic and anionic groups in the NPs and their specific ionization constants as well as on salt concentration in the buffer. The analysis of the free energy landscape proves that a local minimum in the free energy inside the brush appears, provided the NP charge reversal occurs upon insertion into the brush. This minimum corresponds either to a thermodynamically stable or to a metastable state, depending on the pH offset from the IEP and salt concentration, and is separated from the bulk of the solution by a free energy barrier. The latter, being fairly independent of salt concentration in height, may strongly impede the NP absorption kinetically even when it is thermodynamically favorable. Hence, change reversal is a necessary but insufficient condition for the uptake of the NPs by similarly charged polyelectrolyte brushes.
Collapse
Affiliation(s)
- Tatiana O Popova
- ITMO University, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V Borisov
- ITMO University, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, CNRS, Université de Pau et des Pays de l'Adour UMR 5254, Pau 64053, France
| | - Ekaterina B Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| |
Collapse
|
12
|
Popova TO, Zhulina EB, Borisov OV. Interaction of Polyanionic and Polycationic Brushes with Globular Proteins and Protein-like Nanocolloids. Biomimetics (Basel) 2023; 8:597. [PMID: 38132536 PMCID: PMC10741738 DOI: 10.3390/biomimetics8080597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 11/25/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
A large number of experimental studies have demonstrated that globular proteins can be absorbed from the solution by both polycationic and polyanionic brushes when the net charge of protein globules is of the same or of the opposite sign with respect to that of brush-forming polyelectrolyte chains. Here, we overview the results of experimental studies on interactions between globular proteins and polycationic or polyanionic brushes, and present a self-consistent field theoretical model that allows us to account for the asymmetry of interactions of protein-like nanocolloid particles comprising weak (pH-sensitive) cationic and anionic groups with a positively or negatively charged polyelectrolyte brush. The position-dependent insertion free energy and the net charge of the particle are calculated. The theoretical model predicts that if the numbers of cationic and anionic ionizable groups of the protein are approximately equal, then the interaction patterns for both cationic and anionic brushes at equal offset on the "wrong side" from the isoelectric point (IEP), i.e., when the particle and the brush charge are of the same sign, are similar. An essential asymmetry in interactions of particles with polycationic and polyanionic brushes is predicted when fractions of cationic and anionic groups differ significantly. That is, at a pH above IEP, the anionic brush better absorbs negatively charged particles with a larger fraction of ionizable cationic groups and vice versa.
Collapse
Affiliation(s)
- Tatiana O. Popova
- Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia;
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
| | - Oleg V. Borisov
- Chemical Engineering Center, National Research University ITMO, 199004 St. Petersburg, Russia;
- Institute of Macromolecular Compoundsof the Russian Academy of Sciences, 199004 St. Petersburg, Russia;
- CNRS, Université de Pau et des Pays de l’Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie Pour l’Environnement et les Matériaux, 64053 Pau, France
| |
Collapse
|
13
|
Zhang L, Zhou R, Fu X, Zhang G, Zhang L, Zhou SF, Jiang W. Specific coenzyme preference switching for an aldo-keto reductase that synthesizes the chiral intermediate of duloxetine. Enzyme Microb Technol 2023; 171:110326. [PMID: 37717530 DOI: 10.1016/j.enzmictec.2023.110326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
The synthesis of chiral intermediates for the traditional antidepressant duloxetine has gained significant attention as the number of depressed patients continues to grow. S-N, N-Dimethyl-3-hydroxy-3-(2-thienyl)-1-propanamide (S-DHTP) is a critical intermediate in the synthesis of duloxetine, and the chemical synthesis process is complex and environmentally unfriendly. Reduced nicotinamide adenine dinucleotide phosphate (NADPH) is a major cost driver in the biocatalytic production of S-DHTP from N, N-Dimethyl-3-keto-3-(2-thienyl)-1-propanamide (DKTP). Here, we successfully modified the coenzyme preference of an aldo-keto reductase (AKR7-2-1) to use the cheaper reduced nicotinamide adenine dinucleotide (NADH) through a coenzyme preference modification approach. We utilized protein engineering to create a superior mutant, Y53F, which increased the coenzyme specificity of AKR7-2-1 by 875-fold and improved its thermal stability, enhancing its potential for industrial applications. Molecular dynamics simulations were performed to demonstrate the effect of mutations at key sites on the protein, revealing the altered coenzyme preference and increased thermal stability from structural and energetic changes. This study validates the viability of the coenzyme preference modification strategy for aldo-keto reductase, offering valuable insights for fellow researchers and guiding future investigations.
