1
|
Ye X, Zhang R, Zhou J, Qiu S, Wang Y. Interfacial Constructing Poly(ionic liquids) on Nanoporous Block Copolymers for Antifouling Ultrafiltration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:945-954. [PMID: 39810353 DOI: 10.1021/acs.langmuir.4c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The remarkable flexibility in structural tunability and designability of poly(ionic liquids) (PILs) has garnered significant attention. Integration of PILs with membranes, novel properties, and functionalities is anticipated for applications in the fields of membrane separation. Here, we develop a facile method to prepare PIL-functionalized membranes in a one-step process by combining selective swelling-induced pore generation and ionic liquid functionalization. The block copolymer of poly(2-dimethylaminoethyl methacrylate)-block-polystyrene (PDMAEMA-b-PS, abbreviated as SDMA) films is immersed in a mixture of ethanol and bromopropane. In addition to the formation of nanoporous structures, an interfacial quaternization reaction between the PDMAEMA blocks and bromopropane occurs to generate poly(methacrylatoethyl propyl dimethylammonium bromide), resulting in the PIL-Br-functionalized membrane (SIL-Br) during the swelling process. It is noteworthy that bromopropane acting as a reactant also promotes the process of selective swelling. The water permeability of the resulting SIL-Br membrane is several times higher than that of the SDMA membrane, which is attributed to the increased pore size and significantly higher hydrophilicity of the SIL-Br membrane. In addition, the anion exchange of SIL-Br with l-proline (l-Pro) readily forms SIL-Pro-functionalized membranes (SIL-Pro), which exhibit exceptional electrical neutrality. Antifouling tests demonstrate that both SIL-Br and SIL-Pro have excellent resistance to proteins compared to the non-PIL-functionalization SDMA membrane, implying their great potential as antifouling membranes for water treatment.
Collapse
Affiliation(s)
- Xiangyue Ye
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Ruotong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Jiemei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Shoutian Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, College of Materials Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, People's Republic of China
- School of Energy and Environment, Southeast University, Nanjing, Jiangsu 210096, People's Republic of China
| |
Collapse
|
2
|
Gao S, Liu Z, Zeng W, Zhang Y, Zhang F, Wu D, Wang Y. Biocompatible Hydrogel Coating on Silicone Rubber with Improved Antifouling and Durable Lubricious Properties. Gels 2024; 10:647. [PMID: 39451300 PMCID: PMC11507538 DOI: 10.3390/gels10100647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Silicone rubber is widely used in various medical applications. However, silicone rubber is prone to biofouling due to their affinity for lipids and has a high friction coefficient, which can significantly impact their efficacy and performance used as medical devices. Thus, the development of hydrogels with antifouling and lubricious abilities for the modification of silicone rubber is in high demand. We herein prepared a variety of hydrogel coatings mainly based on polyvinylpyrrolidone (PVP) and poly (ethylene glycol) diacrylate (PEGDA). We modified the silicone rubber using the prepared hydrogel coatings and cured it using a heating method. Then, we characterized its surface and evaluated the antifouling property, lubricious property, cytotoxicity, sensitization, and vaginal irritation. The results of water contact angle (WCA), protein adsorption, and friction coefficient indicated the success of the modification of the silicone rubber, leading to a significant decrease in the corresponding test values. Meanwhile, the results of cytotoxicity, sensitization, and vaginal irritation tests showed that the hydrogel coating-modified silicone rubbers have an excellent biocompatibility. This study describes how the silicone rubber could be modified with a biocompatible hydrogel coating. The hydrogel coating-modified silicone rubbers have improved antifouling and durable lubricious properties.
Collapse
Affiliation(s)
- Shuai Gao
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.)
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (Z.L.); (W.Z.); (Y.Z.)
| | - Zheng Liu
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (Z.L.); (W.Z.); (Y.Z.)
| | - Wei Zeng
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (Z.L.); (W.Z.); (Y.Z.)
| | - Yunfeng Zhang
- Chengdu Daxan Innovative Medical Tech. Co., Ltd., Chengdu 611137, China; (Z.L.); (W.Z.); (Y.Z.)
