1
|
Cai T, Dong C, Yuan C, Bai X, Jia D, Duan H, Zheng Z. Enhancing Water Lubrication in UHMWPE Using Mesoporous Polydopamine Nanoparticles: A Strategy to Mitigate Frictional Vibration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:62762-62775. [PMID: 39487849 DOI: 10.1021/acsami.4c15041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Establishing a persistent lubrication mechanism and a durable tribo-film on contact surfaces is identified as crucial for improving the tribology and vibration characteristics of polymer materials under water-lubricated conditions. This study focuses on enhancing tribological performance and reducing frictional vibrations in ultrahigh molecular weight polyethylene (UHMWPE) through the incorporation of mesoporous polydopamine (MPDA) nanoparticles. In the experiments, MPDA nanoparticles were synthesized and blended with UHMWPE to create UHMWPE/MPDA composites. The interactions between these composites and zirconia (ZrO2) ceramic balls under water lubrication were examined. The results show that when the MPDA content of the composite is 1.5 wt %, the coefficient of friction and wear rate are reduced by 40% and 52% compared with those of pure UHMWPE, respectively. This notable enhancement helped to mitigate friction-induced vibrations, particularly those caused by intermittent sticking and slipping motions. MPDA nanoparticles were shown to act as reservoirs for water, releasing and replenishing water based on the loading conditions, which sustained continuous water-based lubrication at the composite surfaces. Additionally, the surface deformation behavior of the composite material is significantly weakened, which provides a more stable friction surface. This work introduces a novel approach to enhance the interface stability of polymers in water-lubricated environments, offering guidance for developing advanced materials and reducing friction and wear in engineering applications.
Collapse
Affiliation(s)
- Tun Cai
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Conglin Dong
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Chengqing Yuan
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Xiuqin Bai
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| | - Dan Jia
- State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Material Protection Co., Ltd. CAM, Wuhan 430030, China
| | - Haitao Duan
- State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Material Protection Co., Ltd. CAM, Wuhan 430030, China
| | - Zhanmo Zheng
- School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan 430063, China
- Reliability Engineering Institute, National Engineering Research Center for Water Transportation Safety, Wuhan 430063, China
| |
Collapse
|
2
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
3
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Masoudi M, Taghdisi SM, Hashemitabar G, Abnous K. Targeted co-delivery of FOXM1 aptamer and DOX by nucleolin aptamer-functionalized pH-responsive biocompatible nanodelivery system to enhance therapeutic efficacy against breast cancer: in vitro and in vivo. Drug Deliv Transl Res 2024; 14:1535-1550. [PMID: 38161196 DOI: 10.1007/s13346-023-01495-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
Targeted nanodelivery systems offer a promising approach to cancer treatment, including the most common cancer in women, breast cancer. In this study, a targeted, pH-responsive, and biocompatible nanodelivery system based on nucleolin aptamer-functionalized biogenic titanium dioxide nanoparticles (TNP) was developed for targeted co-delivery of FOXM1 aptamer and doxorubicin (DOX) to improve breast cancer therapy. The developed targeted nanodelivery system exhibited almost spherical morphology with 124.89 ± 12.97 nm in diameter and zeta potential value of - 23.78 ± 3.66 mV. FOXM1 aptamer and DOX were loaded into the nanodelivery system with an efficiency of 100% and 97%, respectively. Moreover, the targeted nanodelivery system demonstrated excellent stability in serum and a pH-responsive sustained drug release profile over a period of 240 h following Higuchi kinetic and Fickian diffusion mechanism. The in vitro cytotoxicity experiments demonstrated that the targeted nanodelivery system provided selective internalization and strong growth inhibition effects of about 45 and 51% against nucleolin-positive 4T1 and MCF-7 breast cancer cell lines. It is noteworthy that these phenomena were not observed in nucleolin-negative cells (CHO). The preclinical studies revealed that a single-dose intravenous injection of the targeted nanodelivery system into 4T1-bearing mice inhibited tumor growth by 1.7- and 1.4-fold more efficiently than the free drug and the non-targeted nanodelivery system, respectively. Our results suggested that the developed innovative targeted pH-responsive biocompatible nanodelivery system could serve as a prospectively potential platform to improve breast cancer treatment.
