1
|
Xiang JY, Kang L, Li ZM, Tseng SL, Wang LQ, Li TH, Li ZJ, Huang JZ, Yu NZ, Long X. Biological scaffold as potential platforms for stem cells: Current development and applications in wound healing. World J Stem Cells 2024; 16:334-352. [PMID: 38690516 PMCID: PMC11056631 DOI: 10.4252/wjsc.v16.i4.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024] Open
Abstract
Wound repair is a complex challenge for both clinical practitioners and researchers. Conventional approaches for wound repair have several limitations. Stem cell-based therapy has emerged as a novel strategy to address this issue, exhibiting significant potential for enhancing wound healing rates, improving wound quality, and promoting skin regeneration. However, the use of stem cells in skin regeneration presents several challenges. Recently, stem cells and biomaterials have been identified as crucial components of the wound-healing process. Combination therapy involving the development of biocompatible scaffolds, accompanying cells, multiple biological factors, and structures resembling the natural extracellular matrix (ECM) has gained considerable attention. Biological scaffolds encompass a range of biomaterials that serve as platforms for seeding stem cells, providing them with an environment conducive to growth, similar to that of the ECM. These scaffolds facilitate the delivery and application of stem cells for tissue regeneration and wound healing. This article provides a comprehensive review of the current developments and applications of biological scaffolds for stem cells in wound healing, emphasizing their capacity to facilitate stem cell adhesion, proliferation, differentiation, and paracrine functions. Additionally, we identify the pivotal characteristics of the scaffolds that contribute to enhanced cellular activity.
Collapse
Affiliation(s)
- Jie-Yu Xiang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lin Kang
- Biomedical Engineering Facility, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Zi-Ming Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Song-Lu Tseng
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Li-Quan Wang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Tian-Hao Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Zhu-Jun Li
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jiu-Zuo Huang
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Nan-Ze Yu
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiao Long
- Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| |
Collapse
|
2
|
Dégardin M, Liberelle B, Oliverio R, Baniahmad SF, Darviot C, Largillière I, Henry O, Durocher Y, Banquy X, Meunier M, De Crescenzo G. Coiled-Coil-Based Biofunctionalization of 100 nm Gold Nanoparticles with the Trastuzumab Antibody for the Detection of HER2-Positive Cancer Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12235-12247. [PMID: 37581531 DOI: 10.1021/acs.langmuir.3c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
We compared different biofunctionalization strategies for immobilizing trastuzumab, an IgG targeting the HER2 biomarker, onto 100 nm spherical gold nanoparticles because of the E/K coiled-coil peptide heterodimer. First, Kcoil peptides were grafted onto the gold surface while their Ecoil partners were genetically encoded at the C-terminus of trastuzumab's Fc region, allowing for a strong and specific interaction between the antibodies and the nanoparticles. Gold nanoparticles with no Kcoil peptides on their surface were also produced to immobilize Ecoil-tagged trastuzumab antibodies via the specific adsorption of their negatively charged Ecoil tags on the positively charged gold surface. Finally, the nonspecific adsorption of wild-type trastuzumab on the gold surface was also assessed, with and without Kcoil peptides grafted on it beforehand. We developed a thorough workflow to systematically compare the immobilization strategies regarding the stability of nanoparticles, antibody coverage, and ability to specifically bind to HER2-positive breast cancer cells. All nanoparticles were highly monodisperse and retained their localized surface plasmon resonance properties after biofunctionalization. A significant increase in the amount of immobilized antibodies was observed with the two oriented coil-based strategies compared to nonspecific adsorption. Finally, all biofunctionalization strategies allowed for the detection of HER2-positive breast cancer cells, but among the investigated approaches, we recommend using the E/K coiled-coil-based strategy for gold nanoparticle biofunctionalization because it allows for the qualitative and quantitative detection of HER2-positive cells with a higher contrast compared to HER2-negative cells.