Collapse
Affiliation(s)
- Lingzhi Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Rui Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Xiaoli Fu
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Guangya Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Lijuan Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao 266237, PR China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
14
|
Andrianov A, Hlushko R, Pozharski E, Prabhu V. Cryo-EM and AFM visualize linear polyorganophosphazene: individual chains and single-chain assemblies with proteins. RESEARCH SQUARE 2023:rs.3.rs-3411603. [PMID: 37961436 PMCID: PMC10635375 DOI: 10.21203/rs.3.rs-3411603/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Polyorganophosphazenes are biodegradable macromolecules with potent immunoadjuvant activity that self-assemble with protein antigens to provide biological activity. Direct imaging by cryogenic electron microscopy reveals the coil structure of the highly-charged high molecular mass synthetic polyorganophosphazenes within the vitrified state without any additives for contrast enhancement for the first time. Upon mixing with protein antigens under a controlled stoichiometric ratio, multiple proteins bind at the single chain level revealing a structural change reminiscent of compact spherical complexes or stiffened coils depending on the bound protein antigen. The structural outcome depends on the protein charge density that cannot be deduced by methods, such as dynamic light scattering, thus revealing direct morphological insight necessary to understand in vivo biological activity. Complementary atomic force microscopy supports the binding morphology outcomes as well as additional analytical techniques that indicate binding. These observations open opportunities to understand supramolecular assembly of proteins and other biomacromolecules at the single chain level with highly charged polyelectrolytes for vaccines as well as important to developing fields such as polyelectrolyte complex coacervation.
Collapse
|
15
|
Nnyigide OS, Hyun K. Charge-induced low-temperature gelation of mixed proteins and the effect of pH on the gelation: A spectroscopic, rheological and coarse-grained molecular dynamics study. Colloids Surf B Biointerfaces 2023; 230:113527. [PMID: 37659199 DOI: 10.1016/j.colsurfb.2023.113527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
We report the gelation of mixed proteins consisting of oppositely charged lysozyme and serum albumins at various pH. The results from rheological tests showed that at a pH of 7, the gelation temperature (Tgel) of the oppositely charged proteins was lower than the melting temperature (Tm) of the individual protein. To ascertain the conformational state of the proteins at the observed Tgel, the attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectra of the proteins were acquired. The recorded spectra showed that the proteins were predominantly alpha helical, suggesting that the observed gelation was electrostatically triggered. However, as the solution pH was changed to acid or alkaline regime, all the proteins became similarly charged and showed Tgel < Tm which was attributed to pH-induced denaturation. Surprisingly, however, the serum albumins were remarkably stable at the alkaline pH of 9 and 10 but very labile at the acidic pH. In contrast, the LYZ was more stable at the acidic than alkaline pH. To understand the role of the opposite charges in the gelation, coarse-grained molecular dynamics (CGMD) simulations revealed an increase in the aggregation of the oppositely charged proteins compared with the pure or similarly charged protein mixture.
Collapse
Affiliation(s)
| | - Kyu Hyun
- School of Chemical Engineering, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
16
|
Yu B, Liang H, Nealey PF, Tirrell MV, Rumyantsev AM, de Pablo JJ. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates: Insights from Molecular Simulations. Macromolecules 2023; 56:7256-7270. [PMID: 37781214 PMCID: PMC10538443 DOI: 10.1021/acs.macromol.3c01079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Indexed: 10/03/2023]
Abstract
Electrostatic interactions in polymeric systems are responsible for a wide range of liquid-liquid phase transitions that are of importance for biology and materials science. Such transitions are referred to as complex coacervation, and recent studies have sought to understand the underlying physics and chemistry. Most theoretical and simulation efforts to date have focused on oppositely charged linear polyelectrolytes, which adopt nearly ideal-coil conformations in the condensed phase. However, when one of the coacervate components is a globular protein, a better model of complexation should replace one of the species with a spherical charged particle or colloid. In this work, we perform coarse-grained simulations of colloid-polyelectrolyte coacervation using a spherical model for the colloid. Simulation results indicate that the electroneutral cell of the resulting (hybrid) coacervates consists of a polyelectrolyte layer adsorbed on the colloid. Power laws for the structure and the density of the condensed phase, which are extracted from simulations, are found to be consistent with the adsorption-based scaling theory of hybrid coacervation. The coacervates remain amorphous (disordered) at a moderate colloid charge, Q, while an intra-coacervate colloidal crystal is formed above a certain threshold, at Q > Q*. In the disordered coacervate, if Q is sufficiently low, colloids diffuse as neutral nonsticky nanoparticles in the semidilute polymer solution. For higher Q, adsorption is strong and colloids become effectively sticky. Our findings are relevant for the coacervation of polyelectrolytes with proteins, spherical micelles of ionic surfactants, and solid organic or inorganic nanoparticles.
