1
|
Bharmoria P, Tietze AA, Mondal D, Kang TS, Kumar A, Freire MG. Do Ionic Liquids Exhibit the Required Characteristics to Dissolve, Extract, Stabilize, and Purify Proteins? Past-Present-Future Assessment. Chem Rev 2024; 124:3037-3084. [PMID: 38437627 PMCID: PMC10979405 DOI: 10.1021/acs.chemrev.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Proteins are highly labile molecules, thus requiring the presence of appropriate solvents and excipients in their liquid milieu to keep their stability and biological activity. In this field, ionic liquids (ILs) have gained momentum in the past years, with a relevant number of works reporting their successful use to dissolve, stabilize, extract, and purify proteins. Different approaches in protein-IL systems have been reported, namely, proteins dissolved in (i) neat ILs, (ii) ILs as co-solvents, (iii) ILs as adjuvants, (iv) ILs as surfactants, (v) ILs as phase-forming components of aqueous biphasic systems, and (vi) IL-polymer-protein/peptide conjugates. Herein, we critically analyze the works published to date and provide a comprehensive understanding of the IL-protein interactions affecting the stability, conformational alteration, unfolding, misfolding, and refolding of proteins while providing directions for future studies in view of imminent applications. Overall, it has been found that the stability or purification of proteins by ILs is bispecific and depends on the structure of both the IL and the protein. The most promising IL-protein systems are identified, which is valuable when foreseeing market applications of ILs, e.g., in "protein packaging" and "detergent applications". Future directions and other possibilities of IL-protein systems in light-harvesting and biotechnology/biomedical applications are discussed.
Collapse
Affiliation(s)
- Pankaj Bharmoria
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Department
of Smart Molecular, Inorganic and Hybrid Materials, Institute of Materials Science of Barcelona (ICMAB-CSIC), 08193 Bellaterra, Barcelona, Spain
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Alesia A. Tietze
- Department
of Chemistry and Molecular Biology, Wallenberg Centre for Molecular
and Translational Medicine, University of
Gothenburg, SE-412 96 Göteborg, Sweden
| | - Dibyendu Mondal
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
- Institute
of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
- Centre
for Nano and Material Sciences, JAIN (Deemed-to-be
University), Jain Global
Campus, Bangalore 562112, India
| | - Tejwant Singh Kang
- Department
of Chemistry, UGC Center for Advance Studies-II,
Guru Nanak Dev University (GNDU), Amritsar 143005, Punjab, India
| | - Arvind Kumar
- Salt
and Marine Chemicals Division, CSIR-Central
Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar 364002, Gujarat, India
| | - Mara G Freire
- CICECO
- Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
2
|
Goulden T, Bodachivskyi I, Padula MP, Williams DBG. Concentrated ionic liquids for proteomics: Caveat emptor! Int J Biol Macromol 2023; 253:127438. [PMID: 37839603 DOI: 10.1016/j.ijbiomac.2023.127438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/03/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
The use of concentrated ionic liquids (ILs) in the bioanalytical chemistry of proteins is sparse; typically, dilute aqueous IL solutions are used. Concentrated ILs have unique properties that may allow researchers to dissolve previously insoluble protein analytes, to increase the depth and robustness of sample preparation and the analysis of proteins. Previous research using concentrated ILs for this purpose is sparse and there is a need to systematically investigate the structure-activity relationship between the IL structure and its capacity to solubilise proteins. Here, bovine serum albumin was dissolved in various ionic liquids and monitored over time by light microscopy and SDS-PAGE. While qualitative, these measures provide a good estimate of, respectively, the dissolving power of an IL towards the given protein and the retained integrity of the protein. Hydrophilic ILs show the best solubilisation capacity and higher temperatures (in a restricted sense) improve the solubility of the protein. Higher temperatures and longer reaction times reduce the molecular weight of the protein, which could inhibit their applicability in proteomics, unless the conditions are judiciously controlled. Researchers should exercise caution when using concentrated ILs for protein analysis until the full scope and limitations are known, an aspect we are presently investigating.
