1
|
Laurent H, Brockwell DJ, Dougan L. Nanomachine Networks: Functional All-Enzyme Hydrogels from Photochemical Cross-Linking of Glucose Oxidase. Biomacromolecules 2025; 26:1195-1206. [PMID: 39847607 DOI: 10.1021/acs.biomac.4c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Enzymes are attractive as catalysts due to their specificity and biocompatibility; however, their use in industrial and biomedical applications is limited by stability. Here, we present a facile approach for enzyme immobilization within "all-enzyme" hydrogels by forming photochemical covalent cross-links between the enzyme glucose oxidase. We demonstrate that the mechanical properties of the enzyme hydrogel can be tuned with enzyme concentration and the data suggests that the dimeric nature of glucose oxidase results in unusual gel formation behavior which suggests a degree of forced induced dimer dissociation and unfolding. We confirm and quantify the enzyme activity of the hydrogel using the Trinder assay and a 1D modeling approach and show that 50% enzymatic activity is retained upon hydrogel formation. These observed effects may be due to the forces experienced by the individual nanoscale enzymes during mesoscale network formation. We have therefore demonstrated that photochemical cross-linking can be readily employed to produce functional all-enzyme glucose oxidase hydrogels with easily tunable mechanical properties and specific catalytic activity. This approach provides enormous potential for producing biocatalytic materials with tunable mechanical properties, responsive biological functionality and high volumetric productivity which may inform the future design of biomedical devices with enhanced sensitivity and activity.
Collapse
Affiliation(s)
- Harrison Laurent
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
2
|
Hughes MDG, Cook KR, Cussons S, Boroumand A, Tyler AII, Head D, Brockwell DJ, Dougan L. Capturing Dynamic Assembly of Nanoscale Proteins During Network Formation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407090. [PMID: 39533485 PMCID: PMC11707584 DOI: 10.1002/smll.202407090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/02/2024] [Indexed: 11/16/2024]
Abstract
The structural evolution of hierarchical structures of nanoscale biomolecules is crucial for the construction of functional networks in vivo and in vitro. Despite the ubiquity of these networks, the physical mechanisms behind their formation and self-assembly remains poorly understood. Here, this study uses photochemically cross-linked folded protein hydrogels as a model biopolymer network system, with a combined time-resolved rheology and small-angle x-ray scattering (SAXS) approach to probe both the load-bearing structures and network architectures respectively thereby providing a cross-length scale understanding of the network formation. Combining SAXS, rheology, and kinetic modeling, a dual formation mechanism consisting of a primary formation phase is proposed, where monomeric folded proteins create the preliminary protein network scaffold; and a subsequent secondary formation phase, where both additional intra-network cross-links form and larger oligomers diffuse to join the preliminary network, leading to a denser more mechanically robust structure. Identifying this as the origin of the structural and mechanical properties of protein networks creates future opportunities to understand hierarchical biomechanics in vivo and develop functional, designed-for-purpose, biomaterials.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Kalila R Cook
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Sophie Cussons
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Ahmad Boroumand
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Arwen I I Tyler
- School of Food Science and NutritionFaculty of EnvironmentUniversity of LeedsLeedsLS2 9JTUK
| | - David Head
- School of Computer ScienceFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - David J Brockwell
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
- School of Molecular and Cellular BiologyFaculty of Biological SciencesUniversity of LeedsLeedsLS2 9JTUK
| | - Lorna Dougan
- School of Physics and AstronomyFaculty of Engineering and Physical SciencesUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| |
Collapse
|
3
|
Hughes MDG, Cussons S, Hanson BS, Cook KR, Feller T, Mahmoudi N, Baker DL, Ariëns R, Head DA, Brockwell DJ, Dougan L. Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks. Nat Commun 2023; 14:5593. [PMID: 37696784 PMCID: PMC10495373 DOI: 10.1038/s41467-023-40921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
Fibrous networks constructed from high aspect ratio protein building blocks are ubiquitous in nature. Despite this ubiquity, the functional advantage of such building blocks over globular proteins is not understood. To answer this question, we engineered hydrogel network building blocks with varying numbers of protein L domains to control the aspect ratio. The mechanical and structural properties of photochemically crosslinked protein L networks were then characterised using shear rheology and small angle neutron scattering. We show that aspect ratio is a crucial property that defines network architecture and mechanics, by shifting the formation from translationally diffusion dominated to rotationally diffusion dominated. Additionally, we demonstrate that a similar transition is observed in the model living system: fibrin blood clot networks. The functional advantages of this transition are increased mechanical strength and the rapid assembly of homogenous networks above a critical protein concentration, crucial for in vivo biological processes such as blood clotting. In addition, manipulating aspect ratio also provides a parameter in the design of future bio-mimetic and bio-inspired materials.