Collapse
Affiliation(s)
- Boyuan Yu
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Heyi Liang
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Paul F. Nealey
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Matthew V. Tirrell
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| | - Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905, United States
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
- Center
for Molecular Engineering, Argonne National
Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
17
|
Zhao P, Huang X, Li Y, Huo X, Feng Q, Zhao X, Xu C, Wang J. An artificialed protein corona coating the surface of magnetic nanoparicles:a simple and efficient method for label antibody. Heliyon 2023; 9:e13860. [PMID: 36923872 PMCID: PMC10008981 DOI: 10.1016/j.heliyon.2023.e13860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Background Protein Corona (PC) of nanoparticles is a structure which composed of one or more layers of proteins adsorbed on the surface of nanomaterials, and the formation of PC is a universal process of spontaneous randomness. We take advantage of the formation principle of the PC, developed a simple and efficient method for label protein to nanoparticles. Methods The artificialed protein corona (APC) on the surface of nanoparticles was synthesized via the artificialed methods of desolvation aggregation and crosslinking with control. Results The dosage of precipitator and the ratio of protein to magnetic nanoparticles (MNPs)(particle size: 3 nm) were optimized, and the core-shell nanoparticles with narrow particle size (particle size: 10 nm) distribution were obtained. The MNPs with APC were characterized by transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). Additionally, a hemolysis test on prepared MNPs was conducted with APC. The presence of APC coating on the surface of MNPs showed an improving effect to reduce the cytotoxicity. Cellular toxicity of MNPs with APC was also investigated on HFF1 cell lines. And the cells survival in the presence of APC coated MNPs and display neither reduced metabolism nor cytostatic effect. The functional test of the MNPs with APC showed that proteins can be modified and labeled onto magnetic nanoparticles and retain their original activity. Conclusions This marking method is gentle and effective. And the properties of the APC propose MNPs as a promising candidate for multifunctional biomedical applications.
Collapse
Affiliation(s)
- Penghua Zhao
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiaoyan Huang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Yaping Li
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xueping Huo
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Qing Feng
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xiangrong Zhao
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Cuixiang Xu
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Corresponding author. Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, China.
| | - Jianhua Wang
- Research Center of Cell Immunological Engineering and Technology of Shaanxi Province, Central Lab of Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
- Corresponding author. Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710068, China.
| |
Collapse
|
18
|
Rumyantsev AM, Borisov OV, de Pablo JJ. Structure and Dynamics of Hybrid Colloid-Polyelectrolyte Coacervates. Macromolecules 2023; 56:1713-1730. [PMID: 36874532 PMCID: PMC9979655 DOI: 10.1021/acs.macromol.2c02464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/28/2023] [Indexed: 02/16/2023]
Abstract
We develop a scaling theory for the structure and dynamics of "hybrid" complex coacervates formed from linear polyelectrolytes (PEs) and oppositely charged spherical colloids, such as globular proteins, solid nanoparticles, or spherical micelles of ionic surfactants. At low concentrations, in stoichiometric solutions, PEs adsorb at the colloids to form electrically neutral finite-size complexes. These clusters attract each other through bridging between the adsorbed PE layers. Above a threshold concentration, macroscopic phase separation sets in. The coacervate internal structure is defined by (i) the adsorption strength and (ii) the ratio of the resulting shell thickness to the colloid radius, H/R. A scaling diagram of different coacervate regimes is constructed in terms of the colloid charge and its radius for Θ and athermal solvents. For high charges of the colloids, the shell is thick, H ≫ R, and most of the volume of the coacervate is occupied by PEs, which determine its osmotic and rheological properties. The average density of hybrid coacervates exceeds that of their PE-PE counterparts and increases with nanoparticle charge, Q. At the same time, their osmotic moduli remain equal, and the surface tension of hybrid coacervates is lower, which is a consequence of the shell's inhomogeneous density decreasing with the distance from the colloid surface. When charge correlations are weak, hybrid coacervates remain liquid and follow Rouse/reptation dynamics with a Q-dependent viscosity, η Rouse ∼ Q 4/5 and η rep ∼ Q 28/15 for a Θ solvent. For an athermal solvent, these exponents are equal to 0.89 and 2.68, respectively. The diffusion coefficients of colloids are predicted to be strongly decreasing functions of their radius and charge. Our results on how Q affects the threshold coacervation concentration and colloidal dynamics in condensed phases are consistent with experimental observations for in vitro and in vivo studies of coacervation between supercationic green fluorescent proteins (GFPs) and RNA.
