1
|
Hansen T, Lee J, Reicher N, Ovadia G, Guo S, Guo W, Liu J, Braslavsky I, Rudich Y, Davies PL. Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C. eLife 2023; 12:RP91976. [PMID: 38109272 PMCID: PMC10727499 DOI: 10.7554/elife.91976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023] Open
Abstract
In nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins (INPs) of common environmental bacteria like Pseudomonas syringae and Pseudomonas borealis. However, individually, these 100 kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an INP gene into Escherichia coli led to efficient ice nucleation. Here, we demonstrate that a positively charged subdomain at the C-terminal end of the central β-solenoid of the INP is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the INP multimers form fibres that are ~5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Jocelyn Lee
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| | - Naama Reicher
- Department of Earth and Planetary Sciences, The Weizmann Institute of ScienceRehovotIsrael
| | - Gil Ovadia
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of JerusalemRehovotIsrael
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of MedicineNew HavenUnited States
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of JerusalemRehovotIsrael
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, The Weizmann Institute of ScienceRehovotIsrael
| | - Peter L Davies
- Department of Biomedical and Molecular Sciences, Queen’s UniversityKingstonCanada
| |
Collapse
|
2
|
Hansen T, Lee JC, Reicher N, Ovadia G, Guo S, Guo W, Liu J, Braslavsky I, Rudich Y, Davies PL. Ice nucleation proteins self-assemble into large fibres to trigger freezing at near 0 °C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551873. [PMID: 37577566 PMCID: PMC10418271 DOI: 10.1101/2023.08.03.551873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
In nature, frost can form at a few degrees below 0 °C. However, this process requires the assembly of tens of thousands of ice-like water molecules that align together to initiate freezing at these relatively high temperatures. Water ordering on this scale is mediated by the ice nucleation proteins of common environmental bacteria like Pseudomonas syringae and P. borealis. However, individually, these 100-kDa proteins are too small to organize enough water molecules for frost formation, and it is not known how giant, megadalton-sized multimers, which are crucial for ice nucleation at high sub-zero temperatures, form. The ability of multimers to self-assemble was suggested when the transfer of an ice nucleation protein gene into Escherichia coli led to efficient ice nucleation. Here we demonstrate that a positively-charged sub-domain at the C-terminal end of the central beta-solenoid of the ice nucleation protein is crucial for multimerization. Truncation, relocation, or change of the charge of this subdomain caused a catastrophic loss of ice nucleation ability. Cryo-electron tomography of the recombinant E. coli showed that the ice nucleation protein multimers form fibres that are ~ 5 nm across and up to 200 nm long. A model of these fibres as an overlapping series of antiparallel dimers can account for all their known properties and suggests a route to making cell-free ice nucleators for biotechnological applications.
Collapse
Affiliation(s)
- Thomas Hansen
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| | - Jocelyn C. Lee
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| | - Naama Reicher
- Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gil Ovadia
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Shuaiqi Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Wangbiao Guo
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Ido Braslavsky
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Biochemistry, Food Science, and Nutrition, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Peter L. Davies
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON Canada K7L 3N6
| |
Collapse
|
3
|
Aich R, Pal P, Chakraborty S, Jana B. Preferential Ordering and Organization of Hydration Water Favor Nucleation of Ice by Ice-Nucleating Proteins over Antifreeze Proteins. J Phys Chem B 2023; 127:6038-6048. [PMID: 37395194 DOI: 10.1021/acs.jpcb.3c01641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Bacteria containing ice-nucleating proteins (INPs) evolved in nature to nucleate ice at the high sub-zero ambiance. The ability of the INPs to induce order in the hydration layer and their aggregation propensity appear to be key factors of their ice nucleation abilities. However, the mechanism of the process of ice nucleation by INPs is yet to be understood clearly. Here, we have performed all-atom molecular dynamics simulations and analyzed the structure and dynamics of the hydration layer around the proposed ice-nucleating surface of a model INP. Results are compared with the hydration of a topologically similar non-ice-binding protein (non-IBP) and another ice-growth inhibitory antifreeze protein (sbwAFP). We observed that the hydration structure around the ice-nucleating surface of INP is highly ordered and the dynamics of the hydration water are slower, compared to the non-IBP. Even the ordering of the hydration layer is more evident around the ice-binding surface of INP, compared to the antifreeze protein sbwAFP. Particularly with increasing repeat units of INP, we observe an increased population of ice-like water. Interestingly, the distances between the hydroxyl groups of the threonine ladder and its associated channel water of the ice-binding surface (IBS) of INP in the X and Y direction mimic the oxygen atom distances of the basal plane of hexagonal ice. However, the structural synergies between the hydroxyl group distances of the threonine ladder and its associated channel water of the IBS of sbwAFP and oxygen atom distances of the basal plane are less evident. This difference makes the IBS of the INP a better template for ice nucleation than AFP, although both of them bind to the ice surface efficiently.
