1
|
Lorenzo Lopez M, Kearns VR, Curran JM, Patterson EA. Diffusion of nanoparticles in heterogeneous hydrogels as vitreous humour in vitro substitutes. Sci Rep 2024; 14:17441. [PMID: 39075157 PMCID: PMC11286744 DOI: 10.1038/s41598-024-68267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Nanomedicine has the potential to increase the biostability of drugs to treat retinal diseases, improving their performance and decreasing the required number of intravitreal injections. However, accurate pharmacokinetic studies of these nanoparticle-drug conjugates, nanoparticle motion across the vitreous humour and interaction with the retinal cell layers still need to be investigated. Existing nanoparticle tracking techniques require fluorescent labels, which can impact cytotoxicity, nanoparticles' motion, protein interactions, and cell internalization. In this study, a real-time label-free tracking technology, for single nanoparticles in an optical microscope based on the optical phenomena of caustics, was used to characterise the diffusion of nanoparticles in agar-hyaluronic acid hydrogels, previously validated as vitreous humour substitutes for in vitro models. The results demonstrated that the diffusion of nanoparticles through these hydrogels was heterogeneous, and that nanoparticle size had an important role in nanoparticle distribution across and within in vitro vitreous substitutes. These findings suggest that nanoparticle diameter is a critical parameter for designing novel therapeutics for retinal diseases. Moreover, nanoparticle charge did not affect nanoparticle diffusion or distribution in these synthetic hydrogels. The use of caustics in optical microscopy has been demonstrated to be a reproducible, inexpensive technique for screening novel therapeutics in eye in vitro models.
Collapse
Affiliation(s)
- Moira Lorenzo Lopez
- School of Engineering, University of Liverpool, Liverpool, L69 3BX, UK.
- Department of Eye and Vision Science, University of Liverpool, Liverpool, L7 8TX, UK.
| | - Victoria R Kearns
- Department of Eye and Vision Science, University of Liverpool, Liverpool, L7 8TX, UK
| | - Judith M Curran
- School of Engineering, University of Liverpool, Liverpool, L69 3BX, UK
| | - Eann A Patterson
- School of Engineering, University of Liverpool, Liverpool, L69 3BX, UK
| |
Collapse
|
2
|
Ali M, Kim YS. A comprehensive review and advanced biomolecule-based therapies for osteoporosis. J Adv Res 2024:S2090-1232(24)00215-7. [PMID: 38810908 DOI: 10.1016/j.jare.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The prevalence of osteoporosis (OP) on a global scale is significantly elevated that causes life threatening issues. The potential of groundbreaking biomolecular therapeutics in the field of OP is highly encouraging. The administration of biomolecular agents has the potential to mitigate the process of bone demineralization while concurrently augmenting the regenerative capacity of bone tissue, thereby facilitating a personalized therapeutic approach. Biomolecules-based therapies showed promising results in term of bone mass protection and restoration in OP. AIM OF REVIEW We summarized the recent biomolecular therapies with notable progress in clinical, demonstrating the potential to transform illness management. These treatments frequently utilize different biomolecule based strategies. Biomolecular therapeutics has a targeted character, which results in heightened specificity and less off-target effects, ultimately leading to increased patient outcomes. These aspects have the capacity to greatly enhance the management of OP, thus resulting in a major enhancement in the quality of life encountered by individuals affected by this condition.
Collapse
Affiliation(s)
- Maqsood Ali
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea
| | - Yong-Sik Kim
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Cheonan, Chungnam 31151, Republic of Korea.