Collapse
Affiliation(s)
- Artem M. Rumyantsev
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| | - Oleg V. Borisov
- Institut
des Sciences Analytiques et de Physico-Chimie pour l’Environnement
et les Matériaux, UMR 5254 CNRS UPPA, Pau 64053, France
| | - Juan J. de Pablo
- Pritzker
School of Molecular Engineering, University
of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
19
|
Salamatova TO, Zhulina EB, Borisov OV. Bovine Serum Albumin Interaction with Polyanionic and Polycationic Brushes: The Case Theoretical Study. Int J Mol Sci 2023; 24:ijms24043395. [PMID: 36834807 PMCID: PMC9961975 DOI: 10.3390/ijms24043395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/23/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
We apply a coarse-grained self-consistent field Poisson-Boltzmann framework to study interaction between Bovine Serum Albumin (BSA) and a planar polyelectropyte brush. Both cases of negatively (polyanionic) and positively (polycationic) charged brushes are considered. Our theoretical model accounts for (1) re-ionization free energy of the amino acid residues upon protein insertion into the brush; (2) osmotic force repelling the protein globule from the brush; (3) hydrophobic interactions between non-polar areas on the globule surface and the brush-forming chains. We demonstrate that calculated position-dependent insertion free energy exhibits different patterns, corresponding to either thermodynamically favourable BSA absorption in the brush or thermodynamically or kinetically hindered absorption (expulsion) depending on the pH and ionic strength of the solution. The theory predicts that due to the re-ionization of BSA within the brush, a polyanionic brush can efficiently absorb BSA over a wider pH range on the "wrong side" of the isoelectric point (IEP) compared to a polycationic brush. The results of our theoretical analysis correlate with available experimental data and thus validate the developed model for prediction of the interaction patterns for various globular proteins with polyelectrolyte brushes.
Collapse
Affiliation(s)
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
| | - Oleg V. Borisov
- Chemical Engineering Center, ITMO University, 197101 St. Petersburg, Russia
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, 199004 St. Petersburg, Russia
- CNRS, Université de Pau et des Pays de l’Adour UMR 5254, Institut des Sciences Analytiques et de Physico-Chimie pour l’Environnement et les Matériaux, 64053 Pau, France
- Correspondence:
| |
Collapse
|
20
|
Moses K, Van Tassel PR. Polyelectrolyte Influence on Beta-Hairpin Peptide Stability: A Simulation Study. J Phys Chem B 2023; 127:359-370. [PMID: 36574611 DOI: 10.1021/acs.jpcb.2c06641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Assemblies of proteins and charged macromolecules (polyelectrolytes) find important applications as pharmaceutical formulations, biocatalysts, and cell-contacting substrates. A key question is how the polymer component influences the structure and function of the protein. The present paper addresses the influence of charged polymers on the thermal stability of two model beta-hairpin-forming peptides through an all-atom, replica exchange molecular dynamics simulation. The (negatively charged) peptides consist of the terminal 16 amino acids of the B1 domain of Protein G (GB1) and a variant with three of the GB1 residues substituted with tryptophan (Tryptophan Zipper 4, or TZ4). A (cationic) lysine polymer is seen to thermally stabilize TZ4 and destabilize GB1, while a (also cationic) chitosan polymer slightly stabilizes GB1 but has essentially no effect on TZ4. Free energy profiles reveal folded and unfolded conformations to be separated by kinetic barriers generally acting in the direction of the thermodynamically favored state. Through application of an Ising-like statistical mechanical model, a mechanism is proposed based on competition between (indirect) entropic stabilization of folded versus unfolded states and (direct) competition for hydrogen-bonding and hydrophobic interactions. These findings have important implications to the design of polyelectrolyte-based materials for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Kevin Moses
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| | - Paul R Van Tassel
- Dept. of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States
| |
Collapse
|
21
|
Yeong V, Wang JW, Horn JM, Obermeyer AC. Intracellular phase separation of globular proteins facilitated by short cationic peptides. Nat Commun 2022; 13:7882. [PMID: 36550144 PMCID: PMC9780332 DOI: 10.1038/s41467-022-35529-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Phase separation provides intracellular organization and underlies a variety of cellular processes. These biomolecular condensates exhibit distinct physical and material properties. Current strategies for engineering condensate formation include using intrinsically disordered domains and altering protein surface charge by chemical supercharging or site-specific mutagenesis. We propose adding to this toolbox designer peptide tags that provide several potential advantages for engineering protein phase separation in bacteria. Herein, we demonstrate the use of short cationic peptide tags for sequestration of proteins of interest into bacterial condensates and provide a foundational study for their development as tools for condensate engineering. Using a panel of GFP variants, we demonstrate how cationic tag and globular domain charge contribute to intracellular phase separation in E. coli and observe that the tag can affect condensate disassembly at a given net charge near the phase separation boundary. We showcase the broad applicability of these tags by appending them onto enzymes and demonstrating that the sequestered enzymes remain catalytically active.
