1
|
Wu T, Wu H, Wang Q, He X, Shi P, Yu B, Cong H, Shen Y. Current status and future developments of biopolymer microspheres in the field of pharmaceutical preparation. Adv Colloid Interface Sci 2024; 334:103317. [PMID: 39461111 DOI: 10.1016/j.cis.2024.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/13/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Polymer composite microspheres offer several advantages including highly designable structural properties, adjustable micro-nano particle size distribution, easy surface modification, large specific surface area, and high stability. These features make them valuable in various fields such as medicine, sensing, optics, and display technologies, with significant applications in clinical diagnostics, pathological imaging, and drug delivery in the medical field. Currently, microspheres are primarily used in biomedical research as long-acting controlled-release agents and targeted delivery systems, and are widely applied in bone tissue repair, cancer treatment, and wound healing. Different types of polymer microspheres offer distinct advantages and application prospects. Efforts are ongoing to transition successful experimental research to industrial production by expanding various fabrication technologies. This article provides an overview of materials used in microsphere manufacturing, different fabrication methods, modification techniques to enhance their properties and applications, and discusses the role of microspheres in drug delivery engineering.
Collapse
Affiliation(s)
- Taixia Wu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Han Wu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Qiubo Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiangqiong He
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Pengbao Shi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China; School of Materials Science and Engineering, Shandong University of Technology, Zibo 255000, China.
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
2
|
Liang W, Zhang W, Tian J, Zhang X, Lv X, Qu A, Chen J, Wu Z. Advances in carbohydrate-based nanoparticles for targeted therapy of inflammatory bowel diseases: A review. Int J Biol Macromol 2024; 281:136392. [PMID: 39423983 DOI: 10.1016/j.ijbiomac.2024.136392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/13/2024] [Accepted: 10/05/2024] [Indexed: 10/21/2024]
Abstract
The incidence of inflammatory bowel disease (IBD), a chronic gastrointestinal disorder, is rapidly increasing worldwide. Unfortunately, the current therapies for IBD are often hindered by premature drug release and undesirable side effects. With the advancement of nanotechnology, the innovative targeted nanotherapeutics are explored to ensure the accurate delivery of drugs to specific sites in the colon, thereby reducing side effects and improving the efficacy of oral administration. The emphasis of this review is to summarize the potential pathogenesis of IBD and highlight recent breakthroughs in carbohydrate-based nanoparticles for IBD treatment, including their construction, release mechanism, potential targeting ability, and their therapeutic efficacy. Specifically, we summarize the latest knowledge regarding environmental-responsive nano-systems and active targeted nanoparticles. The environmental-responsive drug delivery systems crafted with carbohydrates or other biological macromolecules like chitosan and sodium alginate, exhibit a remarkable capacity to enhance the accumulation of therapeutic drugs in the inflamed regions of the digestive tract. Active targeting strategies improve the specificity and accuracy of oral drug delivery to the colon by modifying carbohydrates such as hyaluronic acid and mannose onto nanocarriers. Finally, we discuss the challenges and provide insight into the future perspectives of colon-targeted delivery systems for IBD treatment.