| |
Collapse
|
3
|
Rydz J, Duale K, Sikorska W, Musioł M, Janeczek H, Marcinkowski A, Siwy M, Adamus G, Mielczarek P, Silberring J, Juszczyk J, Piętka E, Radecka I, Gupta A, Kowalczuk M. Oligopeptide-based molecular labelling of (bio)degradable polyester biomaterials. Int J Biol Macromol 2024; 268:131561. [PMID: 38621562 DOI: 10.1016/j.ijbiomac.2024.131561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Nowadays, a very important motivation for the development of new functional materials for medical purposes is not only their performance but also whether they are environmentally friendly. In recent years, there has been a growing interest in the possibility of labelling (bio)degradable polymers, in particular those intended for specific applications, especially in the medical sector, and the potential of information storage in such polymers, making it possible, for example, to track the ultimate environmental fate of plastics. This article presents a straightforward green approach that combines both aspects using an oligopeptide, which is an integral part of polymer material, to store binary information in a physical mixture of polymer and oligopeptide. In the proposed procedure the year of production of polymer films made of poly(l-lactide) (PLLA) and a blend of poly(1,4-butylene adipate-co-1,4-butylene terephthalate) and polylactide (PBAT/PLA) were encoded as the sequence of the appropriate amino acids in the oligopeptide (PEP) added to these polymers. The decoding of the recorded information was carried out using mass spectrometry technique as a new method of decoding, which enabled the successful retrieval and reading of the stored information. Furthermore, the properties of labelled (bio)degradable polymer films and stability during biodegradation of PLLA/PEP film under industrial composting conditions have been investigated. The labelled films exhibited good oligopeptide stability, allowing the recorded information to be retrieved from a green polymer/oligopeptide system before and after biodegradation. The MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay) study of the PLLA and PLLA/PBAT using the MRC-5 mammalian fibroblasts was presented for the first time.
Collapse
Affiliation(s)
- Joanna Rydz
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland; Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster 44691, OH, United States.
| | - Khadar Duale
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland
| | - Wanda Sikorska
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland
| | - Marta Musioł
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland
| | - Andrzej Marcinkowski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland
| | - Mariola Siwy
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland
| | - Grażyna Adamus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland
| | - Przemysław Mielczarek
- Department of Analytical Chemistry and Biochemistry, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland; Laboratory of Proteomics and Mass Spectrometry, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343 Kraków, Poland
| | - Jerzy Silberring
- Department of Analytical Chemistry and Biochemistry, AGH University of Science and Technology, A. Mickiewicza 30, 30-059 Kraków, Poland
| | - Jan Juszczyk
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
| | - Ewa Piętka
- Department of Medical Informatics and Artificial Intelligence, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40, 41-800 Zabrze, Poland
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK
| | - Abhishek Gupta
- School of Pharmacy, Faculty of Science and Engineering, University of Wolverhampton, City Campus, Wulfruna St., Wolverhampton WV1 1LY, UK
| | - Marek Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Skłodowskiej 34, 41-800 Zabrze, Poland; School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK
| |
Collapse
|
4
|
Nguyen TT, Nguyen HN, Nghiem THL, Do XH, To TT, Do TXP, Do DL, Nguyen HG, Nguyen HM, Nguyen ND, Luu MQ, Nguyen TN, Nguyen TBN, Nguyen VT, Pham VT, Than UTT, Hoang TMN. High biocompatible FITC-conjugated silica nanoparticles for cell labeling in both in vitro and in vivo models. Sci Rep 2024; 14:6969. [PMID: 38521815 PMCID: PMC10960792 DOI: 10.1038/s41598-024-55600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024] Open
Abstract
Fluorescence nanosilica-based cell tracker has been explored and applied in cell biological research. However, the aggregation of these nanoparticles at physiological pH is still the main limitation. In this research, we introduced a novel fluorescence nano-based cell tracker suitable for application in live cells. The silica-coated fluorescein isothiocyanate isomer (FITC-SiO2) nanoparticles (NPs) were modified with carboxymethylsilanetriol disodium salt (FITC-SiO2-COOH), integrating the dianion form of FITC molecules. This nanosystem exhibited superior dispersion in aqueous solutions and effectively mitigated dye leakage. These labeled NPs displayed notable biocompatibility and minimal cytotoxicity in both in vitro and in vivo conditions. Significantly, the NPs did not have negative implications on cell migration or angiogenesis. They successfully penetrated primary fibroblasts, human umbilical vein endothelial cells and HeLa cells in both 2D and 3D cultures, with the fluorescence signal enduring for over 72 h. Furthermore, the NP signals were consistently observed in the developing gastrointestinal tract of live medaka fish larvae for extended periods during phases of subdued digestive activity, without manifesting any apparent acute toxicity. These results underscore the promising utility of FITC-SiO2-COOH NPs as advanced live cell trackers in biological research.