Collapse
Affiliation(s)
- Médéric Dégardin
- Department of Chemical Engineering, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
- Laser Processing and Plasmonics Laboratory (LP2L), Department of Engineering Physics, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Seyed Farzad Baniahmad
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building Montréal-Royalmount, H4P 2R2 Montréal, Québec, Canada
| | - Cécile Darviot
- Laser Processing and Plasmonics Laboratory (LP2L), Department of Engineering Physics, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Isabelle Largillière
- Laser Processing and Plasmonics Laboratory (LP2L), Department of Engineering Physics, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Olivier Henry
- Department of Chemical Engineering, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Yves Durocher
- Human Health Therapeutics Research Centre, National Research Council of Canada, Building Montréal-Royalmount, H4P 2R2 Montréal, Québec, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Axe Formulation et Analyse du Médicament (AFAM), Université de Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Michel Meunier
- Laser Processing and Plasmonics Laboratory (LP2L), Department of Engineering Physics, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, H3T 1J4 Montréal, Québec, Canada
| |
Collapse
|
3
|
Dégardin M, Gaudreault J, Oliverio R, Serafin B, Forest-Nault C, Liberelle B, De Crescenzo G. Grafting Strategies of Oxidation-Prone Coiled-Coil Peptides for Protein Capture in Bioassays: Impact of Orientation and the Oxidation State. ACS OMEGA 2023; 8:28301-28313. [PMID: 37576632 PMCID: PMC10413464 DOI: 10.1021/acsomega.3c02172] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
Many biomedical and biosensing applications require functionalization of surfaces with proteins. To this end, the E/K coiled-coil peptide heterodimeric system has been shown to be advantageous. First, Kcoil peptides are covalently grafted onto a given surface. Ecoil-tagged proteins can then be non-covalently captured via a specific interaction with their Kcoil partners. Previously, oriented Kcoil grafting was achieved via thiol coupling, using a unique Kcoil with a terminal cysteine residue. However, cysteine-terminated Kcoil peptides are hard to produce, purify, and oxidize during storage. Indeed, they tend to homodimerize and form disulfide bonds via oxidation of their terminal thiol group, making it impossible to later graft them on thiol-reactive surfaces. Kcoil peptides also contain multiple free amine groups, available for covalent coupling through carbodiimide chemistry. Grafting Kcoil peptides on surfaces via amine coupling would thus guarantee their immobilization regardless of their terminal cysteine's oxidation state, at the expense of the control over their orientation. In this work, we compare Kcoil grafting strategies for the subsequent capture of Ecoil-tagged proteins, for applications such as surface plasmon resonance (SPR) biosensing and cell culture onto protein-decorated substrates. We compare the "classic" thiol coupling of cysteine-terminated Kcoil peptides to the amine coupling of (i) monomeric Kcoil and (ii) dimeric Kcoil-Kcoil linked by a disulfide bond. We have observed that SPR biosensing performances relying on captured Ecoil-tagged proteins were similar for amine-coupled dimeric Kcoil-Kcoil and thiol-coupled Kcoil peptides, at the expense of higher Ecoil-tagged protein consumption. For cell culture applications, Ecoil-tagged growth factors captured on amine-coupled monomeric Kcoil signaled through cell receptors similarly to those captured on thiol-coupled Kcoil peptides. Altogether, while oriented thiol coupling of cysteine-terminated Kcoil peptides remains the most reliable and versatile platform for Ecoil-tagged protein capture, amine coupling of Kcoil peptides, either monomeric or dimerized through a cysteine bond, can offer a good alternative when the challenges and costs associated with the production of monomeric cysteine-tagged Kcoil are too dissuasive for the application.
Collapse
Affiliation(s)
- Médéric Dégardin
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Jimmy Gaudreault
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Romane Oliverio
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benjamin Serafin
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Catherine Forest-Nault
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montréal H3T 1J4, Québec, Canada
| |
Collapse
|
4
|
Wang J, Chen X, Yang X, Guo B, Li D, Zhu X, Zhang X. Positive role of calcium phosphate ceramics regulated inflammation in the osteogenic differentiation of mesenchymal stem cells. J Biomed Mater Res A 2020; 108:1305-1320. [PMID: 32064734 DOI: 10.1002/jbm.a.36903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/05/2023]
Abstract
Recently, researches have confirmed the crucial role of inflammatory response in Ca-P ceramic-induced osteogenesis, however, the underlying mechanism has not yet been fully understood. In this study, BCP and β-TCP ceramics were used as material models to investigate the effect of physicochemical properties on inflammatory response in vitro. The results showed that BCP and β-TCP could support macrophages attachment, proliferation, and spreading favorably, as well as promote gene expressions of inflammatory related cytokines (IL-1, IL-6, MCP-1, and TNF-α) and growth factors (TGF-β, FGF, PDGF, VEGF, IGF, and EGF). BCP showed a facilitating function on the gene expressions earlier than β-TCP. Further coculture experiments performed in vitro demonstrated that the CMs containing various increased cytokines for macrophages pre-culture could significantly promote MSCs osteogenic differentiation, which was confirmed by the gene expressions of osteogenic specific markers and the intracellular OCN product accumulation under the stimulation of BCP and β-TCP ceramics. Further evidence was found from the formation of mineralized nodules in BCM and TCM. In addition, this study showed a concise relationship between Ca-P ceramic induced inflammation and its osteoinductivity that the increased cytokines and growth factors from macrophages could promote MSCs osteogenic differentiation.