Collapse
Affiliation(s)
- Thomas Goulden
- University of Technology Sydney, School of Mathematical and Physical Sciences, 15 Broadway, Sydney, NSW 2007, Australia
| | - Iurii Bodachivskyi
- University of Technology Sydney, School of Mathematical and Physical Sciences, 15 Broadway, Sydney, NSW 2007, Australia; V.P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry of the National Academy of Sciences of Ukraine, 1 Academician Kukhar St, Kyiv 02094, Ukraine
| | - Matthew P Padula
- University of Technology Sydney, School of Life Sciences, 15 Broadway, Sydney, NSW 2007, Australia
| | - D Bradley G Williams
- University of Technology Sydney, School of Mathematical and Physical Sciences, 15 Broadway, Sydney, NSW 2007, Australia; University of Wollongong, School of Chemistry and Molecular Bioscience, Wollongong, NSW 2522, Australia.
| |
Collapse
|
3
|
Ray D, Rajkumar Singh I, Bhatta A, Das A, Chakrabarty S, Mitra S. Modulation of drug binding ability and augmented enzymatic activity of lysozyme stabilized in presence of surface-active ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Lee PY, Singh O, Bermudez H, Matysiak S. Recovery of enzyme structure and activity following rehydration from ionic liquid. Phys Chem Chem Phys 2022; 24:10365-10372. [PMID: 35438103 DOI: 10.1039/d2cp00608a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Long-term preservation of proteins at room temperature continues to be a major challenge. Towards using ionic liquids (ILs) to address this challenge, here we present a combination of experiments and simulations to investigate changes in lysozyme upon rehydration from IL mixtures using two imidazolium-based ILs (1-ethyl-3-methylimidazolium ethylsulfate, [EMIM][EtSO4] and 1-ethyl-3-methylimidazolium diethylphosphate, [EMIM][Et2PO4]). Various spectroscopic experiments and molecular dynamics simulations are performed to ascertain the structure and activity of lysozyme. Circular dichroism spectroscopy confirms that lysozyme maintains its secondary structure upon rehydration, even after 295 days. Increasing the IL concentration decreases the activity of lysozyme and is ultimately quenched at sufficiently high IL concentrations, but the rehydration of lysozyme from high IL concentrations completely restores its activity. Such rehydration occurs in the most common lysozyme activity assay, but without careful attention, this effect on the IL concentration can be overlooked. From simulations we observe occupation of [EMIM+] ions near the vicinity of the active site and the ligand-lysozyme complex is less stable in the presence of ILs, which results in the reduction of lysozyme activity. Upon rehydration, fast leaving of [EMIM+] is observed and the availability of active site is restored. In addition, suppression of structural fluctuations is also observed when in high IL concentrations, which also explains the decrease of activity. This structure suppression is recovered after undergoing rehydration. The return of native protein structure and activity indicates that after rehydration lysozyme returns to its original state. Our results also suggest a simple route to protein recovery following extended storage.
Collapse
Affiliation(s)
- Pei-Yin Lee
- Chemical Physics Program, Institute for Physical Science and Technology, University of Maryland, College Park, USA
| | - Onkar Singh
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Harry Bermudez
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA, USA.
| | - Silvina Matysiak
- Fischell Department of Bioengineering, University of Maryland, College Park, USA.
| |
Collapse
|
5
|
Han Q, Brown SJ, Drummond CJ, Greaves TL. Protein aggregation and crystallization with ionic liquids: Insights into the influence of solvent properties. J Colloid Interface Sci 2022; 608:1173-1190. [PMID: 34735853 DOI: 10.1016/j.jcis.2021.10.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
Ionic liquids (ILs) have been used in solvents for proteins in many applications, including biotechnology, pharmaceutics, and medicine due to their tunable physicochemical and biological properties. Protein aggregation is often undesirable, and predominantly occurs during bioprocesses, while the aggregation process can be reversible or irreversible and the aggregates formed can be native/non-native and soluble/insoluble. Recent studies have clearly identified key properties of ILs and IL-water mixtures related to protein performance, suggesting the use of the tailorable properties of ILs to inhibit protein aggregation, to promote protein crystallization, and to control protein aggregation pathways. This review discusses the critical properties of IL and IL-water mixtures and presents the latest understanding of the protein aggregation pathways and the development of IL systems that affect or control the protein aggregation process. Through this feature article, we hope to inspire further advances in understanding and new approaches to controlling protein behavior to optimize bioprocesses.