Collapse
Affiliation(s)
- Thi Thuy Nguyen
- Center for Quantum and Electronics, Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi, Vietnam
| | - Hoang Nam Nguyen
- Nano and Energy Center, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| | - Thi Ha Lien Nghiem
- Center for Quantum and Electronics, Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi, Vietnam
| | - Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi, Vietnam
| | - Thanh Thuy To
- Faculty of Biology, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, 10000, Vietnam
| | - Thi Xuan Phuong Do
- Faculty of Biology, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, 10000, Vietnam
| | - Dieu Linh Do
- Faculty of Biology, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, 10000, Vietnam
| | - Huong Giang Nguyen
- Faculty of Biology, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, 10000, Vietnam
| | - Huy Manh Nguyen
- Faculty of Biology, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, 10000, Vietnam
| | - Ngoc Dinh Nguyen
- Faculty of Physics, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| | - Manh Quynh Luu
- Faculty of Physics, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| | - Trong Nghia Nguyen
- Center for Quantum and Electronics, Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi, Vietnam
| | - Thi Bich Ngoc Nguyen
- Center for Quantum and Electronics, Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi, Vietnam
| | - Van Toan Nguyen
- Center for Quantum and Electronics, Institute of Physics, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi, Vietnam
| | - Van Thanh Pham
- Faculty of Physics, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| | - Uyen Thi Trang Than
- Vinmec Hi-Tech Center and Vinmec-VinUni Institute of Immunology, Vinmec Healthcare System, 458 Minh Khai Street, Hanoi, Vietnam
| | - Thi My Nhung Hoang
- Faculty of Biology, VNU University of Science, Hanoi, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, 10000, Vietnam.
| |
Collapse
|
5
|
Chen W, Wang W, Xie Z, Centurion F, Sun B, Paterson DJ, Tsao SCH, Chu D, Shen Y, Mao G, Gu Z. Size-Dependent Penetration of Nanoparticles in Tumor Spheroids: A Multidimensional and Quantitative Study of Transcellular and Paracellular Pathways. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304693. [PMID: 37822153 DOI: 10.1002/smll.202304693] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 09/16/2023] [Indexed: 10/13/2023]
Abstract
Tumor penetration of nanoparticles is crucial in nanomedicine, but the mechanisms of tumor penetration are poorly understood. This work presents a multidimensional, quantitative approach to investigate the tissue penetration behavior of nanoparticles, with focuses on the particle size effect on penetration pathways, in an MDA-MB-231 tumor spheroid model using a combination of spectrometry, microscopy, and synchrotron beamline techniques. Quasi-spherical gold nanoparticles of different sizes are synthesized and incubated with 2D and 3D MDA-MB-231 cells and spheroids with or without an energy-dependent cell uptake inhibitor. The distribution and penetration pathways of nanoparticles in spheroids are visualized and quantified by inductively coupled plasma mass spectrometry, two-photon microscopy, and synchrotron X-ray fluorescence microscopy. The results reveal that 15 nm nanoparticles penetrate spheroids mainly through an energy-independent transcellular pathway, while 60 nm nanoparticles penetrate primarily through an energy-dependent transcellular pathway. Meanwhile, 22 nm nanoparticles penetrate through both transcellular and paracellular pathways and they demonstrate the greatest penetration ability in comparison to other two sizes. The multidimensional analytical methodology developed through this work offers a generalizable approach to quantitatively study the tissue penetration of nanoparticles, and the results provide important insights into the designs of nanoparticles with high accumulation at a target site.