Collapse
Affiliation(s)
- Wenjing Liang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wen Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| | - Jiayi Tian
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinping Zhang
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xinyi Lv
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Ao Qu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Jinyu Chen
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China
| | - Zijian Wu
- Tianjin Key Laboratory of Food Science and Biotechnology, School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China; Key Laboratory of Low Carbon Cold Chain for Agricultural Products, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
3
|
Pan Q, Xie L, Zhu H, Zong Z, Wu D, Liu R, He B, Pu Y. Curcumin-incorporated EGCG-based nano-antioxidants alleviate colon and kidney inflammation via antioxidant and anti-inflammatory therapy. Regen Biomater 2024; 11:rbae122. [PMID: 39539979 PMCID: PMC11558062 DOI: 10.1093/rb/rbae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/19/2024] [Accepted: 10/05/2024] [Indexed: 11/16/2024] Open
Abstract
Natural remedies are gaining attention as promising approaches to alleviating inflammation, yet their full potential is often limited by challenges such as poor bioavailability and suboptimal therapeutic effects. To overcome these limitations, we have developed a novel nano-antioxidant (EK) based on epigallocatechin gallate (EGCG) aimed at enhancing the oral and systemic bioavailability, as well as the anti-inflammatory efficacy, of curcumin (Cur) in conditions such as acute colon and kidney inflammation. EK is synthesized using a straightforward Mannich reaction between EGCG and L-lysine (K), resulting in the formation of EGCG oligomers. These oligomers spontaneously self-assemble into nanoparticles with a spherical morphology and an average diameter of approximately 160 nm. In vitro studies reveal that EK nanoparticles exhibit remarkable radical-scavenging capabilities and effectively regulate redox processes within macrophages, a key component in the body's inflammatory response. By efficiently encapsulating curcumin within these EK nanoparticles, we create Cur@EK, a formulation that demonstrates a synergistic anti-inflammatory effect. Specifically, Cur@EK significantly reduces the levels of pro-inflammatory cytokines TNF-α and IL-6 while increasing the anti-inflammatory cytokine IL-10 in lipopolysaccharide-stimulated macrophages, highlighting its potent anti-inflammatory properties. When administered either orally or intravenously, Cur@EK shows superior bioavailability compared to free curcumin and exhibits pronounced anti-inflammatory effects in mouse models of ulcerative colitis and acute kidney injury. These findings suggest that the EK nano-antioxidant platform not only enhances the bioavailability of curcumin but also amplifies its therapeutic impact, offering a promising new avenue for the treatment and management of inflammation in both oral and systemic contexts.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Zhihui Zong
- Department of Pharmaceutical Engineering, Bengbu Medical University, Bengbu 233030, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
4
|
Ma Y, Zhou W, Wang H, Wu M, Jiang S, Li Y, Ma C, Zhang R, He J. The double-layer emulsions loaded with bitter melon (Momordica charantia L.) seed oil protect against dextran sulfate sodium-induced ulcerative colitis in mice. Int J Biol Macromol 2024; 278:134279. [PMID: 39084441 DOI: 10.1016/j.ijbiomac.2024.134279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In this study, a whey protein isolate (WPI)-chitooligosaccharide (COS) stabilized bitter melon (Momordica charantia L.) seed oil emulsions (WC-BSOE) were prepared using the electrostatic layer-by-layer self-assembly technique, and their modulating effects on ulcerative colitis (UC) were investigated in dextran sulfate sodium (DSS)-induced UC mice model. The stability and releasing ability of WC-BSOE under simulated gastrointestinal digestion condition and their acute toxicity were also investigated. The results showed that WC-BSOE was stable to droplet aggregation in the simulated gastric and intestinal fluids and exhibited sustained release profile during gastrointestinal transit, evidenced by the measurement of particle size, polydispersity index, zeta-potential and released free fatty acids contents. Moreover, WC-BSOE had no toxic effects on BALB/c mice within the dose range of 40,000 mg/kg body weight (BW), and treatment with WC-BSOE at a dosage of 15 mg/kg BW effectively relieved DSS-induced UC symptoms in mice. Furthermore, WC-BSOE could improve the IL-4 and IgA contents in serum, as well as up-regulate the occludin and ZO-1 expressions and down-regulate MPO, MDA and ROS levels in colon tissues of colitis mice, and it also elevated the diversity and relative abundances of Firmicutes, Bacteroides, and Lactobacillus in the intestinal microbiota. These findings indicated that WC-BSOE exerted protective effects in UC through decreasing proinflammatory cytokines, increasing tight junction proteins, suppressing oxidative stress, and regulating intestinal microbiota. Collectively, this study suggested WC-BSOE might be developed as a promising dietary supplement for UC protection.