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.)
| | - Dimeng Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.)
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; (S.G.); (F.Z.)
| |
Collapse
|
3
|
You Y, Ning X, Zhang X, Wang Y, Zhang Y, Mao K, Wang Y, Wu T, Zhang W. Development of magnesium hydroxide-doped nanofibrous spheres for repairing infected skin wounds. BIOMATERIALS ADVANCES 2024; 163:213967. [PMID: 39068744 DOI: 10.1016/j.bioadv.2024.213967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
The healing of skin wounds is a continuous and coordinated process, typically accompanied by microbial colonization and growth. This may result in wound infection and subsequent delay in wound healing. Therefore, it is of particular importance to inhibit the growth of microorganisms in the wound environment. In this study, magnesium hydroxide-doped polycaprolactone (PCL/MH) nanofibrous spheres were fabricated by electrospinning and electrospray techniques to investigate their effects on infected wound healing. The prepared PCL/MH nanofibrous spheres had good porous structure and biocompatibility, providing a favorable environment for the delivery and proliferation of adipose stem cells. The incorporation of MH significantly enhanced the antimicrobial properties of the spheres, in particular, the inhibition of the growth of S. aureus and E. coli. We showed that such PCL/MH nanofibrous spheres had good antimicrobial properties and effectively promoted the regeneration of infected wound tissues, which provided a new idea for the clinical treatment of infected wounds.
Collapse
Affiliation(s)
- Yong You
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, China
| | - Xuchao Ning
- Department of Plastic Surgery, Qilu Hospital Qingdao, Cheeloo College of Medicine, Shandong University, Qingdao 266035, China
| | - Xiaopei Zhang
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, China; Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China
| | - Yawen Wang
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, China; Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China; Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China
| | - Yifan Zhang
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, China
| | - Kaiping Mao
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, China
| | - Yuanfei Wang
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao 266001, China.
| | - Tong Wu
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, China; Shandong Key Laboratory of Medical and Health Textile Materials, Collaborative Innovation Center for Eco-textiles of Shandong Province and the Ministry of Education, College of Textile & Clothing, Qingdao University, Qingdao 266071, China.
| | - Weina Zhang
- The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, China.
| |
Collapse
|
4
|
Yu W, Lu X, Xiong L, Teng J, Chen C, Li B, Liao BQ, Lin H, Shen L. Thiol-Ene Click Reaction in Constructing Liquid Separation Membranes for Water Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310799. [PMID: 38213014 DOI: 10.1002/smll.202310799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/25/2023] [Indexed: 01/13/2024]
Abstract
In the evolving landscape of water treatment, membrane technology has ascended to an instrumental role, underscored by its unmatched efficacy and ubiquity. Diverse synthesis and modification techniques are employed to fabricate state-of-the-art liquid separation membranes. Click reactions, distinguished by their rapid kinetics, minimal byproduct generation, and simple reaction condition, emerge as a potent paradigm for devising eco-functional materials. While the metal-free thiol-ene click reaction is acknowledged as a viable approach for membrane material innovation, a systematic elucidation of its applicability in liquid separation membrane development remains conspicuously absent. This review elucidates the pre-functionalization strategies of substrate materials tailored for thiol-ene reactions, notably highlighting thiolation and introducing unsaturated moieties. The consequential implications of thiol-ene reactions on membrane properties-including trade-off effect, surface wettability, and antifouling property-are discussed. The application of thiol-ene reaction in fabricating various liquid separation membranes for different water treatment processes, including wastewater treatment, oil/water separation, and ion separation, are reviewed. Finally, the prospects of thiol-ene reaction in designing novel liquid separation membrane, including pre-functionalization, products prediction, and solute-solute separation membrane, are proposed. This review endeavors to furnish invaluable insights, paving the way for expanding the horizons of thiol-ene reaction application in liquid separation membrane fabrication.