Collapse
Affiliation(s)
- Wenjing Chen
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Wenqian Wang
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhouzun Xie
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bin Sun
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | | | - Simon Chang-Hao Tsao
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- Department of Surgery, Austin Hospital, University of Melbourne, Melbourne, VIC, 3084, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yansong Shen
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zi Gu
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW, 2052, Australia
- UNSW RNA Institute, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Cao M, Wang Y, Wang L, Zhang K, Guan Y, Guo Y, Chen C. In situ label-free X-ray imaging for visualizing the localization of nanomedicines and subcellular architecture in intact single cells. Nat Protoc 2024; 19:30-59. [PMID: 37957402 DOI: 10.1038/s41596-023-00902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/10/2023] [Indexed: 11/15/2023]
Abstract
Understanding the intracellular behaviors of nanomedicines and morphology variation of subcellular architecture impacted by nanomaterial-biology (nano-bio) interactions could help guide the safe-by-design, manufacturing and evaluation of nanomedicines for clinical translation. The in situ and label-free analysis of nano-bio interactions in intact single cells at nanoscale remains challenging. We developed an approach based on X-ray microscopy to directly visualize the 2D or 3D intracellular distribution without labeling at nanometer resolution and analyze the chemical transformation of nanomedicines in situ. Here, we describe an optimized workflow for cell sample preparation, beamline selection, data acquisition and analysis. With several model bionanomaterials as examples, we analyze the localization of nanomedicines in various primary blood cells, macrophages, dendritic cells, monocytes and cancer cells, as well as the morphology of some organelles with soft and hard X-rays. Our protocol has been successfully implemented at three beamline facilities: 4W1A of Beijing Synchrotron Radiation Facility, BL08U1A of Shanghai Synchrotron Radiation Facility and BL07W of the National Synchrotron Radiation Laboratory. This protocol can be completed in ~2-5 d, depending on the cell types, their incubation times with nanomaterials and the selected X-ray beamline. The protocol enables the in situ analysis of the varieties of metal-containing nanomaterials, visualization of intracellular endocytosis, distribution and excretion and corresponding subcellular morphological variation influenced by nanomedicines in cell lines or primary cells by using this universal and robust platform. The results facilitate the understanding of the true principle and mechanism underlying the nano-bio interaction.
Collapse
Affiliation(s)
- Mingjing Cao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Kai Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| | - Yuecong Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, China.
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
- GBA National Institute for Nanotechnology Innovation, Guangzhou, China.
| |
Collapse
|
7
|
Yang H, Yao L, Wang Y, Chen G, Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem Sci 2023; 14:13325-13345. [PMID: 38033886 PMCID: PMC10685406 DOI: 10.1039/d3sc04597h] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines. The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust strategies have been recently devised, including the bioorthogonal strategy, which enables selective modification. This review offers a comprehensive survey of recent advancements in the modification of mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies, encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The review concludes by addressing the present challenges and potential future opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 Jiangsu P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| |
Collapse
|
8
|
Zhang H, Yang J, Sun R, Han S, Yang Z, Teng L. Microfluidics for nano-drug delivery systems: From fundamentals to industrialization. Acta Pharm Sin B 2023; 13:3277-3299. [PMID: 37655333 PMCID: PMC10466004 DOI: 10.1016/j.apsb.2023.01.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 01/27/2023] Open
Abstract
In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity. The success of lipid nanoparticles encapsulated mRNA vaccines against coronavirus disease 2019 by microfluidics also confirmed its feasibility for scaling up the preparation of NDDSs via parallelization or numbering-up. In this review, we provide a comprehensive summary of microfluidics-based NDDSs, including the fundamentals of microfluidics, microfluidic synthesis of NDDSs, and their industrialization. The challenges of microfluidics-based NDDSs in the current status and the prospects for future development are also discussed. We believe that this review will provide good guidance for microfluidics-based NDDSs.
