1
|
Abdel-Rahman R, Abdel-Mohsen AM, Frankova J, Piana F, Kalina L, Gajdosova V, Kapralkova L, Thottappali MA, Jancar J. Self-Assembled Hydrogel Membranes with Structurally Tunable Mechanical and Biological Properties. Biomacromolecules 2024; 25:3449-3463. [PMID: 38739908 PMCID: PMC11170955 DOI: 10.1021/acs.biomac.4c00082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Using supramolecular self-assembled nanocomposite materials made from protein and polysaccharide components is becoming more popular because of their unique properties, such as biodegradability, hierarchical structures, and tunable multifunctionality. However, the fabrication of these materials in a reproducible way remains a challenge. This study presents a new evaporation-induced self-assembly method producing layered hydrogel membranes (LHMs) using tropocollagen grafted by partially deacetylated chitin nanocrystals (CO-g-ChNCs). ChNCs help stabilize tropocollagen's helical conformation and fibrillar structure by forming a hierarchical microstructure through chemical and physical interactions. The LHMs show improved mechanical properties, cytocompatibility, and the ability to control drug release using octenidine dihydrochloride (OCT) as a drug model. Because of the high synergetic performance between CO and ChNCs, the modulus, strength, and toughness increased significantly compared to native CO. The biocompatibility of LHM was tested using the normal human dermal fibroblast (NHDF) and the human osteosarcoma cell line (Saos-2). Cytocompatibility and cell adhesion improved with the introduction of ChNCs. The extracted ChNCs are used as a reinforcing nanofiller to enhance the performance properties of tropocollagen hydrogel membranes and provide new insights into the design of novel LHMs that could be used for various medical applications, such as control of drug release in the skin and bone tissue regeneration.
Collapse
Affiliation(s)
- Rasha
M. Abdel-Rahman
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - A. M. Abdel-Mohsen
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
- Pretreatment
and Finishing of Cellulosic Based Textiles Department, Textile Industries Research Institute, National Research
Centre, 33 EL Buhouth
Street, Dokki, Giza 12622, Egypt
| | - Jana Frankova
- Department
of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská, 3, 775 15, Olomouc, Czech Republic
| | - Francesco Piana
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Lukas Kalina
- Faculty
of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno 61200, Czech Republic
| | - Veronika Gajdosova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Ludmila Kapralkova
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Muhammed Arshad Thottappali
- Institute
of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, Praha 162 06, Czech Republic
| | - Josef Jancar
- CEITEC-Central
European Institute of Technology, Brno University
of Technology, Purkyňova 656/123, Brno 61200, Czech Republic
- Faculty
of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 464/118, Brno 61200, Czech Republic
| |
Collapse
|
2
|
Mucaria A, Giuri D, Tomasini C, Falini G, Montroni D. Tunable Oxidized-Chitin Hydrogels with Customizable Mechanical Properties by Metal or Hydrogen Ion Exposure. Mar Drugs 2024; 22:164. [PMID: 38667781 PMCID: PMC11051383 DOI: 10.3390/md22040164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/26/2024] [Accepted: 03/31/2024] [Indexed: 04/28/2024] Open
Abstract
This study focuses on the optimization of chitin oxidation in C6 to carboxylic acid and its use to obtain a hydrogel with tunable resistance. After the optimization, water-soluble crystalline β-chitin fibrils (β-chitOx) with a degree of functionalization of 10% were obtained. Diverse reaction conditions were also tested for α-chitin, which showed a lower reactivity and a slower reaction kinetic. After that, a set of hydrogels was synthesized from β-chitOx 1 wt.% at pH 9, inducing the gelation by sonication. These hydrogels were exposed to different environments, such as different amounts of Ca2+, Na+ or Mg2+ solutions, buffered environments such as pH 9, PBS, pH 5, and pH 1, and pure water. These hydrogels were characterized using rheology, XRPD, SEM, and FT-IR. The notable feature of these hydrogels is their ability to be strengthened through cation chelation, being metal cations or hydrogen ions, with a five- to tenfold increase in their storage modulus (G'). The ions were theorized to alter the hydrogen-bonding network of the polymer and intercalate in chitin's crystal structure along the a-axis. On the other hand, the hydrogel dissolved at pH 9 and pure water. These bio-based tunable hydrogels represent an intriguing material suitable for biomedical applications.