Collapse
Affiliation(s)
- Wei Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Xinyi Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liping Xiong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Cheng Chen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bisheng Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Bao-Qiang Liao
- Department of Chemical Engineering, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
- Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
5
|
Gao S, Rao Y, Wang X, Zhang Q, Zhang Z, Wang Y, Guo J, Yan F. Chlorella-Loaded Antibacterial Microneedles for Microacupuncture Oxygen Therapy of Diabetic Bacterial Infected Wounds. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307585. [PMID: 38307004 DOI: 10.1002/adma.202307585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 01/29/2024] [Indexed: 02/04/2024]
Abstract
Hypoxia and infection are urgent clinical problems in chronic diabetic wounds. Herein, living Chlorella-loaded poly(ionic liquid)-based microneedles (PILMN-Chl) are constructed for microacupuncture oxygen and antibacterial therapy against methicillin-resistant Staphylococcus aureus (MRSA)-infected chronic diabetic wounds. The PILMN-Chl can stably and continuously produce oxygen for more than 30 h due to the photosynthesis of the loaded self-supported Chlorella. By combining the barrier penetration capabilities of microneedles, the continuous and sufficient oxygen supply of Chlorella, and the sterilization activities of PIL, the PILMN-Chl can accelerate chronic diabetic wounds in vivo by topical targeted sterilization and hypoxia relief in deep parts of wounds. Thus, the self-oxygen produced microneedles modality may provide a promising and facile therapeutic strategy for treating chronic, hypoxic, and infected diabetic wounds.
Collapse
Affiliation(s)
- Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yu Rao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Xiaowei Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Yuxuan Wang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Schaly S, Islam P, Boyajian JL, Thareja R, Abosalha A, Arora K, Shum-Tim D, Prakash S. Controlled and customizable baculovirus NOS3 gene delivery using PVA-based hydrogel systems. PLoS One 2023; 18:e0290902. [PMID: 37733661 PMCID: PMC10513238 DOI: 10.1371/journal.pone.0290902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/18/2023] [Indexed: 09/23/2023] Open
Abstract
Nitric oxide synthase 3 (NOS3) eluting polyvinyl alcohol-based hydrogels have a large potential in medical applications and device coatings. NOS3 promotes nitric oxide and nitrate production and can effectively be delivered using insect cell viruses, termed baculoviruses. Nitric oxide is known for regulating cell proliferation, promoting blood vessel vasodilation, and inhibiting bacterial growth. The polyvinyl alcohol (PVA)-based hydrogels investigated here sustained baculovirus elution from five to 25 days, depending on the hydrogel composition. The quantity of viable baculovirus loaded significantly declined with each freeze-thaw from one to four (15.3 ± 2.9% vs. 0.9 ± 0.5%, respectively). The addition of gelatin to the hydrogels protected baculovirus viability during the freeze-thaw cycles, resulting in a loading capacity of 94.6 ± 1.2% with sustained elution over 23 days. Adding chitosan, PEG-8000, and gelatin to the hydrogels altered the properties of the hydrogel, including swelling, blood coagulation, and antimicrobial effects, beneficial for different therapeutic applications. Passive absorption of the baculovirus into PVA hydrogels exhibited the highest baculovirus loading (96.4 ± 0.6%) with elution over 25 days. The baculovirus-eluting hydrogels were hemocompatible and non-cytotoxic, with no cell proliferation or viability reduction after incubation. This PVA delivery system provides a method for high loading and sustained release of baculoviruses, sustaining nitric oxide gene delivery. This proof of concept has clinical applications as a medical device or stent coating by delivering therapeutic genes, improving blood compatibility, preventing thrombosis, and preventing infection.