Collapse
Affiliation(s)
- Jing Wang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xuening Chen
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xiao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Bo Guo
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, China
| | - Danyang Li
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Affiliation(s)
- Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Ren X, Akimoto J, Miyatake H, Tada S, Zhu L, Mao H, Isoshima T, Müller S, Kim SM, Zhou Y, Ito Y. Cell migration and growth induced by photo-immobilised vascular endothelial growth factor (VEGF) isoforms. J Mater Chem B 2019. [DOI: 10.1039/c9tb00407f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
VEGF isoforms immobilised by photo-reactive gelatin (AzPhe-gelatin) enhance cell migration and proliferation.
Collapse
|
7
|
Fernandes-Cunha GM, Lee HJ, Kumar A, Kreymerman A, Heilshorn S, Myung D. Immobilization of Growth Factors to Collagen Surfaces Using Pulsed Visible Light. Biomacromolecules 2017; 18:3185-3196. [PMID: 28799757 DOI: 10.1021/acs.biomac.7b00838] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In the treatment of traumatic injuries, burns, and ulcers of the eye, inadequate epithelial tissue healing remains a major challenge. Wound healing is a complex process involving the temporal and spatial interplay between cells and their extracellular milieu. It can be impaired by a variety of causes including infection, poor circulation, loss of critical cells, and/or proteins, and a deficiency in normal neural signaling (e.g., neurotrophic ulcers). Ocular anatomy is particularly vulnerable to lasting morbidity from delayed healing, whether it be scarring or perforation of the cornea, destruction of the conjunctival mucous membrane, or cicatricial changes to the eyelids and surrounding skin. Therefore, there is a major clinical need for new modalities for controlling and accelerating wound healing, particularly in the eye. Collagen matrices have long been explored as scaffolds to support cell growth as both two-dimensional coatings and substrates, as well as three-dimensional matrices. Meanwhile, the immobilization of growth factors to various substrates has also been extensively studied as a way to promote enhanced cellular adhesion and proliferation. Herein we present a new strategy for photochemically immobilizing growth factors to collagen using riboflavin as a photosensitizer and exposure to visible light (∼458 nm). Epidermal growth factor (EGF) was successfully bound to collagen-coated surfaces as well as directly to endogenous collagen from porcine corneas. The initial concentration of riboflavin and EGF as well as the blue light exposure time were keys to the successful binding of growth factors to these surfaces. The photocrosslinking reaction increased EGF residence time on collagen surfaces over 7 days. EGF activity was maintained after the photocrosslinking reaction with a short duration of pulsed blue light exposure. Bound EGF accelerated in vitro corneal epithelial cell proliferation and migration and maintained normal cell phenotype. Additionally, the treated surfaces were cytocompatible, and the photocrosslinking reaction was proven to be safe, preserving nearly 100% cell viability. These results suggest that this general approach is safe and versatile may be used for targeting and immobilizing bioactive factors onto collagen matrices in a variety of applications, including in the presence of live, seeded cells or in vivo onto endogenous extracellular matrix collagen.
Collapse
Affiliation(s)
| | - Hyun Jong Lee
- Byers Eye Institute at Stanford University School of Medicine , Palo Alto, California 94303, United States
| | - Alisha Kumar
- Byers Eye Institute at Stanford University School of Medicine , Palo Alto, California 94303, United States
| | - Alexander Kreymerman
- Byers Eye Institute at Stanford University School of Medicine , Palo Alto, California 94303, United States
| | - Sarah Heilshorn
- Department of Materials Science and Engineering, Stanford University , Stanford, California 94305, United States
| | - David Myung
- Byers Eye Institute at Stanford University School of Medicine , Palo Alto, California 94303, United States.,VA Palo Alto Health Care System , Palo Alto, CA 94304, United States
| |
Collapse
|
8
|
Murschel F, Fortier C, Jolicoeur M, Hodges RS, De Crescenzo G. Two Complementary Approaches for the Controlled Release of Biomolecules Immobilized via Coiled-Coil Interactions: Peptide Core Mutations and Multivalent Presentation. Biomacromolecules 2017; 18:965-975. [DOI: 10.1021/acs.biomac.6b01830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Frederic Murschel
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succursale Centre-Ville, Montréal, Quebec H3C 3A7, Canada
| | - Charles Fortier
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succursale Centre-Ville, Montréal, Quebec H3C 3A7, Canada
| | - Mario Jolicoeur
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succursale Centre-Ville, Montréal, Quebec H3C 3A7, Canada
| | - Robert S. Hodges
- Department
of Biochemistry and Molecular Genetics, University of Colorado, School of Medicine, Anschutz Medical Campus, Aurora, Colorado 80045, United States
| | - Gregory De Crescenzo