Collapse
Affiliation(s)
- Vivian Yeong
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Jou-Wen Wang
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Justin M Horn
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
22
|
Kapelner RA, Fisher RS, Elbaum-Garfinkle S, Obermeyer AC. Protein charge parameters that influence stability and cellular internalization of polyelectrolyte complex micelles. Chem Sci 2022; 13:14346-14356. [PMID: 36545145 PMCID: PMC9749388 DOI: 10.1039/d2sc00192f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Proteins are an important class of biologics, but there are several recurring challenges to address when designing protein-based therapeutics. These challenges include: the propensity of proteins to aggregate during formulation, relatively low loading in traditional hydrophobic delivery vehicles, and inefficient cellular uptake. This last criterion is particularly challenging for anionic proteins as they cannot cross the anionic plasma membrane. Here we investigated the complex coacervation of anionic proteins with a block copolymer of opposite charge to form polyelectrolyte complex (PEC) micelles for use as a protein delivery vehicle. Using genetically modified variants of the model protein green fluorescent protein (GFP), we evaluated the role of protein charge and charge localization in the formation and stability of PEC micelles. A neutral-cationic block copolymer, poly(oligoethylene glycol methacrylate-block-quaternized 4-vinylpyridine), POEGMA79-b-qP4VP175, was prepared via RAFT polymerization for complexation and microphase separation with the panel of engineered anionic GFPs. We found that isotropically supercharged proteins formed micelles at higher ionic strength relative to protein variants with charge localized to a polypeptide tag. We then studied GFP delivery by PEC micelles and found that they effectively delivered the protein cargo to mammalian cells. However, cellular delivery varied as a function of protein charge and charge distribution and we found an inverse relationship between the PEC micelle critical salt concentration and delivery efficiency. This model system has highlighted the potential of polyelectrolyte complexes to deliver anionic proteins intracellularly. Using this model system, we have identified requirements for the formation of PEC micelles that are stable at physiological ionic strength and that smaller protein-polyelectrolyte complexes effectively deliver proteins to Jurkat cells.
Collapse
Affiliation(s)
- Rachel A Kapelner
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
| | - Rachel S Fisher
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
- Structural Biology Initiative, CUNY Advanced Science Research Center New York NY USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, CUNY Advanced Science Research Center New York NY USA
- PhD Programs in Biochemistry and Biology at the Graduate Center, City University of New York NY USA
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University New York NY 10027 USA +1-212-853-1215
| |
Collapse
|
23
|
Aquino Queirós MV, Loh W. How to Predict the Order of Phase Separation of Polyelectrolyte Complexes and Their Miscibility. J Phys Chem B 2022; 126:5362-5373. [PMID: 35819870 DOI: 10.1021/acs.jpcb.2c03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mixture of two oppositely charged polyelectrolyte solutions results in complexation that may lead to an associative phase separation, forming a highly concentrated phase in both polyelectrolytes in equilibrium with a dilute phase. In this work, we aim to investigate what controls the order of complexation when more polyelectrolytes of the same charge are present. For this, the effect of the addition of a third oppositely charged polyelectrolyte in a mixture of two polyelectrolytes with the same charge was studied. Our results show that, under certain conditions, the electrostatic complexation takes place selectively, where one polyanion (or polycation) phase separates first, followed by the other phase separation, with both complexes at their 1:1 charge stoichiometry. Infrared analyses of the phase-separated complexes confirmed that, in a mixture of polyanions, poly(styrenesulfonate) is complexed first, followed by poly(acrylate). For polycations, these analyses showed that poly(diallyldimethylammonium) is preferentially complexed over poly(allylamine). These results suggest that electrostatic complexation occurs following the sequence predicted as in an acid/base titration, where the acidic/basic strength of the involved polyions dictates which one is complexed first. In this respect, the order of complexation can be associated with the equivalence pH for each pair, which we propose can be used as a parameter to predict phase separation in polyelectrolyte mixtures. In addition, we have investigated the miscibility of these complex mixtures, confirming that multiphasic complexes are formed whenever the polyions display ionizable groups with different acid/basic strengths and that this can also be related to their equivalence pH.