Collapse
Affiliation(s)
| | | | | | | | - Devis Montroni
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via F. Selmi 2, 40126 Bologna, Italy; (A.M.); (D.G.); (C.T.); (G.F.)
| |
Collapse
|
3
|
Minisha S, Gopinath A, Mukherjee S, Srinivasan P, Madhan B, Shanmugam G. Impact of SiO 2 nanoparticles on the structure and property of type I collagen in three different forms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123520. [PMID: 37857074 DOI: 10.1016/j.saa.2023.123520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
Silica-based nanoparticles have found application in the development of biocomposites involving reconstituted collagen in tissue engineering and wound healing, and leather modification, specifically targeting collagen fibers. However, a comprehensive investigation into the interaction between collagen-silica nanoparticles and different forms of collagen using biophysical methods remains unexplored. In this study, we examined the interaction between silica (SiO2) nanoparticles and collagen in its fiber, microfibril, and monomer forms through high-resolution scanning electron microscopy, circular dichroism, Fourier-transform infrared spectroscopy, fluorescence analysis, zeta potential measurements, and turbidity assays. Our results reveal that SiO2 nanoparticles exhibited a non-specific attraction towards collagen fibers without disrupting their structural integrity. Interestingly, SiO2 nanoparticles influenced the process of microfibrillation, resulting in heterogeneous fibril diameters while maintaining the natural D-periodicity. This finding is significant, as fibril size variations can impact the properties of collagen composites. Notably, the triple helical structure of collagen in its monomer form remained unaffected in the presence of SiO2 nanoparticles, indicating that the nanoparticles did not disrupt the electrostatic interactions that stabilize the triple helix. Additionally, the increased stability of SiO2 nanoparticles in the presence of collagen confirmed their interaction. These findings provide a promising avenue for the development of SiO2-based nanoparticles to enhance the stability of collagen fibers and control fiber sizes for biomaterial preparation. Moreover, this study advances the potential application of SiO2-based nanoparticles in leather tanning, an emerging field where nanoparticles can play a crucial role.
Collapse
Affiliation(s)
- Sivalingam Minisha
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | - Arun Gopinath
- CARE Division, CSIR-CLRI, Adyar, Chennai 600020, India
| | - Smriti Mukherjee
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India
| | | | | | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) - Central Leather Research Institute (CLRI), Adyar, Chennai 600020, India.
| |
Collapse
|
4
|
Donnadio A, Paul G, Barbalinardo M, Ambrogi V, Pettinacci G, Posati T, Bisio C, Vivani R, Nocchetti M. Immobilization of Alendronate on Zirconium Phosphate Nanoplatelets. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:742. [PMID: 36839110 PMCID: PMC9965588 DOI: 10.3390/nano13040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Different amounts of sodium-alendronate (ALN) were loaded into layered zirconium phosphates of alpha and gamma type (αZP and γZP) by means of topotactic exchange reactions of phosphate with ALN. In order to extend the exchange process to the less accessible interlayer regions, ALN solutions were contacted with colloidal dispersions of the layered solids previously exfoliated in single sheets by means of intercalation reaction of propylamine (for αZP) or acetone (for γZP). The ALN loading degree was determined by liquid P-nuclear magnetic resonance (NMR) and inductively coupled plasma (ICP), and it was reported as ALN/Zr molar ratios (Rs). The maximum R obtained for γZP was 0.34, while αZP was able to load a higher amount of ALN, reaching Rs equal to 1. The synthesized compounds were characterized by X-ray powder diffractometry, scanning electron microscopy (SEM), solid-state NMR, and infrared spectroscopy. The way the grafted organo-phosphonate groups were bonded to the layers of the host structure was suggested. The effect of ZP derivatives was assessed on cell proliferation, and the results showed that after 7 days of incubation, none of the samples showed a decrease in cell proliferation.