Collapse
Affiliation(s)
- Qi Han
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Stuart J Brown
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, STEM College, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
6
|
Gaba R, Devi S, Pal A, Sharma D, Kumar H. Solvation properties of l-lysine and l-arginine in aqueous solutions of 1-heptyl-3-methyl imidazolium tetrafluoroborate [C7mim][BF4]at different temperatures. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Han Q, Binns J, Zhai J, Guo X, Ryan TM, Drummond CJ, Greaves TL. Insights on lysozyme aggregation in protic ionic liquid solvents by using small angle X-ray scattering and high throughput screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Imam HT, Krasňan V, Rebroš M, Marr AC. Applications of Ionic Liquids in Whole-Cell and Isolated Enzyme Biocatalysis. Molecules 2021; 26:4791. [PMID: 34443378 PMCID: PMC8399596 DOI: 10.3390/molecules26164791] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
Ionic liquids have unique chemical properties that have fascinated scientists in many fields. The effects of adding ionic liquids to biocatalysts are many and varied. The uses of ionic liquids in biocatalysis include improved separations and phase behaviour, reduction in toxicity, and stabilization of protein structures. As the ionic liquid state of the art has progressed, concepts of what can be achieved in biocatalysis using ionic liquids have evolved and more beneficial effects have been discovered. In this review ionic liquids for whole-cell and isolated enzyme biocatalysis will be discussed with an emphasis on the latest developments, and a look to the future.
Collapse
Affiliation(s)
- Hasan Tanvir Imam
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| | - Vladimír Krasňan
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Martin Rebroš
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 812 37 Bratislava, Slovakia;
| | - Andrew Craig Marr
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, David Keir Building, Stranmillis Road, Belfast BT9 5AG, UK;
| |
Collapse
|
9
|
Sarimov RM, Binhi VN, Matveeva TA, Penkov NV, Gudkov SV. Unfolding and Aggregation of Lysozyme under the Combined Action of Dithiothreitol and Guanidine Hydrochloride: Optical Studies. Int J Mol Sci 2021; 22:2710. [PMID: 33800175 PMCID: PMC7962454 DOI: 10.3390/ijms22052710] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022] Open
Abstract
Using a number of optical techniques (interferometry, dynamic light scattering, and spectroscopy), denaturation of hen egg white lysozyme (HEWL) by treatment with a combination of dithiothreitol (DTT) and guanidine hydrochloride (GdnHCl) has been investigated. The denaturing solutions were selected so that protein denaturation occurred with aggregation (Tris-HCl pH = 8.0, 50 mM, DTT 30 mM) or without aggregation (Tris-HCl pH = 8.0, 50 mM, DTT 30 mM, GdnHCl 6 M) and can be evaluated after 60 min of treatment. It has been found that denatured by solution with 6 M GdnHCl lysozyme completely loses its enzymatic activity after 30 min and the size of the protein molecule increases by 1.5 times, from 3.8 nm to 5.7 nm. Denaturation without of GdnHCl led to aggregation with preserving about 50% of its enzymatic activity. Denaturation of HEWL was examined using interferometry. Previously, it has been shown that protein denaturation that occurs without subsequent aggregation leads to an increase in the refractive index (Δn ~ 4.5 × 10-5). This is most likely due to variations in the HEWL-solvent interface area. By applying modern optical techniques conjointly, it has been possible to obtain information on the nature of time-dependent changes that occur inside a protein and its hydration shell as it undergoes denaturation.