Collapse
Affiliation(s)
| | - Watson Loh
- Institute of Chemistry, University of Campinas (UNICAMP), P.O. Box 6154, 13083-970 Campinas, São Paulo, Brazil
| |
Collapse
|
24
|
Razzak MA, Jeong MS, Kim MJ, Cho SJ. Unraveling the phase behavior of cricket protein isolate and alginate in aqueous solution. Food Chem 2022; 394:133527. [PMID: 35749882 DOI: 10.1016/j.foodchem.2022.133527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The associative phase behavior of cricket protein isolate (CPI) and sodium alginate (AL) in aqueous solutions was explored using turbidimetry, methylene blue spectroscopy, zeta potentiometry, dynamic light scattering, and confocal microscopy as a function of pH, biopolymer ratio, total biopolymer concentration (CT), and ionic strength. When both biopolymers had net-negative charges, soluble complexes formed between pH 6.0 and 8.0, however when both biopolymers had opposing net charges, insoluble complexes formed as complex coacervates below pH 5.5, defined as pHφ1, followed by precipitates below another critical pH 3.0 (pHp). Increasing the CPI:AL weight ratio or CT facilitated complex formation, and the addition of salts (NaCl/KCl) had a salt-enhancement and salt-reduction impact at low and high salt concentrations, respectively. Ionic interactions between oppositely charged CPI and AL were mainly responsible for the formation of their insoluble complexes, while hydrogen bonding and hydrophobic interactions also played significant roles.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea; Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min-Soo Jeong
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min Jeong Kim
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Seong-Jun Cho
- Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea; Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea.
| |
Collapse
|
25
|
Waltmann C, Mills CE, Wang J, Qiao B, Torkelson JM, Tullman-Ercek D, de la Cruz MO. Functional enzyme-polymer complexes. Proc Natl Acad Sci U S A 2022; 119:e2119509119. [PMID: 35312375 PMCID: PMC9060439 DOI: 10.1073/pnas.2119509119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/21/2022] [Indexed: 01/23/2023] Open
Abstract
SignificanceThe use of biological enzyme catalysts could have huge ramifications for chemical industries. However, these enzymes are often inactive in nonbiological conditions, such as high temperatures, present in industrial settings. Here, we show that the enzyme PETase (polyethylene terephthalate [PET]), with potential application in plastic recycling, is stabilized at elevated temperature through complexation with random copolymers. We demonstrate this through simulations and experiments on different types of substrates. Our simulations also provide strategies for designing more enzymatically active complexes by altering polymer composition and enzyme charge distribution.
Collapse
Affiliation(s)
- Curt Waltmann
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Carolyn E. Mills
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Jeremy Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - Baofu Qiao
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
| | - John M. Torkelson
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208
| |
Collapse
|
26
|
Hinderink EB, Boire A, Renard D, Riaublanc A, Sagis LM, Schroën K, Bouhallab S, Famelart MH, Gagnaire V, Guyomarc'h F, Berton-Carabin CC. Combining plant and dairy proteins in food colloid design. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Ahmed R, Hira NUA, Fu Z, Wang M, Halepoto A, Khanal S, Iqbal S, Mahar H, Cohen Stuart MA, Guo X. Control and Preparation of Quaternized Chitosan and Carboxymethyl Chitosan Nanoscale Polyelectrolyte Complexes Based on Reactive Flash Nanoprecipitation. ACS OMEGA 2021; 6:24526-24534. [PMID: 34604634 PMCID: PMC8482477 DOI: 10.1021/acsomega.1c02185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Nanoscale polyelectrolyte complex materials have been extensively investigated for their promising application in protocell, drug carriers, imaging, and catalysis. However, the conventional preparation approach involving positive and negative polyelectrolytes leads to large size, wide size distribution, instability, and aggregation due to the nonhomogeneous mixing process. Herein, we employ reactive flash nanoprecipitation (RFNP) to control the mixing and preparation of the nanoscale polyelectrolyte complex. With RFNP, homogeneous mixing complexation between oppositely charged chitosan derivatives could be achieved, resulting in stable nanoscale complexes (NCs) with controllable size and narrow size distribution. The smallest size of NCs is found at specific pH due to the maximum attraction of positive and negative molecules of chitosan. The size can be modulated by altering the volumetric flow rates of inlet streams, concentration, and charge molar ratio of two oppositely charged chitosan derivatives. The charge molar ratio is also tuned to create NCs with positive and negative shells. There is no significant variation in the size of NCs produced at different intervals of time. This method allows continuous and tunable NC production and could have the potential for fast, practical translation.