Collapse
Affiliation(s)
- Rahul Aich
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Prasun Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institution of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 5000046, India
| | - Biman Jana
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
4
|
Water-organizing motif continuity is critical for potent ice nucleation protein activity. Nat Commun 2022; 13:5019. [PMID: 36028506 PMCID: PMC9418140 DOI: 10.1038/s41467-022-32469-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 07/29/2022] [Indexed: 12/02/2022] Open
Abstract
Bacterial ice nucleation proteins (INPs) can cause frost damage to plants by nucleating ice formation at high sub-zero temperatures. Modeling of Pseudomonas borealis INP by AlphaFold suggests that the central domain of 65 tandem sixteen-residue repeats forms a beta-solenoid with arrays of outward-pointing threonines and tyrosines, which may organize water molecules into an ice-like pattern. Here we report that mutating some of these residues in a central segment of P. borealis INP, expressed in Escherichia coli, decreases ice nucleation activity more than the section’s deletion. Insertion of a bulky domain has the same effect, indicating that the continuity of the water-organizing repeats is critical for optimal activity. The ~10 C-terminal coils differ from the other 55 coils in being more basic and lacking water-organizing motifs; deletion of this region eliminates INP activity. We show through sequence modifications how arrays of conserved motifs form the large ice-nucleating surface required for potency. Ice nucleation proteins have the same tandemly arrayed water-organizing motifs seen in some antifreeze proteins, but on a larger scale. The authors show that mutation, interruption, and truncation of these arrays reduce ice nucleation activity indicating that the two protein types share a common mechanism.
Collapse
|
5
|
Bregnhøj M, Roeters SJ, Chatterley AS, Madzharova F, Mertig R, Pedersen JS, Weidner T. Structure and Orientation of the SARS-Coronavirus-2 Spike Protein at Air-Water Interfaces. J Phys Chem B 2022; 126:3425-3430. [PMID: 35477296 PMCID: PMC9063992 DOI: 10.1021/acs.jpcb.2c01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Indexed: 11/28/2022]
Abstract
The SARS coronavirus 2 (SARS-CoV-2) spike protein is located at the outermost perimeter of the viral envelope and is the first component of the virus to make contact with surrounding interfaces. The stability of the spike protein when in contact with surfaces plays a deciding role for infection pathways and for the viability of the virus after surface contact. While cryo-EM structures of the spike protein have been solved with high resolution and structural studies in solution have provided information about the secondary and tertiary structures, only little is known about the folding when adsorbed to surfaces. We here report on the secondary structure and orientation of the S1 segment of the spike protein, which is often used as a model protein for in vitro studies of SARS-CoV-2, at the air-water interface using surface-sensitive vibrational sum-frequency generation (SFG) spectroscopy. The air-water interface plays an important role for SARS-CoV-2 when suspended in aerosol droplets, and it serves as a model system for hydrophobic surfaces in general. The SFG experiments show that the S1 segment of the spike protein remains folded at the air-water interface and predominantly binds in its monomeric state, while the combination of small-angle X-ray scattering and two-dimensional infrared spectroscopy measurements indicate that it forms hexamers with the same secondary structure in aqueous solution.
Collapse
Affiliation(s)
- Mikkel Bregnhøj
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Steven J. Roeters
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Adam S. Chatterley
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Fani Madzharova
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Rolf Mertig
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Jan Skov Pedersen
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus
University, Langelandsgade 140, 8000 Aarhus C,
Denmark
| |
Collapse
|
6
|
Stevens CA, Gibson MI, Klok HA. Natural and Synthetic Macromolecules That Interact with Ice. Biomacromolecules 2022; 23:465-466. [PMID: 35152700 DOI: 10.1021/acs.biomac.2c00093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Corey A Stevens
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Matthew I Gibson
- Department of Chemistry and Warwick Medical School, University of Warwick, Coventry CV5 6NP, U.K
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|