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), Bio-P2 Research Unit, École Polytechnique de Montréal, P.O. Box 6079, succursale Centre-Ville, Montréal, Quebec H3C 3A7, Canada
| |
Collapse
|
9
|
Schulz C, Hecht J, Krüger-Genge A, Kratz K, Jung F, Lendlein A. Generating Aptamers Interacting with Polymeric Surfaces for Biofunctionalization. Macromol Biosci 2016; 16:1776-1791. [PMID: 27689917 DOI: 10.1002/mabi.201600319] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/26/2016] [Indexed: 12/23/2022]
Abstract
Common strategies for biofunctionalization of surfaces comprise the immobilization of bioactive molecules used as cell-binding ligands for cell recruitment. Besides covalent binding, multivalent noncovalent physical forces between substrate and ligand are an alternative way to equip surfaces with biomacromolecules. In this study, polymer binding ligands are screened by means of a DNA-based in vitro selection process. As candidate biomaterials poly(ether imide) (PEI), polystyrene, and poly[ethylene-co-(vinyl acetate)] are selected, due to their different chemical structure, but similar macroscopic interface properties, allowing physical interaction with nucleotide bases by varying valences. Multivalent interacting aptamers are successfully enriched by SELEX method and an area-wide surface functionalization is achieved, which can be used for further binding of bioactive molecules. In vitro selection against the polymers result in thymine-dominated aptamer binding motifs. The preferential interaction with thymine is attributed to its chemical structure, connected with a decreased electrostatic repulsion of the π-system and the hydrophobic character maximizing entropy. The aptamer binding stability correlates with available valences for interaction, resulting in a more stable functionalization of PEI.
Collapse
Affiliation(s)
- Christian Schulz
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany
| | - Jochen Hecht
- Charité - Universitätsmedizin Berlin, Berlin-Brandenburger Centre for Regenerative Therapies, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Anne Krüger-Genge
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany
| | - Karl Kratz
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany.,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstraße 55, 14513, Teltow, Germany
| | - Friedrich Jung
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany.,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstraße 55, 14513, Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburger Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Kantstraße 55, 14513, Teltow, Germany.,Helmholtz Virtual Institute, Multifunctional Biomaterials for Medicine, Kantstraße 55, 14513, Teltow, Germany
| |
Collapse
|
10
|
Noel S, Fortier C, Murschel F, Belzil A, Gaudet G, Jolicoeur M, De Crescenzo G. Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications. Acta Biomater 2016; 37:69-82. [PMID: 27039978 DOI: 10.1016/j.actbio.2016.03.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 02/11/2016] [Accepted: 03/30/2016] [Indexed: 11/25/2022]
Abstract
UNLABELLED Multifunctional constructs providing a proper environment for adhesion and growth of selected cell types are needed for most tissue engineering and regenerative medicine applications. In this context, vinylsulfone (VS)-modified dextran was proposed as a matrix featuring low-fouling properties as well as multiple versatile moieties. The displayed VS groups could indeed react with thiol, amine or hydroxyl groups, be it for surface grafting, crosslinking or subsequent tethering of biomolecules. In the present study, a library of dextran-VS was produced, grafted to aminated substrates and characterized in terms of degree of VS modification (%VS), cell-repelling properties and potential for the oriented grafting of cysteine-tagged peptides. As a bioactive coating of vascular implants, ECM peptides (e.g. RGD) as well as vascular endothelial growth factor (VEGF) were co-immobilized on one of the most suitable dextran-VS coating (%VS=ca. 50% of saccharides units). Both RGD and VEGF were efficiently tethered at high densities (ca. 1nmol/cm(2) and 50fmol/cm(2), respectively), and were able to promote endothelial cell adhesion as well as proliferation. The latter was enhanced to the same extent as with soluble VEGF and proved selective to endothelial cells over smooth muscle cells. Altogether, multiple biomolecules could be efficiently incorporated into a dextran-VS construct, while maintaining their respective biological activity. STATEMENT OF SIGNIFICANCE This work addresses the need for multifunctional coatings and selective cell response inherent to many tissue engineering and regenerative medicine applications, for instance, vascular graft. More specifically, a library of dextrans was first generated through vinylsulfone (VS) modification. Thoroughly selected dextran-VS provided an ideal platform for unbiased study of cell response to covalently grafted biomolecules. Considering that processes such as healing and angiogenesis require multiple factors acting synergistically, vascular endothelial growth factor (VEGF) was then co-immobilized with the cell adhesive RGD peptide within our dextran coating through a relevant strategy featuring orientation and specificity. Altogether, both adhesive and proliferative cues could be incorporated into our construct with additive, if not synergetic, effects.
Collapse
|