Collapse
Affiliation(s)
- Yan Ma
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Huiling Wang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Sijia Jiang
- Hubei Province enterprise technology center of Yun-Hong Group Co. Ltd, Wuxue 435400, PR China
| | - Yubao Li
- Hubei Province enterprise technology center of Yun-Hong Group Co. Ltd, Wuxue 435400, PR China
| | - Chengjie Ma
- State Key Laboratory of Dairy Biotechnology, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
5
|
Pan Q, Xie L, Cai P, Wu D, Zhu H, Xu L, Liu R, Luo K, He B, Pu Y. Acid-Resistant Nano-antioxidants Based on Epigallocatechin Gallate Alleviate Acute Intestinal and Kidney Inflammation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46090-46101. [PMID: 39174346 DOI: 10.1021/acsami.4c09901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Epigallocatechin gallate (EGCG)-based nanosystems have garnered significant attention for their ability to alleviate inflammation due to their excellent anti-inflammatory properties and enhanced drug delivery capabilities. However, the degradation of EGCG in strongly acidic environments poses a challenge for potential administration, particularly in oral formulations, where gastric resistance is essential. In this study, we develop a "disintegration and reorganization" strategy to create acid-resistant antioxidant nanoparticles (EGA NPs) based on EGCG and 5-aminosalicylic acid (5-ASA) for mitigating inflammation in colitis and acute kidney injury. At acidic pH, the ester bond in EGCG breaks down, producing two building blocks. These, together with 5-ASA and formaldehyde, form oligomers through a combination of phenol-aldehyde condensation and the Mannich reaction. The resulting oligomers self-assemble into EGA NPs, which exhibit significant stability under both acidic and neutral pH conditions. This stability makes them suitable for oral administration, allowing them to withstand harsh gastric conditions, as well as for intravenous injection. Importantly, these oligomers retain the antioxidant and anti-inflammatory properties of EGCG, effectively scavenging reactive oxygen species and reducing intracellular oxidative stress. Additionally, EGA shows potential as a drug carrier, efficiently loading the anti-inflammatory agent curcumin (Cur) to form Cur@EGA NPs. In vivo studies demonstrate the efficacy of Cur@EGA and EGA in alleviating acute colitis and kidney injury following oral and intravenous administration, respectively. These nanoparticulate formulations exhibit superior inflammation reduction compared to free Cur in vivo. Overall, our findings introduce a novel acid-resistant nanoplatform based on EGCG for the treatment of acute inflammation.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Pingyang Cai
- College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Long Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Kui Luo
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Li J, Xu J, Wang Y, Chen Y, Ding Y, Gao W, Tan Y, Ge N, Chen Y, Ge S, Yang Q, He B, Ye X. Fusible and Radiopaque Microspheres for Embolization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405224. [PMID: 39118578 DOI: 10.1002/adma.202405224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/22/2024] [Indexed: 08/10/2024]
Abstract
In this work, fusible microspheres loaded with radiopaque agents as an embolic agent for transcatheter arterial embolization (TAE) are developed. A poly(ethylene glycol) (PEG) and poly(ε-caprolactone) (PCL) multi-block copolymer basing polyurethane (PCEU) is synthesized and fabricated into blank microspheres (BMs). The microspheres are elastic in compression test. A clinical contrast agent lipiodol is encapsulated in the microspheres to receive fusible radiopaque microspheres (FRMs). The sizes of FRMs are uniform and range from 142.2 to 343.1 µm. The encapsulated lipiodol acts as the plasticizer to reduce the melting temperature point (Tm) of PECU microspheres, thus, leading to the fusion of microspheres to exhibit efficient embolization in vivo. The performance of FRMs is carried out on a rabbit ear embolization model. Serious ischemic necrosis is observed and the radiopacity of FRMs sustains much longer time than that of commercial contrast agent Loversol in vivo. The fusible and radiopaque microsphere is promising to be developed as an exciting embolic agent.
Collapse
Affiliation(s)
- Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Jingyi Xu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yunpeng Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yue Chen
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuanyuan Ding
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Wenxia Gao
- School of Pharmacy, Chengdu University, Chengdu, 610106, China
| | - Yexiong Tan
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Naijian Ge
- Intervention Center, Eastern Hepatobiliary Surgery Hospital, The Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Yibin Chen
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Shennian Ge
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Qi Yang
- National Center for Liver Cancer, Eastern Hepatobiliary Surgery Hospital, Navy Medical University, Shanghai, 201805, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Xueting Ye
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| |
Collapse
|
7
|
Zheng B, Wang L, Yi Y, Yin J, Liang A. Design strategies, advances and future perspectives of colon-targeted delivery systems for the treatment of inflammatory bowel disease. Asian J Pharm Sci 2024; 19:100943. [PMID: 39246510 PMCID: PMC11375318 DOI: 10.1016/j.ajps.2024.100943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 09/10/2024] Open
Abstract
Inflammatory bowel diseases (IBD) significantly contribute to high mortality globally and negatively affect patients' qualifications of life. The gastrointestinal tract has unique anatomical characteristics and physiological environment limitations. Moreover, certain natural or synthetic anti-inflammatory drugs are associated with poor targeting, low drug accumulation at the lesion site, and other side effects, hindering them from exerting their therapeutic effects. Colon-targeted drug delivery systems represent attractive alternatives as novel carriers for IBD treatment. This review mainly discusses the treatment status of IBD, obstacles to drug delivery, design strategies of colon-targeted delivery systems, and perspectives on the existing complementary therapies. Moreover, based on recent reports, we summarized the therapeutic mechanism of colon-targeted drug delivery. Finally, we addressed the challenges and future directions to facilitate the exploitation of advanced nanomedicine for IBD therapy.