Collapse
Affiliation(s)
- Ruslan M. Sarimov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St., 38, 119991 Moscow, Russia; (R.M.S.); (V.N.B.); (T.A.M.)
| | - Vladimir N. Binhi
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St., 38, 119991 Moscow, Russia; (R.M.S.); (V.N.B.); (T.A.M.)
| | - Tatiana A. Matveeva
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St., 38, 119991 Moscow, Russia; (R.M.S.); (V.N.B.); (T.A.M.)
| | - Nikita V. Penkov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Institutskaya St., 3, Pushchino, 142290 Moscow, Russia;
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov St., 38, 119991 Moscow, Russia; (R.M.S.); (V.N.B.); (T.A.M.)
| |
Collapse
|
10
|
Reddy RR, Reddy JG, Kumar BVNP. NMR investigations on binding and dynamics of imidazolium-based ionic liquids with HEWL. Phys Chem Chem Phys 2020; 22:23824-23836. [PMID: 33073278 DOI: 10.1039/d0cp04584e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular level insights on protein-ionic liquid (P-IL) interactions are beneficial for assessing protein stability, binding and dynamics. In the present work, interactions of ILs, namely, 1-butyl 3-methylimidazolium methyl sulfate (IL1), 1-butyl 3-methylimidazolium octyl sulfate (IL2) and 1-butyl 3-methylimidazolium chloride (IL3) with hen egg white lysozyme (HEWL) protein were investigated using solution-state nuclear magnetic resonance (NMR) spectroscopy. To ascertain the binding and dynamics from the perspective of both protein and IL, various ligand based NMR approaches such as selective and non-selective nuclear spin-relaxation (R1SEL and R1NS), saturation transfer difference (STD), difference of inversion recovery rate with and without target irradiation (DIRECTION), 35Cl line-shape and spin-relaxation, and protein back bone amide chemical shift perturbations (CSPs) from 1H-15N HSQC were utilized. Among the ILs investigated, IL2 experiences significant interaction relative to those of IL1 and IL3, as revealed by the combined R1SEL and R1NS analysis, which is further supported by STD NMR. CSP analyses of 1H-15N HSQC spectra of aqueous P-IL mixtures enabled to identify the potential binding sites of ILs with HEWL. Whereas, 15N longitudinal (R1) and transverse (R2) spin-relaxation rates and 15N{1H} heteronuclear nuclear Overhauser effect (hetNOE) data subjected to the model free analysis for IL2 yielded the rotational correlation times and order parameters of various residues of HEWL. Furthermore, the results could discern the nature of interactions between studied ILs and HEWL in terms of specific and non-specific interactions.
Collapse
Affiliation(s)
- R Ravikanth Reddy
- NMR, Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Chennai - 600020, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Jithender G Reddy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India and NMR Division, Department of Analytical & Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad - 500007, India.
| | - B V N Phani Kumar
- NMR, Centre for Analysis, Testing, Evaluation & Reporting Services (CATERS), CSIR-Central Leather Research Institute, Chennai - 600020, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
11
|
Han Q, Smith KM, Darmanin C, Ryan TM, Drummond CJ, Greaves TL. Lysozyme conformational changes with ionic liquids: Spectroscopic, small angle x-ray scattering and crystallographic study. J Colloid Interface Sci 2020; 585:433-443. [PMID: 33109332 DOI: 10.1016/j.jcis.2020.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/19/2020] [Accepted: 10/07/2020] [Indexed: 01/14/2023]
Abstract
Solvents that support protein functionality are important for biochemical applications, and new solvents are required. Here we employ FTIR and fluorescence spectroscopies, small angle X-ray scattering (SAXS) and X-ray crystallography to understand conformational changes of lysozyme with ionic liquids (ILs) added. Spectroscopic techniques identified that the secondary structure of lysozyme was maintained at the lower IL concentrations of 1 and 5 mol%, though the Tryptophan environment was significantly altered with nitrate-based ILs present. SAXS experiments indicated that the radius of gyration of lysozyme increased with 1 mol% IL present, and then decreased with increasing IL concentrations. The tertiary structure, particularly the loop regions, changed as a function of IL concentration, and this depended on the IL type. The crystallographic structure of lysozyme with the IL of ethylammonium nitrate present confirmed the loop region was extended, and identified three specific binding sites with nitrate ions, and that the positively charged areas were IL sensitive regions. This work provides a detailed understanding of lysozyme conformational changes in the presence of ILs. This approach can be extended to other functionally-important proteins.