Collapse
Affiliation(s)
- Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Jacqueline L. Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Ahmed Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Dominique Shum-Tim
- Division of Cardiac Surgery, Royal Victoria Hospital, McGill University Health Centre, McGill University, Faculty of Medicine, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Wu Q, Luo W, Du Y, Yang Y, Xiao Y, Cheng N, Tang B, Li H, Wang L, Wang D, Wang C, Guan J, Shen X. Engineered and Durable Antimicrobial Polymer via Controllable Immobilization of Ionic Liquids onto the Poly(lactic acid) Chains. Biomacromolecules 2023; 24:3522-3531. [PMID: 37285477 DOI: 10.1021/acs.biomac.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nowadays, the development of effective modification methods for PLA has gained significant interest because of the wide application of antimicrobial PLA materials in the medical progress. Herein, the ionic liquid (IL) 1-vinyl-3-butylimidazolium bis(trifluoromethylsulfonyl)imide, has been grafted onto the PLA chains successfully in the PLA/IL blending films via electron beam (EB) radiation for the miscibility between PLA and IL. It was found that the existence of IL in the PLA matrix can significantly improve the chemical stability under EB radiation. The Mn of PLA-g-IL copolymer did not change obviously but was just decreased from 6.80 × 104 g/mol to 5.20 × 104 g/mol after radiation with 10 kGy. The obtained PLA-g-IL copolymers showed excellent filament forming property during electrospinning process. The spindle structure on the nanofibers can be completely eliminated after feeding only 0.5 wt % ILs for the improvement of ionic conductivity. Specially, the prepared PLA-g-IL nonwovens exhibited outstanding and durable antimicrobial activity for the enrichment of immobilized ILs on the nanofiber surface. This work provides a feasible strategy to realize the modification of functional ILs onto PLA chains with low EB radiation doses, which may have huge potential application in the medical and packaging industry.
Collapse
Affiliation(s)
- Qingsong Wu
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Wentao Luo
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yanqiu Du
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Yaru Yang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Yunchao Xiao
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Na Cheng
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Bolin Tang
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Haidong Li
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Lei Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Deshen Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Chunyu Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Jipeng Guan
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| | - Xiaojun Shen
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, China
- Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
8
|
Zhang Z, Zhang Q, Gao S, Xu H, Guo J, Yan F. Antibacterial, anti-inflammatory and wet-adhesive poly(ionic liquid)-based oral patch for the treatment of oral ulcers with bacterial infection. Acta Biomater 2023; 166:254-265. [PMID: 37187300 DOI: 10.1016/j.actbio.2023.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Oral aphthous ulcers are a common inflammatory efflorescence of oral mucosa, presenting as inflammation and oral mucosal damage and manifesting as pain. The moist and highly dynamic environment of the oral cavity makes the local treatment of oral aphthous ulcers challenging. Herein, a poly(ionic liquid)-based diclofenac sodium (DS)-loaded (PIL-DS) buccal tissue adhesive patch fabricated with intrinsically antimicrobial, highly wet environment adhesive properties and anti-inflammatory activities to treat oral aphthous ulcers was developed. The PIL-DS patch was prepared via polymerization of a catechol-containing ionic liquid, acrylic acid, and butyl acrylate, followed by anion exchange with DS-. The PIL-DS can adhere to wet tissues, including mucosa muscles and organs, and efficiently deliver the carried DS- at wound sites, exerting remarkable synergistic antimicrobial (bacteria and fungi) properties. Accordingly, the PIL-DS elicited dual therapeutic effects on oral aphthous ulcers with Staphylococcus aureus infection through antibacterial and anti-inflammatory activities, significantly accelerating oral aphthous ulcer healing as an oral mucosa patch. The results indicated that the PIL-DS patch, with inherently antimicrobial and wet adhesion properties, is promising for treating oral aphthous ulcers in clinical practice. STATEMENT OF SIGNIFICANCE: Oral aphthous ulcers are a common oral mucosal disease, which could lead to bacterial infection and inflammation in severe cases, especially for people with large ulcers or low immunity. However, moist oral mucosa and highly dynamic oral environment make it challenging to maintain therapeutic agents and physical barriers at the wound surface. Therefore, an innovative drug carrier with wet adhesion is urgently needed. Herein, a poly(ionic liquid)-based diclofenac sodium (DS)-loaded (PIL-DS) buccal tissue adhesive patch was developed to treat oral aphthous ulcers showing intrinsically antimicrobial and highly wet environment adhesive properties due to the presence of catechol-containing ionic liquid monomer. Additionally, the PIL-DS showed significantly therapeutic effects on oral aphthous ulcers with S. aureus infection through antibacterial and anti-inflammatory activities. We expect that our work can provide inspiration for the development of treatment for microbially infected oral ulcers.