Collapse
Affiliation(s)
- Baoxin Zheng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Wang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yan Yi
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jun Yin
- School of Traditional Chinese Material, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aihua Liang
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
8
|
Kim H, Jeong S, Kim SW, Kim HJ, Kim DY, Yook TH, Yang G. Indigo Naturalis in Inflammatory Bowel Disease: mechanisms of action and insights from clinical trials. J Pharmacopuncture 2024; 27:59-69. [PMID: 38948310 PMCID: PMC11194518 DOI: 10.3831/kpi.2024.27.2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 07/02/2024] Open
Abstract
This study investigates the therapeutic potential of Indigo Naturalis (IN) in treating a Inflammatory Bowel Disease (IBD). The objective is to comprehensively examine the effects and pharmacological mechanisms of IN on IBD, assessing its potential as an novel treatment for IBD. Analysis of 11 selected papers is conducted to understand the effects of IN, focusing on compounds like indirubin, isatin, indigo, and tryptanthrin. This study evaluates their impact on Disease Activity Index (DAI) score, colon length, mucosal damage, and macrophage infiltration in Dextran Sulfate Sodium (DSS)-induced colitis mice. Additionally, It investigate into the anti-inflammatory mechanisms, including Aryl hydrocarbon Receptor (AhR) pathway activation, Nuclear Factor kappa B (NF-κB)/nod-like receptor family pyrin domain containing 3 (NLRP3)/Interleukin 1 beta (IL-1β) inhibition, and modulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MYD88)/NF-κB and Mitogen Activated Protein Kinase (MAPK) pathways. Immunomodulatory effects on T helper 17 (Th17)/regulatory T cell (Treg cell) balance and Glycogen synthase kinase-3 beta (GSK3-β) expression are also explored. Furthermore, the study addresses the role of IN in restoring intestinal microbiota diversity, reducing pathogenic bacteria, and increasing beneficial bacteria. The findings reveal that IN, particularly indirubin and indigo, demonstrates significant improvements in DAI score, colon length, mucosal damage, and macrophage infiltration in DSS-induced colitis mice. The anti-inflammatory effects are attributed to the activation of the AhR pathway, inhibition of inflammatory pathways, and modulation of immune responses. These results exhibit the potential of IN in IBD treatment. Notably, the restoration of intestinal microbiota diversity and balance further supports its efficacy. IN emerges as a promising and effective treatment for IBD, demonstrating anti-inflammatory effects and positive outcomes in preclinical studies. However, potential side effects necessitate further investigation for safe therapeutic development. The study underscores the need for future research to explore a broader range of active ingredients in IN to enhance therapeutic efficacy and safety.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Soohyun Jeong
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Sung Wook Kim
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Hyung-Jin Kim
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Dae Yong Kim
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Tae Han Yook
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| | - Gabsik Yang
- Department of Korean Medicine, College of Korea Medicine, Woosuk University, Jeonju, Republic of Korea
| |
Collapse
|
9
|
Daneshmehr M, Pazhang M, Mollaei S, Ebadi M, Pazhang Y. Targeted delivery of 5-fluorouracil and shikonin by blended and coated chitosan/pectin nanoparticles for treatment of colon cancer. Int J Biol Macromol 2024; 270:132413. [PMID: 38761911 DOI: 10.1016/j.ijbiomac.2024.132413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Herein, 5-fluorouracil and shikonin (extracted from Fusarium tricinctum) were loaded in chitosan/pectin nanoparticle (CS/PEC-NPs), prepared by blending (B-CS/PEC-NPs) and coating (C-CS/PEC-NPs) methods. The nanoparticles characterized by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD), Energy-dispersive X-ray (EDX), Scanning Electron Microscope (SEM) and Differential Light Scattering (DLS). Then, some properties of the nanoparticles such as drug release rate and the nanoparticles cytotoxicity were studied. The FTIR, XRD, EDX, SEM and DLS results showed that the nanoparticles synthesized properly with an almost spherical morphology, an average size of 82-93 nm for B-CS/PEC-NPs, an average diameter of below 100 nm (mostly 66-89 nm) for C-CS/PEC-NPs, and hydrodynamic diameter of 310-817 nm. The drug release results indicated the lower release rate of drugs for B-CS/PEC-NPs relative to C-CS/PEC-NPs at different pHs, high release rate of drugs for the nanoparticles in the simulated large intestinal fluids containing pectinase, and Korsmeyer-Peppas model for release of the drugs. The results showed more cytotoxicity of B-CS/PEC-NPs containing drugs, especially B-CS/PEC-NPs containing both drugs (B-CS/PEC/5-FU/SHK-NPs) after treating with pectinase (IC50 of 18.6 μg/mL). In conclusion, despite the limitation of C-CS/PEC-NPs for simultaneous loading of hydrophilic and hydrophobic drugs, B-CS/PEC-NPs showed suitable potency for loading and targeted delivery of the drugs.