Collapse
Affiliation(s)
- Huan Zhang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Jie Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Rongze Sun
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Songren Han
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Zhaogang Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
9
|
Bian J, Gobalasingham N, Purchel A, Lin J. The Power of Field-Flow Fractionation in Characterization of Nanoparticles in Drug Delivery. Molecules 2023; 28:molecules28104169. [PMID: 37241911 DOI: 10.3390/molecules28104169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Asymmetric-flow field-flow fractionation (AF4) is a gentle, flexible, and powerful separation technique that is widely utilized for fractionating nanometer-sized analytes, which extend to many emerging nanocarriers for drug delivery, including lipid-, virus-, and polymer-based nanoparticles. To ascertain quality attributes and suitability of these nanostructures as drug delivery systems, including particle size distributions, shape, morphology, composition, and stability, it is imperative that comprehensive analytical tools be used to characterize the native properties of these nanoparticles. The capacity for AF4 to be readily coupled to multiple online detectors (MD-AF4) or non-destructively fractionated and analyzed offline make this technique broadly compatible with a multitude of characterization strategies, which can provide insight on size, mass, shape, dispersity, and many other critical quality attributes. This review will critically investigate MD-AF4 reports for characterizing nanoparticles in drug delivery, especially those reported in the last 10-15 years that characterize multiple attributes simultaneously downstream from fractionation.
Collapse
Affiliation(s)
- Juan Bian
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nemal Gobalasingham
- Wyatt Technology Corporation, 6330 Hollister Ave, Santa Barbara, CA 93117, USA
| | - Anatolii Purchel
- Wyatt Technology Corporation, 6330 Hollister Ave, Santa Barbara, CA 93117, USA
| | - Jessica Lin
- Genentech Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| |
Collapse
|
10
|
Alimardani V, Rahiminezhad Z, DehghanKhold M, Farahavar G, Jafari M, Abedi M, Moradi L, Niroumand U, Ashfaq M, Abolmaali SS, Yousefi G. Nanotechnology-based cell-mediated delivery systems for cancer therapy and diagnosis. Drug Deliv Transl Res 2023; 13:189-221. [PMID: 36074253 DOI: 10.1007/s13346-022-01211-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
The global prevalence of cancer is increasing, necessitating new additions to traditional treatments and diagnoses to address shortcomings such as ineffectiveness, complications, and high cost. In this context, nano and microparticulate carriers stand out due to their unique properties such as controlled release, higher bioavailability, and lower toxicity. Despite their popularity, they face several challenges including rapid liver uptake, low chemical stability in blood circulation, immunogenicity concerns, and acute adverse effects. Cell-mediated delivery systems are important topics to research because of their biocompatibility, biodegradability, prolonged delivery, high loading capacity, and targeted drug delivery capabilities. To date, a variety of cells including blood, immune, cancer, and stem cells, sperm, and bacteria have been combined with nanoparticles to develop efficient targeted cancer delivery or diagnosis systems. The review paper aimed to provide an overview of the potential applications of cell-based delivery systems in cancer therapy and diagnosis.
Collapse
Affiliation(s)
- Vahid Alimardani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahiminezhad
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash DehghanKhold
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ghazal Farahavar
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboobeh Jafari
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Abedi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Leila Moradi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Uranous Niroumand
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ashfaq
- University Centre for Research & Development (UCRD), Chandigarh University, Gharaun, Mohali, 140413, Punjab, India. .,Department of Biotechnology, Chandigarh University, Gharaun, Mohali, 140413, Punjab, India.
| | - Samira Sadat Abolmaali
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran. .,Center for Drug Delivery in Nanotechnology, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
11
|
Krovi SA, Moreno Caffaro MM, Aravamudhan S, Mortensen NP, Johnson LM. Fabrication of Nylon-6 and Nylon-11 Nanoplastics and Evaluation in Mammalian Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2699. [PMID: 35957130 PMCID: PMC9370135 DOI: 10.3390/nano12152699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) exist in certain environments, beverages, and food products. However, the ultimate risk and consequences of MPs and NPs on human health remain largely unknown. Studies involving the biological effects of small-scale plastics have predominantly used commercially available polystyrene beads, which cannot represent the breadth of globally dominant plastics. Nylon is a commodity plastic that is used across various industry sectors with substantial global production. Here, a series of well-characterized nylon-11 and nylon-6 NPs were successfully fabricated with size distributions of approximately 100 nm and 500 nm, respectively. The facile fabrication steps enabled the incorporation of fluorescent tracers in these NPs to aid the intracellular tracking of particles. RAW 264.7 macrophages were exposed to nylon NPs in a dose-dependent manner and cytotoxic concentrations and cellular uptake were determined. These well-characterized nylon NPs support future steps to assess how the composition and physicochemical properties may affect complex biological systems and ultimately human health.
