1
|
Agnihotri P, Dheer D, Sangwan A, Chandran VC, Mavlankar NA, Hooda G, Patra D, Pal A. Design of multi-responsive and actuating microgels toward on-demand drug release. NANOSCALE 2024; 16:19254-19265. [PMID: 39344960 DOI: 10.1039/d4nr02728k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Multifunctional colloidal microgels that exhibit stimuli-responsive behaviour and excellent biocompatibility have attracted particular attention for developing functional compartmentalized networks. Herein, a series of stimuli-responsive microgels (M0, M1, and M2) were designed through the copolymerization of di(ethylene glycol) methyl ether methacrylate (DEGMA) and methacrylic acid (MAA) monomers using hydroxy ethyl methacrylate-coupled azobenzene (HEMA-Az) and ethylene glycol dimetharylate (EGDMA) as crosslinkers. The behaviour of the microgels in response to temperature, pH, and light was thoroughly investigated using spectroscopic, microscopic, and light-scattering techniques. Interestingly, the microgels deswelled with an increase in temperature, decrease in pH, and under the irradiation of UV light. Such a reversible swelling/deswelling behaviour was exploited for microgel M2, which showed better photoactuation at pH 5 with a higher fluid pumping velocity. The actuating microgel M2 was optimized for loading the drug ciprofloxacin (Cf) to study its release at different temperature, pH, and light conditions. Microgel M2 exhibited photoresponsive Cf release at pH 5 and 37 °C, demonstrating its potential for application in on-demand drug release.
Collapse
Affiliation(s)
- Priyanshi Agnihotri
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Divya Dheer
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
- Chitkara University School of Pharmacy, Chitkara University, Baddi 174103, Himachal Pradesh, India
| | - Anvi Sangwan
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Vysakh C Chandran
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Nimisha A Mavlankar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Gunjan Hooda
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Debabrata Patra
- Energy and Environment Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, Punjab, India.
| |
Collapse
|
2
|
Du R, Li X, Fielding LA. Investigating the Formation of Polymer-Nanoparticle Complex Coacervate Hydrogels Using Polymerization-Induced Self-Assembly-Derived Nanogels with a Succinate-Functional Core. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20648-20656. [PMID: 39291829 PMCID: PMC11447913 DOI: 10.1021/acs.langmuir.4c02626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
This paper reports polymer-nanoparticle-based complex coacervate (PNCC) hydrogels prepared by mixing anionic nanogels synthesized by polymerization-induced self-assembly (PISA) and cationic branched poly(ethylenimine) (bPEI). Specifically, poly(3-sulfopropyl methacrylate)58-b-poly(2-(methacryloyloxy)ethyl succinate)500 (PKSPMA58-PMES500) nanogels were prepared by reversible addition-fragmentation chain-transfer (RAFT)-mediated PISA. These nanogels swell on increasing the solution pH and form free-standing hydrogels at 20% w/w and pH ≥ 7.5. However, the addition of bPEI significantly improves the gel properties through the formation of PNCCs. Diluted bPEI/nanoparticle mixtures were analyzed by dynamic light scattering (DLS) and aqueous electrophoresis to examine the mechanism of PNCC formation. The influence of pH and the bPEI-to-nanogel mass ratio (MR) on the formation of these PNCC hydrogels was subsequently investigated. A maximum gel strength of 1300 Pa was obtained for 20% w/w bPEI/PKSPMA58-PMES500 PNCC hydrogels prepared at pH 9 with an MR of 0.1, and shear-thinning behavior was observed in all cases. After the removal of shear, these PNCC gels recovered rapidly, with the recovery efficiency being pH-dependent.
Collapse
Affiliation(s)
- Ruiling Du
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Xueyuan Li
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Lee A. Fielding
- Department
of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
- Henry
Royce Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
3
|
Li X, Lv D, Ai L, Wang X, Xu X, Qiang M, Huang G, Yao X. Superstrong Ionogel Enabled by Coacervation-Induced Nanofibril Assembly for Sustainable Moisture Energy Harvesting. ACS NANO 2024; 18:12970-12980. [PMID: 38725336 DOI: 10.1021/acsnano.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ionogels have grabbed significant interest in various applications, from sensors and actuators to wearable electronics and energy storage devices. However, current ionogels suffer from low strength and poor ionic conductivity, limiting their performance in practical applications. Here, inspired by the mechanical reinforcement of natural biomacromolecules through noncovalent aggregates, a strategy is proposed to construct nanofibril-based ionogels through complex coacervation-induced assembly. Cellulose nanofibrils (CNFs) can bundle together with poly(ionic liquid) (PIL) to form a superstrong nanofibrous network, in which the ionic liquid (IL) can be retained to form ionogels with high liquid inclusion and ionic conductivity. The strength of the CNF-PIL-IL ionogels can be tuned by the IL content over a wide range of up to 78 MPa. The optical transparency, high strength, and hygroscopicity enabled them to be promising candidates in moist-electricity generation and applications such as energy harvesting windows and wearable power generators. In addition, the ionogels are degradable and the ionogel-based generators can be recycled through dehydration. Our strategy suggests perspectives for the fabrication of high-strength and multifunctional ionogels for sustainable applications.
Collapse
Affiliation(s)
- Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xiubin Xu
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, P. R. China
| | - Mengyi Qiang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Gongsheng Huang
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR 999077, P. R. China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, P. R. China
| |
Collapse
|
4
|
Du R, Fielding LA. Preparation of polymer nanoparticle-based complex coacervate hydrogels using polymerisation-induced self-assembly derived nanogels. SOFT MATTER 2023; 19:2074-2081. [PMID: 36857682 DOI: 10.1039/d2sm01534j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
This paper reports a generic method to prepare polymer nanoparticle-based complex coacervate (PNCC) hydrogels by employing rationally designed nanogels synthesised by reversible addition-fragmentation chain-transfer (RAFT)-mediated polymerisation-induced self-assembly (PISA). Specifically, a poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) macromolecular chain-transfer agent (macro-CTA) was synthesised via RAFT solution polymerisation followed by chain-extension with a statistical copolymer of benzyl methacrylate (BzMA) and methacrylic acid (MAA) at pH 2. Thus, pH-responsive nanoparticles (NPs) comprising a hydrophobic polyacid core-forming block and a sulfonate-functional stabiliser block were formed. With the introduction of methacrylic acid into the core of the NPs, they become swollen with increasing pH, as judged by dynamic light scattering (DLS), indicating nanogel-type behaviour. PNCC hydrogels were prepared by simply mixing the PISA-derived nanogels and cationic branched polyethyleneimine (bPEI) at 20% w/w. In the absence of MAA in the core of the NPs, gel formation was not observed. The mass ratio between the nanogels and bPEI affected resulting hydrogel strength and a mixture of bPEI and PKSPMA68-P(BzMA0.6-stat-MAA0.4)300 NPs with a mass ratio of 0.14 at pH ∼7 resulted in a hydrogel with a storage modulus of approximately 2000 Pa, as determined by oscillatory rheology. This PNCC hydrogel was shear-thinning and injectable, with recovery of gel strength occurring rapidly after the removal of shear.
Collapse
Affiliation(s)
- Ruiling Du
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Lee A Fielding
- Department of Materials, School of Natural Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| |
Collapse
|