Sahu S, Niranjan R, Priyadarshini R, Lochab B. Benzoxazine-grafted-chitosan biopolymer films with inherent disulfide linkage: Antimicrobial properties.
CHEMOSPHERE 2023;
328:138587. [PMID:
37019400 DOI:
10.1016/j.chemosphere.2023.138587]
[Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Synthesis and fabrication of naturally sourced biopolymers, especially chitosan, grafted with renewable small molecules have recently attracted attention as efficient antimicrobial agents and are highly desired for sustainable material development. Advantageous inherent functionalities in biobased benzoxazine extend the possibility of crosslinking with chitosan which holds immense potential. Herein, a low-temperature, greener facile methodology is adopted for the covalent confinement of benzoxazine monomers bearing aldehyde and disulfide linkages within chitosan to form benzoxazine-grafted-chitosan copolymer films. The association of benzoxazine as Schiff base, hydrogen bonding, and ring-opened structures enabled the exfoliation of chitosan galleries, and such host-guest mediated interactions demonstrated outstanding properties like hydrophobicity, good thermal, and solution stability due to the synergistic effects. Furthermore, the structures empowered excellent bactericidal properties against both E. coli and S. aureus as investigated by GSH loss, live/dead fluorescence microscopy, and morphological alteration on the cell surface by SEM. The work provides the benefits of disulfide-linked benzoxazines on chitosan, offering a promising avenue for general and eco-friendly usage in wound-healing and packaging material.
Collapse