Collapse
Affiliation(s)
- Sai Archana Krovi
- RTI International, 3040 E. Cornwallis Drive, Research Triangle Park, Durham, NC 27709, USA
| | | | - Shyam Aravamudhan
- Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 E. Gate City Blvd., Greensboro, NC 27401, USA
| | - Ninell P. Mortensen
- RTI International, 3040 E. Cornwallis Drive, Research Triangle Park, Durham, NC 27709, USA
| | - Leah M. Johnson
- RTI International, 3040 E. Cornwallis Drive, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
12
|
Le TS, Takahashi M, Maenosono S. A Robust Nanoparticle-based Magnetic Separation Method for Intact Lysosomes. Bio Protoc 2022; 12:e4453. [PMID: 35937929 PMCID: PMC9303824 DOI: 10.21769/bioprotoc.4453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/29/2022] Open
Abstract
Lysosome isolation is a preresiquite for identifying lysosomal protein composition by mass spectroscopic analysis, to reveal lysosome functions, and their involvement in some diseases. Magnetic nanoparticle-based fractionation has received great attention for lysosome isolation, owing to its high efficiency, purity, and preservation of lysosomal structures. Understanding the intracellular trafficking of magnetic probes is the key point of this technique, to determine the appropriate time for magnetic isolation of lysosomes, because this parameter changes depending on different cell lines used. The traditional magnetic probes, such as superparamagnetic iron oxide nanoparticles (SPIONs), require surface modification by fluorescent dyes to enable the investigation of their intracellular trafficking, which has some disadvantages, including the possible alternation of their bio-interaction, and the instability of fluorescence properties in the lysosomal environment. To overcome those limitations, we present a protocol that employs magnetic-plasmonic nanoparticles (MPNPs) to investigate intracellular trafficking using their intrinsic imaging capability, followed by quick lysosome isolation using a magnetic column. This protocol can be easily applied to isolate the intact lysosomes of any adherent cell lines. Graphical abstract.
Collapse
Affiliation(s)
- The Son Le
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Mari Takahashi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Shinya Maenosono
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
,
*For correspondence:
| |
Collapse
|
13
|
Tian X, Bera H, Guo X, Xu R, Sun J, He Z, Cun D, Yang M. Pulmonary Delivery of Reactive Oxygen Species/Glutathione-Responsive Paclitaxel Dimeric Nanoparticles Improved Therapeutic Indices against Metastatic Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56858-56872. [PMID: 34806372 DOI: 10.1021/acsami.1c16351] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Chemotherapeutics often failed to elicit optimal antitumor responses against lung cancer due to their limited exposure and accumulation in tumors. To achieve an effective therapeutic outcome of paclitaxel (PTX) against metastatic lung cancer with attenuated systemic and local toxicities, pulmonary delivery of redox-responsive PTX dimeric nanoparticles (NPs) was introduced. PTX dimers conjugated through variable lengths of diacid linkers containing disulfide bonds (-SS-) (i.e., α-PTX-SS-PTX, β-PTX-SS-PTX, and γ-PTX-SS-PTX) were initially synthesized and were subsequently self-assembled into uniform nanosized particles in the presence of vitamin E TPGS with high drug loading capacity (DE > 97%). Among various redox-sensitive scaffolds, β-PTX-SS-PTX NPs exhibited an optimal reactive oxygen species/glutathione-responsive drug release behavior, causing a lower local toxicity profile of PTX in the lungs. The scaffolds also demonstrated excellent colloidal stability, cellular uptake efficiency, and discriminating cytotoxicity between cancer and healthy cells. Further, they depicted an improved lung retention as compared to the control nanovesicles (β-PTX-CC-PTX) devoid of the redox-sensitive disulfide motif. In the B16F10 melanoma metastatic lung cancer mouse model, intratracheally delivered β-PTX-SS-PTX NPs exhibited a stronger anticancer potential with reduced systemic toxicity as compared to Taxol intravenous injection containing an equivalent PTX dose. The PTX dimeric NPs could also dramatically reduce the local toxicity relative to Taxol following their pulmonary delivery. Thus, this study presents redox-responsive PTX dimeric NPs as a promising nanomedicine for improved therapeutic efficacy against metastatic lung cancer.