Collapse
Affiliation(s)
- Zijun Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Qiuyang Zhang
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuna Gao
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Hui Xu
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jiangna Guo
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Feng Yan
- Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Negative Carbon Technologies College of Chemistry, Suzhou Key Laboratory of Soft Material and New Energy, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
9
|
Halima HB, Zwingelstein T, Humblot V, Lakard B, Viau L. Electropolymerization of Pyrrole-Tailed Imidazolium Ionic Liquid for the Elaboration of Antibacterial Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37421359 DOI: 10.1021/acsami.3c05232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
A strategy was developed to prepare antibacterial surfaces by electropolymerization of a pyrrole-functionalized imidazolium ionic liquid bearing an halometallate anion. The objective was to combine the antibacterial efficiency of polypyrrole (PPy) with those of the ionic liquid's components (cation and anion). For this, N-(1-methyl-3-octylimidazolium)pyrrole bromide monomer [PyC8MIm]Br was synthesized and coordinated to ZnCl2 affording [PyC8MIm]Br-ZnCl2. The antibacterial properties of [PyC8MIm]Br-ZnCl2 monomer were evaluated against Escherichia coli and Staphylococcus aureus by measurement of the minimum inhibitory concentration (MIC) values. This monomer presents higher activity against S. aureus (MIC = 0.098 μmol·mL-1) than against E. coli (MIC = 2.10 μmol·mL-1). Mixtures of pyrrole and the pyrrole-functionalized ionic liquid [PyC8MIm]Br-ZnCl2 were then used for the electrodeposition of PPy films on Fluorine-doped tin oxide (FTO) substrates. The concentration of pyrrole was fixed to 50 mM, while the concentration of [PyC8MIm]Br-ZnCl2 was varied from 5 to 100 mM. The efficient incorporation of the imidazolium cation and zinc halometallate anion into the films was confirmed by X-ray photoelectron spectroscopy (XPS) measurements. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) measurements confirmed the homogeneity of the different films with structures that depend on the [PyC8MIm]Br-ZnCl2 concentration. The films' thickness determined by profilometry varies only slightly with the [PyC8MIm]Br-ZnCl2 concentration from 7.4 μm at 5 mM to 8.9 μM at 100 mM. The films become more hydrophilic with an increase of [PyC8MIm]Br-ZnCl2 concentration with water contact angles varying from 47° at the lowest concentration to 32° at the highest concentration. The antibacterial activities of the different PPy films were determined both by the halo inhibition method and by the colony forming units (CFUs) counting method over time against Gram-positive S. aureus and Gram-negative E. coli bacteria. Films obtained by incorporation of [PyC8MIm]Br-ZnCl2 showed excellent antibacterial properties, at least two times higher than those of neat PPy, validating our strategy. Furthermore, a comparison of the antibacterial properties of the films obtained using the same [PyC8MIm]Br-ZnCl2 concentration (50 mM) evidenced much better activity against Gram-positive (no bacterial survival within 5 min) than against Gram-negative bacteria (no bacterial survival within 3 h). Finally, the antibacterial performances over time could be tuned by the concentration of the employed pyrrole-functionalized ionic liquid monomer. Against E. coli, using 100 mM of [PyC8MIm]Br-ZnCl2, the bacteria were totally killed within a few minutes, using 50 mM, they were killed after 2 h while using 10 mM, about 20% of bacteria survived even after 6 h.