Collapse
Affiliation(s)
- Maryam Daneshmehr
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mohammad Pazhang
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran.
| | - Saeed Mollaei
- Department of Chemistry, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Mostafa Ebadi
- Department of Biology, Faculty of Sciences, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Yaghub Pazhang
- Department of Biology, Faculty of Sciences, Urmia University, Urmia, Iran
| |
Collapse
|
10
|
Ali I, Ali A, Guo L, Burki S, Rehman JU, Fazal M, Ahmad N, Khan S, Toloza CAT, Shah MR. Synthesis of calix (4) resorcinarene based amphiphilic macrocycle as an efficient nanocarrier for Amphotericin-B to enhance its oral bioavailability. Colloids Surf B Biointerfaces 2024; 238:113918. [PMID: 38669750 DOI: 10.1016/j.colsurfb.2024.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
The supramolecular-based macrocyclic amphiphiles have fascinating attention and find extensive utilization in the pharmaceutical industry for efficient drug delivery. In this study, we designed and synthesized a new supramolecular amphiphilic macrocycle to serve as an efficient nanocarrier, achieved by treating 4-hydroxybenzaldehyde with 1-bromotetradecane. The derivatized product was subsequently treated with resorcinol to cyclize, resulting in the formation of a calix(4)-resorcinarene-based supramolecular amphiphilic macrocycle. The synthesized macrocycle and intermediate products were characterized using mass spectrometry, IR, and 1H NMR spectroscopic techniques. The amphotericin-B (Amph-B)-loaded and unloaded amphiphiles were screened for biocompatibility studies, vesicle formation, particle shape, size, surface charge, drug entrapment, in-vitro release profile, and stability through atomic force microscopy (AFM), Zetasizer, HPLC, and FT-IR. Amph-B -loaded macrocycle-based niosomal vesicles were investigated for in-vivo bioavailability in rabbits. The synthesized macrocycle exhibited no cytotoxicity against normal mouse fibroblast cells and was found to be hemocompatible and safe in mice following an acute toxicity study. The drug-loaded macrocycle-based vesicles appeared spherical, nano-sized, and homogeneous in size, with a notable negative surface charge. The vesicles remained stable after 30 days of storage. The results of Amph-B oral bioavailability and pharmacokinetics revealed that the newly tailored niosomal formulation enhanced drug solubility, protected drug degradation at gastric pH, facilitated sustained drug release at the specific target site, and delayed plasma drug clearance. Incorporating such advanced niosomal formulations in the field of drug delivery systems has the potential to revolutionize therapeutic outcomes and improve the quality of patient well-being.