Collapse
MESH Headings
- A549 Cells
- Animals
- Antineoplastic Agents, Phytogenic/chemical synthesis
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Biomimetic Materials/chemical synthesis
- Biomimetic Materials/chemistry
- Biomimetic Materials/pharmacology
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Dimerization
- Drug Screening Assays, Antitumor
- Glutathione/metabolism
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Materials Testing
- Mice
- Mice, Inbred C57BL
- Molecular Structure
- Nanoparticles/chemistry
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Paclitaxel/chemical synthesis
- Paclitaxel/chemistry
- Paclitaxel/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
Collapse
Affiliation(s)
- Xidong Tian
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Hriday Bera
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Xiong Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Ruizhao Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Wenhua Road No. 103, 10016 Shenyang, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
14
|
Recent advances in FRET-Based biosensors for biomedical applications. Anal Biochem 2021; 630:114323. [PMID: 34339665 DOI: 10.1016/j.ab.2021.114323] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 01/12/2023]
Abstract
Fluorescence resonance energy transfer (FRET)-based biosensors are effective analytical tools extensively used in fields of biomedicine, pharmacology, toxicology, and food sciences. Ratiometric imaging of substantial cellular processes, molecular components, and biological interactions is widely performed by these biosensors. A variety of FRET-based biosensors have provided comprehensive insights into underlying mechanisms of pathological conditions in live cells, tissues, and organisms. Moreover, integration of FRET-based biosensors with the current bioanalytical techniques allows for accurate, rapid, and sensitive diagnosis and proposes the advanced strategies for treatment. Precise analysis of ligand-receptor interactions by FRET-based biosensors has presented a basis for determination of novel therapeutic agents. Therefore, this study was designed to review the recent developments in FRET-based biosensors and their biomedical applications. In addition, characteristics, challenges, and outlooks of these biosensors were discussed.
Collapse
|
15
|
Thomsen T, Reissmann R, Kaba E, Engelhardt B, Klok HA. Covalent and Noncovalent Conjugation of Degradable Polymer Nanoparticles to T Lymphocytes. Biomacromolecules 2021; 22:3416-3430. [PMID: 34170107 DOI: 10.1021/acs.biomac.1c00488] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cells are attractive as carriers that can help to enhance control over the biodistribution of polymer nanomedicines. One strategy to use cells as carriers is based on the cell surface immobilization of the nanoparticle cargo. While a range of strategies can be used to immobilize nanoparticles on cell surfaces, only limited effort has been made to investigate the effect of these surface modification chemistries on cell viability and functional properties. This study has explored seven different approaches for the immobilization of poly(lactic acid) (PLA) nanoparticles on the surface of two different T lymphocyte cell lines. The cell lines used were human Jurkat T cells and CD4+ TEM cells. The latter cells possess blood-brain barrier (BBB) migratory properties and are attractive for the development of cell-based delivery systems to the central nervous system (CNS). PLA nanoparticles were immobilized either via covalent active ester-amine, azide-alkyne cycloaddition, and thiol-maleimide coupling, or via noncovalent approaches that use lectin-carbohydrate, electrostatic, or biotin-NeutrAvidin interactions. The cell surface immobilization of the nanoparticles was monitored with flow cytometry and confocal microscopy. By tuning the initial nanoparticle/cell ratio, T cells can be decorated with up to ∼185 nanoparticles/cell as determined by confocal microscopy. The functional properties of the nanoparticle-decorated cells were assessed by evaluating their binding to ICAM-1, a key protein involved in the adhesion of CD4+ TEM cells to the BBB endothelium, as well as in a two-chamber model in vitro BBB migration assay. It was found that the migratory behavior of CD4+ TEM cells carrying carboxylic acid-, biotin-, or Wheat germ agglutinin (WGA)-functionalized nanoparticles was not affected by the presence of the nanoparticle payload. In contrast, however, for cells decorated with maleimide-functionalized nanoparticles, a reduction in the number of migratory cells compared to the nonmodified control cells was observed. Investigating and understanding the impact of nanoparticle-cell surface conjugation chemistries on the viability and properties of cells is important to further improve the design of cell-based nanoparticle delivery systems. The results of this study present a first step in this direction and provide first guidelines for the surface modification of T cells, in particular in view of their possible use for drug delivery to the CNS.