Collapse
Affiliation(s)
- Mina Masoudi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Hashemitabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Khalil Abnous
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Delgado MZ, Aranda FL, Hernandez-Tenorio F, Garrido-Miranda KA, Meléndrez MF, Palacio DA. Polyelectrolytes for Environmental, Agricultural, and Medical Applications. Polymers (Basel) 2024; 16:1434. [PMID: 38794627 PMCID: PMC11124962 DOI: 10.3390/polym16101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
In recent decades, polyelectrolytes (PELs) have attracted significant interest owing to a surge in research dedicated to the development of new technologies and applications at the biological level. Polyelectrolytes are macromolecules of which a substantial portion of the constituent units contains ionizable or ionic groups. These macromolecules demonstrate varied behaviors across different pH ranges, ionic strengths, and concentrations, making them fascinating subjects within the scientific community. The aim of this review is to present a comprehensive survey of the progress in the application studies of polyelectrolytes and their derivatives in various fields that are vital for the advancement, conservation, and technological progress of the planet, including agriculture, environmental science, and medicine. Through this bibliographic review, we seek to highlight the significance of these materials and their extensive range of applications in modern times.
Collapse
Affiliation(s)
- Martina Zuñiga Delgado
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| | - Francisca L. Aranda
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
- Department of Materials Engineering (DIMAT), Faculty of Engineering, University of Concepcion, 270 Edmundo Larenas, Box 160-C, Concepcion 4070409, Chile
| | - Fabian Hernandez-Tenorio
- Environmental Processes Research Group, School of Applied Sciences and Engineering, Universidad EAFIT, Medellin 050022, Colombia;
| | - Karla A. Garrido-Miranda
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Manuel F. Meléndrez
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Campus Las Tres Pascuales, Lientur 1457, Concepción 4060000, Chile
| | - Daniel A. Palacio
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción 4070409, Chile (F.L.A.)
| |
Collapse
|
6
|
Zhong F, Wang F, Yang H. Composition and structure analysis of different depths in the stratum corneum using confocal Raman microscopy combined with two-dimensional correlation spectroscopy. Talanta 2024; 270:125559. [PMID: 38141465 DOI: 10.1016/j.talanta.2023.125559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/09/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
The chemical composition and structure of the stratum corneum (SC) play a crucial role in the skin barrier function. Therefore, accurately determining the SC thickness and studying the changes in lipid and keratin structure and distribution within it are key aspects of skin barrier research. Currently, there are limited analytical tools and data analysis methods available for real-time and online studies of SC composition and structural changes. In this study, we focus on depth as a perturbation and employ confocal Raman microscopy combined with moving-window two-dimensional correlation spectroscopy (MW2D) technique to investigate the SC thickness. Additionally, we employ confocal Raman microscopy combined with perturbation-correlation moving-window two-dimensional correlation spectroscopy (PCMW2D) to precisely characterize the stratification of the SC. Furthermore, the two-dimensional correlation spectroscopy (2DCOS) method is utilized to examine the content of various conformations in the keratin secondary structure within the SC, as well as the subtle interrelationships between lipid and keratin structures.
Collapse
Affiliation(s)
- Feng Zhong
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai, 200234, PR China
| | - Feng Wang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Haifeng Yang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, and Department of Chemistry, Shanghai Normal University, Shanghai, 200234, PR China.
| |
Collapse
|
7
|
Li H, Cai Q, Xue Y, Jie G. HOF-101-based dual-mode biosensor for photoelectrochemical/electrochemiluminescence detection and imaging of oxytetracycline. Biosens Bioelectron 2024; 245:115835. [PMID: 37979549 DOI: 10.1016/j.bios.2023.115835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/24/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
A unique hydrogen-bonded organic frameworks (HOF-101)-based photoelectrochemical (PEC) and electrochemiluminescence (ECL) dual-mode biosensor using polydopamine nanoparticles (PDAs) as quencher was constructed for ultrasensitive detection and imaging of oxytetracycline (OXY). In particular, HOF-101 was a superior ECL material and can be observed with the naked eye. Furthermore, it also had outstanding PEC signal, so HOF-101 was a new dual-signal material with excellent performance, thus it was explored to realize dual-mode detection. As the main component of natural melanin, PDAs not only had good biocompatibility, but also contained rich functional groups on the surface. Additionally, PDAs had excellent light absorption ability and poor conductivity, which made it the excellent photoquencher. In this work, PDAs were introduced on the surface of HOF-101 to quench its ECL and PEC signals by using the dual-aptamer sandwich method, achieving ultrasensitive detection of antibiotic OXY. Particularly for ECL detection, HOF-101 was firstly used to visually detect OXY. The detection range can reach 0.1 pM-100 nM, and the limit of detection (LOD) can reach 0.04 pM. This work showed a great contribution to the development of new ECL-PEC materials and ECL visualization analysis, which had outstanding application potential in the fields of food safety and biochemical analysis.