Collapse
Affiliation(s)
- Imdad Ali
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Amjad Ali
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China; Institute of Chemistry University of Silesia Szkolna 9, Katowice 40-600, Poland.
| | - Li Guo
- School of Materials Science & Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Samiullah Burki
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi
| | - Jawad Ur Rehman
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Mahmood Fazal
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh-11451, Kingdom of Saudi Arabia
| | - Sarzamin Khan
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Anbar-23561, Pakistan
| | - Carlos A T Toloza
- Department of Natural and Exact Science, Universidad de la Costa, Barranquilla, Colombia
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Centre for Chemical and Biological Sciences, University of Karachi, Karachi 74200, Pakistan.
| |
Collapse
|
11
|
Huang D, Wang Y, Xu C, Zou M, Ming Y, Luo F, Xu Z, Miao Y, Wang N, Lin Z, Weng Z. Colon-targeted hydroxyethyl starch-curcumin microspheres with high loading capacity ameliorate ulcerative colitis via alleviating oxidative stress, regulating inflammation, and modulating gut microbiota. Int J Biol Macromol 2024; 266:131107. [PMID: 38527677 DOI: 10.1016/j.ijbiomac.2024.131107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024]
Abstract
Curcumin (CUR) is a natural polyphenol that holds promise for treating ulcerative colitis (UC), yet oral administration of CUR exhibits limited bioavailability and existing formulations for oral delivery of CUR often suffer from unsatisfactory loading capacity. This study presents hydroxyethyl starch-curcumin microspheres (HC-MSs) with excellent CUR loading capacity (54.52 %), and the HC-MSs can further encapsulate anti-inflammatory drugs dexamethasone (DEX) to obtain a combination formulation (DHC-MSs) with high DEX loading capacity (19.91 %), for combination therapy of UC. The microspheres were successfully engineered, retaining the anti-oxidative and anti-inflammatory activities of parental CUR and demonstrating excellent biocompatibility and controlled release properties, notably triggered by α-amylase, facilitating targeted drug delivery to inflamed sites. In a mouse UC model induced by dextran sulfate sodium, the microspheres effectively accumulated in inflamed colons and both HC-MSs and DHC-MSs exhibited superior therapeutic efficacy in alleviating UC symptoms compared to free DEX. Moreover, mechanistic exploration uncovered the multifaceted therapeutic mechanisms of these formulations, encompassing anti-inflammatory actions, mitigation of spleen enlargement, and modulation of gut microbiota composition. These findings underscore the potential of HC-MSs and DHC-MSs as promising formulations for UC, with implications for advancing treatment modalities for various inflammatory bowel disorders.
Collapse
Affiliation(s)
- Da Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yongming Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Chenlan Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Minglang Zou
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yangcan Ming
- Department of Pediatrics, Wuhan NO.1 Hospital, Wuhan, Hubei 430022, China
| | - Fang Luo
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhenjin Xu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ying Miao
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Na Wang
- Department of Pediatrics, Wuhan NO.1 Hospital, Wuhan, Hubei 430022, China.
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China; Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
12
|
Ganie SA, Rather LJ, Assiri MA, Li Q. Recent innovations (2020-2023) in the approaches for the chemical functionalization of curdlan and pullulan: A mini-review. Int J Biol Macromol 2024; 260:129412. [PMID: 38262826 DOI: 10.1016/j.ijbiomac.2024.129412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Chemical modification represents a highly efficacious approach for enhancing the physicochemical characteristics and biological functionalities of natural polysaccharides. However, not all polysaccharides have considerable pharmacologic activity; so, appropriate chemical modification strategies can be selected in accordance with the distinct structural properties of polysaccharides to aid in improving and encouraging the presentation of their biological activities. Hence, there has been a growing interest in the chemical alteration of polysaccharides due to their various properties such as antioxidant, anticoagulant, antiviral, anticancer, biomedical, antibacterial, and immunomodulatory effects. This paper offers a comprehensive examination of recent scientific advancements produced over the past four years in the realm of unique chemical and functional modifications in curdlan and pullulan structures. This review aims to provide readers with an overview of the structural activity correlations observed in the backbone structures of curdlan and pullulan, as well as the diverse chemical modification processes employed for these polysaccharides. Additionally, the review aims to examine the effects of combining various bioactive molecules with chemically modified curdlan and pullulan and explore their potential applications in various important fields.