Collapse
Affiliation(s)
- Tanja Thomsen
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Regina Reissmann
- University of Bern, Theodor Kocher Institute,Freiestrasse 1, CH-3000 Bern, Switzerland
| | - Elisa Kaba
- University of Bern, Theodor Kocher Institute,Freiestrasse 1, CH-3000 Bern, Switzerland
| | - Britta Engelhardt
- University of Bern, Theodor Kocher Institute,Freiestrasse 1, CH-3000 Bern, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Webber MJ, Kamat NP, Messersmith PB, Lecommandoux S. Bioinspired Macromolecular Materials. Biomacromolecules 2021; 22:1-3. [PMID: 33423474 DOI: 10.1021/acs.biomac.0c01614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew J Webber
- University of Notre Dame, Department of Chemical & Biomolecular Engineering, Notre Dame, Indiana 46556, United States
| | - Neha P Kamat
- Northwestern University, Department of Biomedical Engineering, Evanston, Illinois 60208, United States
| | - Phillip B Messersmith
- University of California Berkeley, Department of Materials Science & Engineering, Berkeley, California 94720, United States
| | | |
Collapse
|
17
|
Wang X, Bou S, Klymchenko AS, Anton N, Collot M. Ultrabright Green-Emitting Nanoemulsions Based on Natural Lipids-BODIPY Conjugates. NANOMATERIALS 2021; 11:nano11030826. [PMID: 33807096 PMCID: PMC8005018 DOI: 10.3390/nano11030826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 01/08/2023]
Abstract
Nanoemulsions (NEs) are water-dispersed oil droplets that constitute stealth biocompatible nanomaterials. NEs can reach an impressive degree of fluorescent brightness owing to their oily core that can encapsulate a large number of fluorophores on the condition the latter are sufficiently hydrophobic and oil-soluble. BODIPYs are among the brightest green emitting fluorophores and as neutral molecules possess high lipophilicity. Herein, we synthesized three different natural lipid-BODIPY conjugates by esterification of an acidic BODIPY by natural lipids, namely: α-tocopherol (vitamin E), cholesterol, and stearyl alcohol. The new BODIPY conjugates were characterized in solvents and oils before being encapsulated in NEs at various concentrations. The physical (size, stability over time, leakage) and photophysical properties (absorption and emission wavelength, brightness, photostability) are reported and showed that the nature of the lipid anchor and the nature of the oil used for emulsification greatly influence the properties of the bright NEs.
Collapse
Affiliation(s)
- Xinyue Wang
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
- INSERM (French National Institute of Health and Medical Research), Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, UMR 1260, F-67000 Strasbourg, France
| | - Sophie Bou
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
| | - Andrey S. Klymchenko
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
| | - Nicolas Anton
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, CAMB UMR 7199, F-67000 Strasbourg, France;
- INSERM (French National Institute of Health and Medical Research), Université de Strasbourg, Regenerative Nanomedicine (RNM), FMTS, UMR 1260, F-67000 Strasbourg, France
- Correspondence: (N.A.); (M.C.)
| | - Mayeul Collot
- Faculté de Pharmacie d’Illkirch, Université de Strasbourg, CNRS, LPB 7021, F-67000 Strasbourg, France; (S.B.); (A.S.K.)
- Correspondence: (N.A.); (M.C.)
| |
Collapse
|
18
|
Thomsen T, Klok HA. Chemical Cell Surface Modification and Analysis of Nanoparticle-Modified Living Cells. ACS APPLIED BIO MATERIALS 2021; 4:2293-2306. [DOI: 10.1021/acsabm.0c01619] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Tanja Thomsen
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|