Collapse
Affiliation(s)
- Hamdi Ben Halima
- UMR CNRS 6213, Institut UTINAM, Université de Franche-Comté, 16 Route de Gray, Besançon F-25000, France
| | - Thibaut Zwingelstein
- UMR CNRS 6174, Institut FEMTO-ST, Université de Franche-Comté, 15B Avenue des Montboucons, Besançon 25030, France
| | - Vincent Humblot
- UMR CNRS 6174, Institut FEMTO-ST, Université de Franche-Comté, 15B Avenue des Montboucons, Besançon 25030, France
| | - Boris Lakard
- UMR CNRS 6213, Institut UTINAM, Université de Franche-Comté, 16 Route de Gray, Besançon F-25000, France
| | - Lydie Viau
- UMR CNRS 6213, Institut UTINAM, Université de Franche-Comté, 16 Route de Gray, Besançon F-25000, France
| |
Collapse
|
10
|
Wei L, Wang L, Cui Z, Liu Y, Du A. Multifunctional Applications of Ionic Liquids in Polymer Materials: A Brief Review. Molecules 2023; 28:3836. [PMID: 37175245 PMCID: PMC10180292 DOI: 10.3390/molecules28093836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
As a new generation of green media and functional materials, ionic liquids (ILs) have been extensively investigated in scientific and industrial communities, which have found numerous ap-plications in polymeric materials. On the one hand, much of the research has determined that ILs can be applied to modify polymers which use nanofillers such as carbon black, silica, graphene oxide, multi-walled carbon nanotubes, etc., toward the fabrication of high-performance polymer composites. On the other hand, ILs were extensively reported to be utilized to fabricate polymeric materials with improved thermal stability, thermal and electrical conductivity, etc. Despite substantial progress in these areas, summary and discussion of state-of-the-art functionalities and underlying mechanisms of ILs are still inadequate. In this review, a comprehensive introduction of various fillers modified by ILs precedes a systematic summary of the multifunctional applications of ILs in polymeric materials, emphasizing the effect on vulcanization, thermal stability, electrical and thermal conductivity, selective permeability, electromagnetic shielding, piezoresistive sensitivity and electrochemical activity. Overall, this review in this area is intended to provide a fundamental understanding of ILs within a polymer context based on advantages and disadvantages, to help researchers expand ideas on the promising applications of ILs in polymer fabrication with enormous potential.
Collapse
Affiliation(s)
| | | | | | - Yingjun Liu
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Aihua Du
- Key Laboratory of Rubber-Plastics (Ministry of Education), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Saverina EA, Frolov NA, Kamanina OA, Arlyapov VA, Vereshchagin AN, Ananikov VP. From Antibacterial to Antibiofilm Targeting: An Emerging Paradigm Shift in the Development of Quaternary Ammonium Compounds (QACs). ACS Infect Dis 2023; 9:394-422. [PMID: 36790073 DOI: 10.1021/acsinfecdis.2c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In a previous development stage, mostly individual antibacterial activity was a target in the optimization of biologically active compounds and antiseptic agents. Although this targeting is still valuable, a new trend has appeared since the discovery of superhigh resistance of bacterial cells upon their aggregation into groups. Indeed, it is now well established that the great majority of pathogenic germs are found in the environment as surface-associated microbial communities called biofilms. The protective properties of biofilms and microbial resistance, even to high concentrations of biocides, cause many chronic infections in medical settings and lead to serious economic losses in various areas. A paradigm shift from individual bacterial targeting to also affecting more complex cellular frameworks is taking place and involves multiple strategies for combating biofilms with compounds that are effective at different stages of microbiome formation. Quaternary ammonium compounds (QACs) play a key role in many of these treatments and prophylactic techniques on the basis of both the use of individual antibacterial agents and combination technologies. In this review, we summarize the literature data on the effectiveness of using commercially available and newly synthesized QACs, as well as synergistic treatment techniques based on them. As an important focus, techniques for developing and applying antimicrobial coatings that prevent the formation of biofilms on various surfaces over time are discussed. The information analyzed in this review will be useful to researchers and engineers working in many fields, including the development of a new generation of applied materials; understanding biofilm surface growth; and conducting research in medical, pharmaceutical, and materials sciences. Although regular studies of antibacterial activity are still widely conducted, a promising new trend is also to evaluate antibiofilm activity in a comprehensive study in order to meet the current requirements for the development of highly needed practical applications.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- Tula State University, Lenin pr. 92, 300012 Tula, Russia.,N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Nikita A Frolov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | | | | | - Anatoly N Vereshchagin
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, 119991 Moscow, Russia
| |
Collapse
|