Collapse
Affiliation(s)
- Showkat Ali Ganie
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Luqman Jameel Rather
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Qing Li
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
13
|
Liu Y, Huang J, Li S, Li Z, Chen C, Qu G, Chen K, Teng Y, Ma R, Wu X, Ren J. Advancements in hydrogel-based drug delivery systems for the treatment of inflammatory bowel disease: a review. Biomater Sci 2024; 12:837-862. [PMID: 38196386 DOI: 10.1039/d3bm01645e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic disorder that affects millions of individuals worldwide. However, current drug therapies for IBD are plagued by significant side effects, low efficacy, and poor patient compliance. Consequently, there is an urgent need for novel therapeutic approaches to alleviate IBD. Hydrogels, three-dimensional networks of hydrophilic polymers with the ability to swell and retain water, have emerged as promising materials for drug delivery in the treatment of IBD due to their biocompatibility, tunability, and responsiveness to various stimuli. In this review, we summarize recent advancements in hydrogel-based drug delivery systems for the treatment of IBD. We first identify three pathophysiological alterations that need to be addressed in the current treatment of IBD: damage to the intestinal mucosal barrier, dysbiosis of intestinal flora, and activation of inflammatory signaling pathways leading to disequilibrium within the intestines. Subsequently, we discuss in depth the processes required to prepare hydrogel drug delivery systems, from the selection of hydrogel materials, types of drugs to be loaded, methods of drug loading and drug release mechanisms to key points in the preparation of hydrogel drug delivery systems. Additionally, we highlight the progress and impact of the hydrogel-based drug delivery system in IBD treatment through regulation of physical barrier immune responses, promotion of mucosal repair, and improvement of gut microbiota. In conclusion, we analyze the challenges of hydrogel-based drug delivery systems in clinical applications for IBD treatment, and propose potential solutions from our perspective.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Jinjian Huang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Ze Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Canwen Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Guiwen Qu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Kang Chen
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Yitian Teng
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Rui Ma
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Xiuwen Wu
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| | - Jianan Ren
- School of Medicine, Southeast University, Nanjing, 210009, China
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, China.
| |
Collapse
|
14
|
Mairal A, Mehrotra S, Kumar A, Maiwal R, Marsal J, Kumar A. Hyaluronic Acid-Conjugated Thermoresponsive Polymer-Based Bioformulation Enhanced Wound Healing and Gut Barrier Repair of a TNBS-Induced Colitis Injury Ex Vivo Model in a Dynamic Perfusion Device. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5382-5400. [PMID: 38266010 DOI: 10.1021/acsami.3c14113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Impairment of intestinal epithelium is a typical feature of inflammatory bowel disease (IBD) that causes leakage of bacteria and antigens from the intestinal lumen and thus results in persistent immune activation. Hence, healing and regeneration of the damaged gut mucosa is a promising therapeutic approach to achieve deep remission in IBD. Currently, available systemic therapies have moderate effects and are often associated with numerous side effects and malignancies. In this study, we aimed to develop a topical therapy by chemically conjugating a temperature-responsive polymer, i.e., poly(N-isopropylacrylamide), along with hyaluronic acid to obtain a sprayable therapeutic formulation that upon colon instillation adheres to the damaged gut mucosa due to its temperature-induced phase transition and mucoadhesive properties. An ex vivo adhesion experiment demonstrates that this therapeutic formulation forms a thin physical coating on the mucosal lining at a physiological temperature within 5 min. Physicochemical characterization of (P(NIPAM-co-NTBAM)-HA) established this formulation to be biocompatible, hemo-compatible, and non-immunogenic. Prednisolone was encapsulated within the polymer formulation to achieve maximum therapeutic efficacy in the case of IBD-like conditions as assessed in a custom-fabricated perfusion-based ex vivo model system. Histological analysis suggests that the prednisolone-encapsulated polymer formulation nearly restored the mucosal architecture after 2,4,6-trinitrobenzenesulfonic acid-induced damage. Furthermore, a significant (p ≤ 0.001) increase in mRNA levels of Muc-2 and ZO-1 in treated groups further confirmed the mucosal epithelial barrier restoration.