Collapse
Affiliation(s)
- Rizwan Ahmed
- State-Key
Laboratory of Chemical Engineering, and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Noor ul ain Hira
- State
Key Laboratory of Advanced Polymeric Material, School of Materials
Science and Engineering, East China University
of Science and Technology, Shanghai 200237, P.R. China
| | - Zhinan Fu
- State-Key
Laboratory of Chemical Engineering, and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Mingwei Wang
- State-Key
Laboratory of Chemical Engineering, and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Adeel Halepoto
- State-Key
Laboratory of Chemical Engineering, and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Santosh Khanal
- State
Key Laboratory of Advanced Polymeric Material, School of Materials
Science and Engineering, East China University
of Science and Technology, Shanghai 200237, P.R. China
| | - Shahid Iqbal
- School
of Chemical and Environmental Engineering, College of Chemistry, Chemical
Engineering and Materials Science, Soochow
University, Suzhou, Jiangsu 215123, China
| | - Hidayatullah Mahar
- National
Fertilizer Corporation (NFC) Institute of Engineering & Technology,
Chemical Engineering, Multan 60000, Pakistan
| | - Martien Abraham Cohen Stuart
- State-Key
Laboratory of Chemical Engineering, and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xuhong Guo
- State-Key
Laboratory of Chemical Engineering, and Shanghai Key Laboratory of
Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- International
Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Engineering
Research Center of Materials Chemical Engineering of Xinjiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832000, P.R. China
| |
Collapse
|
28
|
Taneja I, Holehouse AS. Folded domain charge properties influence the conformational behavior of disordered tails. Curr Res Struct Biol 2021; 3:216-228. [PMID: 34557680 PMCID: PMC8446786 DOI: 10.1016/j.crstbi.2021.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins and protein regions (IDRs) make up around 30% of the human proteome where they play essential roles in dictating and regulating many core biological processes. While IDRs are often studied as isolated domains, in naturally occurring proteins most IDRs are found adjacent to folded domains, where they exist as either N- or C-terminal tails or as linkers connecting two folded domains. Prior work has shown that charge properties of IDRs can influence their conformational behavior, both in isolation and in the context of folded domains. In contrast, the converse scenario is less well-explored: how do the charge properties of folded domains influence IDR conformational behavior? To answer this question, we combined a large-scale structural bioinformatics analysis with all-atom implicit solvent simulations of both rationally designed and naturally occurring proteins. Our results reveal three key takeaways. Firstly, the relative position and accessibility of charged residues across the surface of a folded domain can dictate IDR conformational behavior, overriding expectations based on net surface charge properties. Secondly, naturally occurring proteins possess multiple charge patches that are physically accessible to local IDRs. Finally, even modest changes in the local electrostatic environment of a folded domain can substantially modulate IDR-folded domain interactions. Taken together, our results suggest that folded domain surfaces can act as local determinants of IDR conformational behavior. Intrinsically disordered regions (IDRs) are mostly found adjacent to folded domains. Here we propose that the folded domain surface properties influence IDR behavior. We combine all-atom simulations and sequence design of IDRs and folded domains. IDR conformational behavior is determined by a complex combination of factors. Folded domains can substantially alter IDR conformational biases.
Collapse
Affiliation(s)
- Ishan Taneja
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.,Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
29
|
Zervoudis NA, Obermeyer AC. The effects of protein charge patterning on complex coacervation. SOFT MATTER 2021; 17:6637-6645. [PMID: 34151335 DOI: 10.1039/d1sm00543j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex coacervation of proteins with other macromolecules has applications in protein encapsulation and delivery and for determining the function of cellular coacervates. Theoretical or empirical predictions for protein coacervates would enable the design of these coacervates with tunable and predictable structure-function relationships; unfortunately, no such theories exist. To help establish predictive models, the impact of protein-specific parameters on complex coacervation were probed in this study. The complex coacervation of sequence-specific, polypeptide-tagged, GFP variants and a strong synthetic polyelectrolyte was used to evaluate the effects of protein charge patterning on phase behavior. Phase portraits for the protein coacervates demonstrated that charge patterning dictates the protein's binodal phase boundary. Protein concentrations over 100 mg mL-1 were achieved in the coacervate phase, with concentrations dependent on the tag polypeptide sequence covalently attached to the globular protein domain. In addition to shifting the binodal phase boundary, polypeptide charge patterning provided entropic advantages over isotropically patterned proteins. Together, these results show that modest changes of only a few amino acids in the tag polypeptide sequence alter the coacervation thermodynamics and can be used to tune the phase behavior of polypeptides or proteins of interest.