Collapse
Affiliation(s)
- Matt D G Hughes
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Benjamin S Hanson
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Kalila R Cook
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Tímea Feller
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Najet Mahmoudi
- ISIS Neutron and Muon Spallation Source, STFC Rutherford Appleton Laboratory, Oxfordshire, UK
| | - Daniel L Baker
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK
| | - Robert Ariëns
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - David A Head
- School of Computing, Faculty of Engineering and Physical Science, University of Leeds, Leeds, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Lorna Dougan
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK.
| |
Collapse
|
4
|
Aufderhorst-Roberts A, Cussons S, Brockwell DJ, Dougan L. Diversity of viscoelastic properties of an engineered muscle-inspired protein hydrogel. SOFT MATTER 2023; 19:3167-3178. [PMID: 37067782 DOI: 10.1039/d2sm01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Folded protein hydrogels are prime candidates as tuneable biomaterials but it is unclear to what extent their mechanical properties have mesoscopic, as opposed to molecular origins. To address this, we probe hydrogels inspired by the muscle protein titin and engineered to the polyprotein I275, using a multimodal rheology approach. Across multiple protocols, the hydrogels consistently exhibit power-law viscoelasticity in the linear viscoelastic regime with an exponent β = 0.03, suggesting a dense fractal meso-structure, with predicted fractal dimension df = 2.48. In the nonlinear viscoelastic regime, the hydrogel undergoes stiffening and energy dissipation, indicating simultaneous alignment and unfolding of the folded proteins on the nanoscale. Remarkably, this behaviour is highly reversible, as the value of β, df and the viscoelastic moduli return to their equilibrium value, even after multiple cycles of deformation. This highlights a previously unrevealed diversity of viscoelastic properties that originate on both at the nanoscale and the mesoscopic scale, providing powerful opportunities for engineering novel biomaterials.
Collapse
Affiliation(s)
- Anders Aufderhorst-Roberts
- Department of Physics, Centre for Materials Physics, University of Durham, Durham, DH1 3LE, UK
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sophie Cussons
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Lorna Dougan
- School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| |
Collapse
|
5
|
Hughes MD, Cussons S, Mahmoudi N, Brockwell DJ, Dougan L. Tuning Protein Hydrogel Mechanics through Modulation of Nanoscale Unfolding and Entanglement in Postgelation Relaxation. ACS NANO 2022; 16:10667-10678. [PMID: 35731007 PMCID: PMC9331141 DOI: 10.1021/acsnano.2c02369] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Globular folded proteins are versatile nanoscale building blocks to create biomaterials with mechanical robustness and inherent biological functionality due to their specific and well-defined folded structures. Modulating the nanoscale unfolding of protein building blocks during network formation (in situ protein unfolding) provides potent opportunities to control the protein network structure and mechanics. Here, we control protein unfolding during the formation of hydrogels constructed from chemically cross-linked maltose binding protein using ligand binding and the addition of cosolutes to modulate protein kinetic and thermodynamic stability. Bulk shear rheology characterizes the storage moduli of the bound and unbound protein hydrogels and reveals a correlation between network rigidity, characterized as an increase in the storage modulus, and protein thermodynamic stability. Furthermore, analysis of the network relaxation behavior identifies a crossover from an unfolding dominated regime to an entanglement dominated regime. Control of in situ protein unfolding and entanglement provides an important route to finely tune the architecture, mechanics, and dynamic relaxation of protein hydrogels. Such predictive control will be advantageous for future smart biomaterials for applications which require responsive and dynamic modulation of mechanical properties and biological function.
Collapse
Affiliation(s)
- Matt D.
G. Hughes
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Sophie Cussons
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
- School of
Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Najet Mahmoudi
- ISIS
Neutron
and Muon Spallation Source, STFC Rutherford
Appleton Laboratory, Oxfordshire OX11 0QX, U.K.
| | - David J. Brockwell
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
- School of
Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K.
| | - Lorna Dougan
- School of
Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, U.K.
- Astbury Centre
for Structural Molecular Biology, University
of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|