Collapse
Affiliation(s)
- Ayushi Mairal
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Shreya Mehrotra
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| | - Anupam Kumar
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Rakhi Maiwal
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi 110070, Delhi, India
| | - Jan Marsal
- Department of Clinical Sciences, Lund University and Skåne University Hospital, SE-22185 Lund, Sweden
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering; Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
- Centre of Excellence for Orthopedics and Prosthetics, Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur 208016, UP, India
| |
Collapse
|
15
|
Fan X, Zhang Z, Gao W, Pan Q, Luo K, He B, Pu Y. An Engineered Butyrate-Derived Polymer Nanoplatform as a Mucosa-Healing Enhancer Potentiates the Therapeutic Effect of Magnolol in Inflammatory Bowel Disease. ACS NANO 2024; 18:229-244. [PMID: 38112525 DOI: 10.1021/acsnano.3c05732] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Colonic epithelial damage and dysregulated immune response are crucial factors in the progression and exacerbation of inflammatory bowel disease (IBD). Nanoenabled targeted drug delivery to the inflamed intestinal mucosa has shown promise in inducing and maintaining colitis remission, while minimizing side effects. Inspired by the excellent antioxidative and anti-inflammatory efficacy of naturally derived magnolol (Mag) and gut homeostasis regulation of microbiota-derived butyrate, we developed a pH/redox dual-responsive butyrate-rich polymer nanoparticle (PSBA) as an oral Mag delivery system for combinational therapy of IBD. PSBA showed a high butyrate content of 22% and effectively encapsulated Mag. The Mag-loaded nanoparticles (PSBA@Mag) demonstrated colonic pH and reduction-responsive drug release, ensuring efficient retention and adhesion in the colon of colitis mice. PSBA@Mag not only normalized the level of reactive oxygen species and inflammatory effectors in inflamed colonic mucosa but also restored the epithelial barrier function in both ulcerative colitis and Crohn's disease mouse models. Importantly, PSBA promoted the migration and healing ability of intestinal epithelial cells in vitro and in vivo, sensitizing the therapeutic efficacy of Mag in animal models. Moreover, transcriptomics and metabolism analyses revealed that PSBA@Mag mitigated inflammation by suppressing the production of pro-inflammatory cytokines and chemokines and restoring the lipid metabolism. Additionally, this nanomedicine modulated the gut microbiota by inhibiting pathogenic Proteus and Escherichia-Shigella and promoting the proliferation of beneficial probiotics, including Lachnoclostridium, Lachnospiraceae_NK4A136_group and norank_f_Ruminococcaceae. Overall, our findings highlight the potential of butyrate-functionalized polymethacrylates as versatile and effective nanoplatforms for colonic drug delivery and mucosa repair in combating IBD and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
16
|
Li D, Li J, Chen T, Qin X, Pan L, Lin X, Liang W, Wang Q. Injectable Bioadhesive Hydrogels Scavenging ROS and Restoring Mucosal Barrier for Enhanced Ulcerative Colitis Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38273-38284. [PMID: 37530040 DOI: 10.1021/acsami.3c06693] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Despite the progress in the therapy of ulcerative colitis (UC), long-lasting UC remission can hardly be achieved in the majority of UC patients. The key pathological characteristics of UC include an impaired mucosal barrier and local inflammatory infiltration. Thus, a two-pronged approach aiming at repairing damaged mucosal barrier and scavenging inflammatory mediators simultaneously might hold great potential for long-term remission of UC. A rectal formulation can directly offer preferential and effective drug delivery to inflamed colon. However, regular intestinal peristalsis and frequent diarrhea in UC might cause transient drug retention. Therefore, a bioadhesive hydrogel with strong interaction with intestinal mucosa might be preferable for rectal administration to prolong drug retention. Here, we designed a bioadhesive hydrogel formed by the cross-linking of sulfhydryl chondroitin sulfate and polydopamine (CS-PDA). The presence of PDA would ensure the mucosa-adhesive behavior, and the addition of CS in the hydrogel network was expected to achieve the restoration of the intestinal epithelial barrier. To scavenge the key player (excessive reactive oxygen species, ROS) in inflamed colon, sodium ferulic (SF), a potent ROS inhibitor, was incorporated into the CS-PDA hydrogel. After rectal administration, the SF-loaded CS-PDA hydrogel could adhere to the colonic mucosa to allow prolonged drug retention. Subsequently, sustained SF release could be achieved to persistently scavenge ROS in inflammatory areas. Meanwhile, the presence of CS would promote the restoration of the mucosal barrier. Ultimately, scavenging ROS and restoring the mucosal barrier could be simultaneously achieved via this SF-loaded bioadhesive hydrogel scaffold. Our two-pronged approach might provide new insight for effective UC treatment.
Collapse
Affiliation(s)
- Daming Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jiao Li
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Chen
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xianyan Qin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lihua Pan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Xin Lin
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Wenlang Liang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| | - Qin Wang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|