Collapse
Affiliation(s)
- Nicholas A Zervoudis
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| | - Allie C Obermeyer
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
30
|
Dashnaw CM, Koone JC, Abdolvahabi A, Shaw BF. Measuring how two proteins affect each other's net charge in a crowded environment. Protein Sci 2021; 30:1594-1605. [PMID: 33928693 DOI: 10.1002/pro.4092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022]
Abstract
Theory predicts that the net charge (Z) of a protein can be altered by the net charge of a neighboring protein as the two approach one another below the Debye length. This type of charge regulation suggests that a protein's charge and perhaps function might be affected by neighboring proteins without direct binding. Charge regulation during protein crowding has never been directly measured due to analytical challenges. Here, we show that lysine specific protein crosslinkers (NHS ester-Staudinger pairs) can be used to mimic crowding by linking two non-interacting proteins at a maximal distance of ~7.9 Å. The net charge of the regioisomeric dimers and preceding monomers can then be determined with lysine-acyl "protein charge ladders" and capillary electrophoresis. As a proof of concept, we covalently linked myoglobin (Zmonomer = -0.43 ± 0.01) and α-lactalbumin (Zmonomer = -4.63 ± 0.05). Amide hydrogen/deuterium exchange and circular dichroism spectroscopy demonstrated that crosslinking did not significantly alter the structure of either protein or result in direct binding (thus mimicking crowding). Ultimately, capillary electrophoretic analysis of the dimeric charge ladder detected a change in charge of ΔZ = -0.04 ± 0.09 upon crowding by this pair (Zdimer = -5.10 ± 0.07). These small values of ΔZ are not necessarily general to protein crowding (qualitatively or quantitatively) but will vary per protein size, charge, and solvent conditions.
Collapse
Affiliation(s)
- Chad M Dashnaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Jordan C Koone
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| | - Alireza Abdolvahabi
- Mass Spectrometry Core Facility, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Bryan F Shaw
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas, USA
| |
Collapse
|
31
|
Wätzig H, Hoffstedt M, Krebs F, Minkner R, Scheller C, Zagst H. Protein analysis and stability: Overcoming trial-and-error by grouping according to physicochemical properties. J Chromatogr A 2021; 1649:462234. [PMID: 34038775 DOI: 10.1016/j.chroma.2021.462234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/15/2022]
Abstract
Today proteins are possibly the most important class of substances. Yet new tasks for proteins are still often solved by trial-and-error approaches. However, in some areas these euphemistically called "screening approaches" are not suitable. E.g. stability tests just take too long and therefore require a more strategic, target-orientated concept. This concept is available by grouping proteins according to their physicochemical properties and then pulling out the right drawer for new tasks. These properties include size, then charge and hydrophobicity as well as their patchinesses, and the degree of order. In addition, solubility, the content of (free) enthalpy, aromatic-amino-acid- and α/β-frequency as well as helix capping, and corresponding patchiness, the number of specific motifs and domains as well as the typical concentration range can be helpful to discriminate between different groups of proteins. Analyzing correlations will reduce the necessary amount of parameters and additional ones, which may be still undiscovered at the present time, can be identified looking at protein subgroups with similar physicochemical properties which still behave heterogeneously. Step-by-step the methodology will be improved. Possibly protein stability will be the driver of this process, but all other areas such as production, purification and analytics including sample pre-treatment and the choice of appropriate separation conditions for e.g. chromatography and electrophoresis will profit from a rational strategy.
Collapse
Affiliation(s)
- Hermann Wätzig
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany.
| | - Marc Hoffstedt
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Finja Krebs
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Robert Minkner
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Christin Scheller
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| | - Holger Zagst
- Technische Universität Braunschweig, Institute of Medicinal and Pharmaceutical Chemistry, Beethovenstraße 55, Braunschweig 38106, Germany
| |
Collapse
|
32
|
Kapelner RA, Yeong V, Obermeyer AC. Molecular determinants of protein-based coacervates. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2020.101407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Samanta R, Ganesan V. Direct Simulations of Phase Behavior of Mixtures of Oppositely Charged Proteins/Nanoparticles and Polyelectrolytes. J Phys Chem B 2020; 124:10943-10951. [PMID: 33205987 DOI: 10.1021/acs.jpcb.0c08317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We use direct simulations of particle-polyelectrolyte mixtures using the single chain in mean field framework to extract the phase diagram for such systems. At high charges of the particles and low concentration of polymers, we observe the formation of a coacervate phase involving the particles and polyelectrolytes. At low particle charges and/or high concentration of polymers, the mixture undergoes a segregative phase separation into particle-rich and polymer-rich phases, respectively. We also present results for the influence of particle charge heterogeneity on the phase diagram.
Collapse
Affiliation(s)
- Rituparna Samanta
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Venkat Ganesan
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|