1
|
Chen H, Han X, Tan X, Hu M, Dai H, Zhang Y. Self-assembly mechanism of ferritin/aminated gelatin colloid nanoparticles and its application for the fabrication of stable compartmentalized emulsions: The key role of mixing ratio and dropwise manner. Int J Biol Macromol 2024; 282:136886. [PMID: 39490879 DOI: 10.1016/j.ijbiomac.2024.136886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
The construction of stable dual-compartmental structures is crucial for co-encapsulation and delivery of food nutrients. Herein, we explored the self-assembly beheavior and mechanism of ferritin (Fn) and aminated gelatin (AGEL), aiming to construct stable Fn/AGEL dual-compartment emulsions. Interestingly, as the AGEL concentration increased, the particle size of Fn/AGEL assemblies inversely decreased from micro- scale to nano-scale. Furthermore, the mixing dropwise manner significantly affects the size distribution of Fn/AGEL assemblies. Multiple analysis revealed that electrostatic attractions were the main chemical force driving their assembly, and both ratio and dropwise manner seem to affect the initial Fn/AGEL nucleus, ultimately altering their properties and structures. Besides, Fn/AGEL particles exhibit a reversible assembly and disassembly beheavior. Finally, stable dual-compartment emulsions with superior properties are constructed with dropwise manner of adding Fn to AGEL solution at 1:1 ratio. Overall, these findings can facilitate the development and application of ferritin-based dual-compartment emulsions.
Collapse
Affiliation(s)
- Hai Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China.
| | - Xueer Han
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyi Tan
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Mengji Hu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; Modern "Chuan cai Yu wei" Food Industry Innovation Research Institute, Chongqing 400715, China.
| |
Collapse
|
2
|
Krivitsky V, Krivitsky A, Mantella V, Ben-Yehuda Greenwald M, Sankar DS, Betschmann J, Bader J, Zoratto N, Schreier K, Feiss S, Walker D, Dengjel J, Werner S, Leroux JC. Ultrafast and Controlled Capturing, Loading, and Release of Extracellular Vesicles by a Portable Microstructured Electrochemical Fluidic Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212000. [PMID: 37452635 DOI: 10.1002/adma.202212000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Extracellular vesicles (EVs) are secreted by all living cells and are found in body fluids. They exert numerous physiological and pathological functions and serve as cargo shuttles. Due to their safety and inherent bioactivity, they have emerged as versatile therapeutic agents, biomarkers, and potential drug carriers. Despite the growing interest in EVs, current progress in this field is, in part, limited by relatively inefficient isolation techniques. Conventional methods are indeed slow, laborious, require specialized laboratory equipment, and may result in low yield and purity. This work describes an electrochemically controlled "all-in-one" device enabling capturing, loading, and releasing of EVs. The device is composed of a fluidic channel confined within antibody-coated microstructured electrodes. It rapidly isolates EVs with a high level of purity from various biofluids. As a proof of principle, the device is applied to isolate EVs from skin wounds of healthy and diabetic mice. Strikingly, it is found that EVs from healing wounds of diabetic mice are enriched in mitochondrial proteins compared to those of healthy mice. Additionally, the device improves the loading protocol of EVs with polyplexes, and may therefore find applications in nucleic acid delivery. Overall, the electrochemical device can greatly facilitate the development of EVs-based technologies.
Collapse
Affiliation(s)
- Vadim Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Adva Krivitsky
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Valeria Mantella
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Maya Ben-Yehuda Greenwald
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | | | - Jil Betschmann
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Johannes Bader
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Kento Schreier
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Sarah Feiss
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Dario Walker
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, 8093, Switzerland
| |
Collapse
|
3
|
Klemm P, Solomun JI, Rodewald M, Kuchenbrod MT, Hänsch VG, Richter F, Popp J, Hertweck C, Hoeppener S, Bonduelle C, Lecommandoux S, Traeger A, Schubert S. Efficient Gene Delivery of Tailored Amphiphilic Polypeptides by Polyplex Surfing. Biomacromolecules 2022; 23:4718-4733. [PMID: 36269943 DOI: 10.1021/acs.biomac.2c00919] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Within this study, an amphiphilic and potentially biodegradable polypeptide library based on poly[(4-aminobutyl)-l-glutamine-stat-hexyl-l-glutamine] [P(AB-l-Gln-stat-Hex-l-Gln)] was investigated for gene delivery. The influence of varying proportions of aliphatic and cationic side chains affecting the physicochemical properties of the polypeptides on transfection efficiency was investigated. A composition of 40 mol% Hex-l-Gln and 60 mol % AB-l-Gln (P3) was identified as best performer over polypeptides with higher proportions of protonatable monomers. Detailed studies of the transfection mechanism revealed the strongest interaction of P3 with cell membranes, promoting efficient endocytic cell uptake and high endosomal release. Spectrally, time-, and z-resolved fluorescence microscopy further revealed the crucial role of filopodia surfing in polyplex-cell interaction and particle internalization in lamellipodia regions, followed by rapid particle transport into cells. This study demonstrates the great potential of polypeptides for gene delivery. The amphiphilic character improves performance over cationic homopolypeptides, and the potential biodegradability is advantageous toward other synthetic polymeric delivery systems.