Collapse
Affiliation(s)
- Anna Donnadio
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Geo Paul
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
| | | | - Valeria Ambrogi
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
| | - Gabriele Pettinacci
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
| | | | - Chiara Bisio
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, “A. Avogadro”, Viale T. Michel 11, 15121 Alessandria, Italy
- CNR-Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Via C. Golgi 19, 20133 Milano, Italy
| | - Riccardo Vivani
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Morena Nocchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via Del Liceo 1, 06123 Perugia, Italy
- CEMIN-Centro di Eccellenza Materiali Innovativi Nanostrutturati, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
5
|
Montroni D, Di Giosia M, Calvaresi M, Falini G. Supramolecular Binding with Lectins: A New Route for Non-Covalent Functionalization of Polysaccharide Matrices. Molecules 2022; 27:molecules27175633. [PMID: 36080399 PMCID: PMC9457544 DOI: 10.3390/molecules27175633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
The chemical functionalization of polysaccharides to obtain functional materials has been of great interest in the last decades. This traditional synthetic approach has drawbacks, such as changing the crystallinity of the material or altering its morphology or texture. These modifications are crucial when a biogenic matrix is exploited for its hierarchical structure. In this work, the use of lectins and carbohydrate-binding proteins as supramolecular linkers for polysaccharide functionalization is proposed. As proof of concept, a deproteinized squid pen, a hierarchically-organized β-chitin matrix, was functionalized using a dye (FITC) labeled lectin; the lectin used was the wheat germ agglutinin (WGA). It has been observed that the binding of this functionalized protein homogenously introduces a new property (fluorescence) into the β-chitin matrix without altering its crystallographic and hierarchical structure. The supramolecular functionalization of polysaccharides with protein/lectin molecules opens up new routes for the chemical modification of polysaccharides. This novel approach can be of interest in various scientific fields, overcoming the synthetic limits that have hitherto hindered the technological exploitation of polysaccharides-based materials.
Collapse
|
6
|
Montroni D, Kobayashi T, Hao T, Lublin D, Yoshino T, Kisailus D. Direct Ink Write Printing of Chitin-Based Gel Fibers with Customizable Fibril Alignment, Porosity, and Mechanical Properties for Biomedical Applications. J Funct Biomater 2022; 13:83. [PMID: 35735938 PMCID: PMC9225658 DOI: 10.3390/jfb13020083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/18/2022] Open
Abstract
A fine control over different dimensional scales is a challenging target for material science since it could grant control over many properties of the final material. In this study, we developed a multivariable additive manufacturing process, direct ink write printing, to control different architectural features from the nano- to the millimeter scale during extrusion. Chitin-based gel fibers with a water content of around 1500% were obtained extruding a polymeric solution of chitin into a counter solvent, water, inducing instant solidification of the material. A certain degree of fibrillar alignment was achieved basing on the shear stress induced by the nozzle. In this study we took into account a single variable, the nozzle's internal diameter (NID). In fact, a positive correlation between NID, fibril alignment, and mechanical resistance was observed. A negative correlation with NID was observed with porosity, exposed surface, and lightly with water content. No correlation was observed with maximum elongation (~50%), and the scaffold's excellent biocompatibility, which appeared unaltered. Overall, a single variable allowed a customization of different material features, which could be further tuned, adding control over other aspects of the synthetic process. Moreover, this manufacturing could be potentially applied to any polymer.
Collapse
Affiliation(s)
- Devis Montroni
- Department of Materials Science and Engineering, University of California at Irvine, Irvine, CA 92697, USA or (D.M.); (T.H.)
- Department of Chemistry “G. Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Takeru Kobayashi
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan; (T.K.); (T.Y.)
| | - Taige Hao
- Department of Materials Science and Engineering, University of California at Irvine, Irvine, CA 92697, USA or (D.M.); (T.H.)
| | - Derek Lublin
- Materials and Manufacturing Technology Program, School of Engineering, University of California at Irvine, Irvine, CA 92697, USA;
| | - Tomoko Yoshino
- Department of Biotechnology, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei 184-8588, Tokyo, Japan; (T.K.); (T.Y.)
| | - David Kisailus
- Department of Materials Science and Engineering, University of California at Irvine, Irvine, CA 92697, USA or (D.M.); (T.H.)
| |
Collapse
|