Collapse
Affiliation(s)
- Hongkun Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qianqian Cai
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yali Xue
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Guifen Jie
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering. Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
8
|
Menichetti A, Mordini D, Montalti M. Polydopamine Nanosystems in Drug Delivery: Effect of Size, Morphology, and Surface Charge. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:303. [PMID: 38334574 PMCID: PMC10856634 DOI: 10.3390/nano14030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Recently, drug delivery strategies based on nanomaterials have attracted a lot of interest in different kinds of therapies because of their superior properties. Polydopamine (PDA), one of the most interesting materials in nanomedicine because of its versatility and biocompatibility, has been widely investigated in the drug delivery field. It can be easily functionalized to favor processes like cellular uptake and blood circulation, and it can also induce drug release through two kinds of stimuli: NIR light irradiation and pH. In this review, we describe PDA nanomaterials' performance on drug delivery, based on their size, morphology, and surface charge. Indeed, these characteristics strongly influence the main mechanisms involved in a drug delivery system: blood circulation, cellular uptake, drug loading, and drug release. The understanding of the connections between PDA nanosystems' properties and these phenomena is pivotal to obtain a controlled design of new nanocarriers based on the specific drug delivery applications.
Collapse
Affiliation(s)
| | | | - Marco Montalti
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (A.M.); (D.M.)
| |
Collapse
|
9
|
Liu S, Liu Y, Chang Q, Celia C, Deng X, Xie Y. pH-Responsive Sorafenib/Iron-Co-Loaded Mesoporous Polydopamine Nanoparticles for Synergistic Ferroptosis and Photothermal Therapy. Biomacromolecules 2024; 25:522-531. [PMID: 38087829 DOI: 10.1021/acs.biomac.3c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Ferroptosis has attracted significant attention as a new mechanism of cell death. Sorafenib (SRF) is widely considered a prototypical ferroptosis-inducing drug, particularly for liver cancer treatment. However, the low solubility and hydrophobic nature of SRF, along with the absence of synergistic therapeutic strategies, still limit its application in cancer treatment. Herein, we report a dual therapeutic method incorporating photothermal therapy and ferroptosis by using Fe-doped mesoporous polydopamine nanoparticles (Fe-mPDA@SRF-TPP) as a carrier for loading SRF and targeting triphenylphosphine (TPP). SRF molecules are efficiently encapsulated within the polydopamine nanospheres with a high loading ratio (80%) attributed to the porosity of Fe-mPDA, and the inherent biocompatibility and hydrophilicity of Fe-mPDA@SRF-TPP facilitate the transport of SRF to the target cancer cells. Under the external stimuli of acidic environment (pH 5.0), glutathione (GSH), and laser irradiation, Fe-mPDA@SRF-TPP shows sustained release of SRF and Fe ions with the ratio of 72 and 50% within 48 h. Fe-mPDA@SRF-TPP nanoparticles induce intracellular GSH depletion, inhibit glutathione peroxidase 4 (GPX4) activity, and generate hydroxyl radicals, all of which are essential components of the therapeutic ferroptosis process for killing MDA-MB-231 cancer cells. Additionally, the excellent near-infrared (NIR) light absorption of Fe-mPDA@SRF-TPP nanoparticles demonstrates their capability for photothermal therapy and further enhances the therapeutic efficiency. Therefore, this nanosystem provides a multifunctional therapeutic platform that overcomes the therapeutic limitations associated with standalone ferroptosis and enhances the therapeutic efficacy of SRF for breast cancer.
Collapse
Affiliation(s)
- Shang Liu
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, China
| | - Qing Chang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Chieti 66100, Italy
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yijun Xie
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|