Collapse
Affiliation(s)
- Qi Han
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Kate M Smith
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Connie Darmanin
- ARC Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Sciences, La Trobe University, VIC 3086, Australia
| | - Timothy M Ryan
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia
| | - Tamar L Greaves
- School of Science, College of Science, Engineering and Health, RMIT University, 124 La Trobe Street, Melbourne, VIC 3000, Australia.
| |
Collapse
|
12
|
Mukhopadhayay A, Singh D, Sharma KP. Neat Ionic liquid and α-Chymotrypsin-Polymer Surfactant Conjugate-Based Biocatalytic Solvent. Biomacromolecules 2020; 21:867-877. [PMID: 31841313 DOI: 10.1021/acs.biomac.9b01556] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Performing biocatalysis in nonaqueous solvents is advantageous as it imparts enhanced solubility to hydrophobic substrates and an ability to increase the temperature for shifting reaction equilibrium in the forward direction. In this work, we show the design and development of another class of nonaqueous composite solvent obtained by mixing surface modified enzyme and neat ionic liquid (IL). We systematically probe the interaction and solubility of industrially relevant α-chymotrypsin in its native or surface-bound polymer-surfactant bioconjugated form, with neat protic (N-methyl-2-pyrrolidonium trifluoromethanesulfonate; [NMP][OTf]), or aprotic (1-methyl-3-(4-sulfobutyl)-1H-imidazol-3-ium trifluoromethanesulfonate; [HO3S(CH2)4MIm][OTf]), ILs. Polarized optical micrographs show that the lyophilized powder of native α-chymotrypsin, nCT, does not disperse in either of the neat ILs, however, its polymer surfactant (PS)-coated bioconjugate counterparts, PScCT, in the waterless state, can be well-dispersed and solubilized in the neat [HO3S(CH2)4MIm][OTf]. The solubilization of waterless bioconjugates of PScCT in neat aprotic IL provides a composite liquid, WL-ImPScCT (WL: waterless, Im: [HO3S(CH2)4MIm][OTf]), having a viscosity of 69.6 Pa·s at 25 °C with a shear-thinning behavior, ≈ 15 w/w % α-chymotrypsin, and ≈ 1.2 w/w % residual water content. Detailed secondary structural analysis using circular dichroism and Fourier self-deconvolution on the ATR-FTIR data of WL-ImPScCT liquid reveals retention of the near native secondary structure of α-chymotrypsin. Further, using a combination of fluorescence spectroscopy and electron spray ionization mass spectrometry, we show that scattering of dry and powdered bovine serum albumin (BSA) protein on the WL-ImPScCT composite liquid results in the solubilization of the former, followed by limited proteolysis of BSA by the α-chymotrypsin. Our results, therefore, show the stabilization of α-chymotrypsin in a neat aprotic IL environment to yield a composite liquid, which not only acts as a nonaqueous, nonvolatile, and environmentally benign solvent, but also provides a biocatalytic platform capable of carrying out reactions relevant for biotransformations, food processing, drug delivery, and various other applications.
Collapse
Affiliation(s)
- Anasua Mukhopadhayay
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Dharmendra Singh
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| | - Kamendra P Sharma
- Department of Chemistry, Indian Institute of Technology Bombay , Powai, Mumbai 400076 , India
| |
Collapse
|
13
|
Yoshida K, Zenin T, Fujiyoshi A, Sanada Y, Yamaguchi T, Murata K, Takata SI, Hiroi K, Takekiyo T, Yoshimura Y. The effect of alkyl ammonium ionic liquids on thermal denaturation aggregation of β-lactoglobulin. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Kumari M, Singh UK, Beg I, Alanazi AM, Khan AA, Patel R. Effect of cations and anions of ionic liquids on the stability and activity of lysozyme: Concentration and temperature effect. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.075] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Mukhopadhyay A, Das T, Datta A, Sharma KP. Neat Protein–Polymer Surfactant Bioconjugates as Universal Solvents. Biomacromolecules 2018; 19:943-950. [DOI: 10.1021/acs.biomac.7b01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anasua Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tarasankar Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kamendra P. Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
16
|
Fernández-González A, Mallada M, Viesca J, González R, Badía R, Hernández-Battez A. Corrosion activity and solubility in polar oils of three bis(trifluoromethylsulfonyl) imide/bis(trifluoromethylsulfonyl) amide ([NTF 2 ]) anion-based ionic liquids. J IND ENG CHEM 2017. [DOI: 10.1016/j.jiec.2017.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
J Mehta M, Bharmoria P, Bhayani K, Kumar A. Gelatin Solubility and Processing in Ionic Liquids: An Approach Towards Waste to Utilization. ChemistrySelect 2017. [DOI: 10.1002/slct.201702015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohit J Mehta
- Salt and Marine Chemicals Division; CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg; Bhavnagar- 364002 India
| | - Pankaj Bharmoria
- Salt and Marine Chemicals Division; CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg; Bhavnagar- 364002 India
| | - Khushbu Bhayani
- Salt and Marine Chemicals Division; CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg; Bhavnagar- 364002 India
| | - Arvind Kumar
- Salt and Marine Chemicals Division; CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg; Bhavnagar- 364002 India
| |
Collapse
|
18
|
Reddy PM, Hsieh SR, Chang CJ, Leong YY, Chen JK, Lee MC. Amplification of Hofmeister effect on poly( n -isopropylacrylamide) by crown ether. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Thermodynamic properties of glycine and diglycine in aqueous solutions of 1-pentyl-3-methylimidazolium chloride at different temperatures. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Schröder C. Proteins in Ionic Liquids: Current Status of Experiments and Simulations. Top Curr Chem (Cham) 2017; 375:25. [PMID: 28176271 PMCID: PMC5480425 DOI: 10.1007/s41061-017-0110-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 01/18/2017] [Indexed: 01/28/2023]
Abstract
In the last two decades, while searching for interesting applications of ionic liquids as potent solvents, their solvation properties and their general impact on biomolecules, and in particular on proteins, gained interest. It turned out that ionic liquids are excellent solvents for protein refolding and crystallization. Biomolecules showed increased solubilities and stabilities, both operational and thermal, in ionic liquids, which also seem to prevent self-aggregation during solubilization. Biomolecules can be immobilized, e.g. in highly viscous ionic liquids, for particular biochemical processes and can be designed to some extent by the proper choice of the ionic liquid cations and anions, which can be characterized by the Hofmeister series.
Collapse
Affiliation(s)
- Christian Schröder
- Faculty of Chemistry, Department of Computational Biological Chemistry, University of Vienna, Vienna, Austria.
| |
Collapse
|
21
|
Umapathi R, Mkhize TY, Venkatesu P, Deenadayalu N. The influence of various alkylammonium-based ionic liquids on the hydration state of temperature-responsive polymer. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.11.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Yao W, Wang H, Pei Y, Chen Y, Li Z, Wang J. Homogeneous capture and heterogeneous separation of proteins by PEG-functionalized ionic liquid–water systems. RSC Adv 2017. [DOI: 10.1039/c6ra28483c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An efficient homogeneous capture and heterogeneous separation strategy for proteins is reported using PEG-functionalized ionic liquids with LCST phase behavior in water.
Collapse
Affiliation(s)
- Wenhui Yao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| | - Huiyong Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| | - Yuanchao Pei
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| | - Yuehua Chen
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| | - Zhiyong Li
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| | - Jianji Wang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals
- School of Chemistry and Chemical Engineering
- Key Laboratory of Green Chemical Media and Reactions
- Ministry of Education
- Henan Normal University
| |
Collapse
|
23
|
Kumari M, Dohare N, Maurya N, Dohare R, Patel R. Effect of 1-methyl-3-octyleimmidazolium chloride on the stability and activity of lysozyme: a spectroscopic and molecular dynamics studies. J Biomol Struct Dyn 2016; 35:2016-2030. [DOI: 10.1080/07391102.2016.1204946] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Meena Kumari
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Ravins Dohare
- Nonlinear Dynamic Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|