Collapse
Affiliation(s)
- Paul Klemm
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Marko Rodewald
- Leibniz Institute for Photonic Technology Jena, Member of Leibniz Health Technologies, Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Lessingstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Maren T Kuchenbrod
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Veit G Hänsch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Friederike Richter
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz Institute for Photonic Technology Jena, Member of Leibniz Health Technologies, Albert-Einstein-Strasse 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Lessingstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Colin Bonduelle
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany.,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
4
|
Sulfonated Amphiphilic Poly(α)glutamate Amine—A Potential siRNA Nanocarrier for the Treatment of Both Chemo-Sensitive and Chemo-Resistant Glioblastoma Tumors. Pharmaceutics 2021; 13:pharmaceutics13122199. [PMID: 34959480 PMCID: PMC8705840 DOI: 10.3390/pharmaceutics13122199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022] Open
Abstract
Development of chemo-resistance is a major challenge in glioblastoma (GB) treatment. This phenomenon is often driven by increased activation of genes associated with DNA repair, such as the alkyl-removing enzyme O6-methylguanine-DNA methyltransferase (MGMT) in combination with overexpression of canonical genes related to cell proliferation and tumor progression, such as Polo-like kinase 1 (Plk1). Hereby, we attempt to sensitize resistant GB cells using our established amphiphilic poly(α)glutamate (APA): small interfering RNA (siRNA) polyplexes, targeting Plk1. Furthermore, we improved brain-targeting by decorating our nanocarrier with sulfonate groups. Our sulfonated nanocarrier showed superior selectivity towards P-selectin (SELP), a transmembrane glycoprotein overexpressed in GB and angiogenic brain endothelial cells. Self-assembled polyplexes of sulfonated APA and siPlk1 internalized into GB cells and into our unique 3-dimensional (3D) GB spheroids inducing specific gene silencing. Moreover, our RNAi nanotherapy efficiently reduced the cell viability of both chemo-sensitive and chemo-resistant GB cells. Our developed sulfonated amphiphilic poly(α)glutamate nanocarrier has the potential to target siRNA to GB brain tumors. Our findings may strengthen the therapeutic applications of siRNA for chemo-resistant GB tumors, or as a combination therapy for chemo-sensitive GB tumors.
Collapse
|
5
|
Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021; 175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The complexity and diversity of the biochemical processes that occur during tumorigenesis and metastasis are frequently over-simplified in the traditional in vitro cell cultures. Two-dimensional cultures limit researchers' experimental observations and frequently give rise to misleading and contradictory results. Therefore, in order to overcome the limitations of in vitro studies and bridge the translational gap to in vivo applications, 3D models of cancer were developed in the last decades. The three dimensions of the tumor, including its cellular and extracellular microenvironment, are recreated by combining co-cultures of cancer and stromal cells in 3D hydrogel-based growth factors-inclusive scaffolds. More complex 3D cultures, containing functional blood vasculature, can integrate in the system external stimuli (e.g. oxygen and nutrient deprivation, cytokines, growth factors) along with drugs, or other therapeutic compounds. In this scenario, cell signaling pathways, metastatic cascade steps, cell differentiation and self-renewal, tumor-microenvironment interactions, and precision and personalized medicine, are among the wide range of biological applications that can be studied. Here, we discuss a broad variety of strategies exploited by scientists to create in vitro 3D cancer models that resemble as much as possible the biology and patho-physiology of in vivo tumors and predict faithfully the treatment outcome.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Sahar Israeli Dangoor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rodriguez Ajamil
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lena Neufeld
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pradip Dey
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Reisman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
6
|
Liu Y, Yin L. α-Amino acid N-carboxyanhydride (NCA)-derived synthetic polypeptides for nucleic acids delivery. Adv Drug Deliv Rev 2021; 171:139-163. [PMID: 33333206 DOI: 10.1016/j.addr.2020.12.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/06/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
In recent years, gene therapy has come into the spotlight for the prevention and treatment of a wide range of diseases. Polypeptides have been widely used in mediating nucleic acid delivery, due to their versatilities in chemical structures, desired biodegradability, and low cytotoxicity. Chemistry plays an essential role in the development of innovative polypeptides to address the challenges of producing efficient and safe gene vectors. In this Review, we mainly focused on the latest chemical advances in the design and preparation of polypeptide-based nucleic acid delivery vehicles. We first discussed the synthetic approach of polypeptides via ring-opening polymerization (ROP) of N-carboxyanhydrides (NCAs), and introduced the various types of polypeptide-based gene delivery systems. The extracellular and intracellular barriers against nucleic acid delivery were then outlined, followed by detailed review on the recent advances in polypeptide-based delivery systems that can overcome these barriers to enable in vitro and in vivo gene transfection. Finally, we concluded this review with perspectives in this field.
Collapse
Affiliation(s)
- Yong Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Hsu WH, Sánchez-Gómez P, Gomez-Ibarlucea E, Ivanov DP, Rahman R, Grabowska AM, Csaba N, Alexander C, Garcia-Fuentes M. Structure-Optimized Interpolymer Polyphosphazene Complexes for Effective Gene Delivery against Glioblastoma. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Wei-Hsin Hsu
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) Av. Barcelona s/n; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | - Pilar Sánchez-Gómez
- Neurooncology Unit; Instituto de Salud Carlos III (UFIEC); Carretera de Majadahonda-Pozuelo, Km. 2.200.; 28220 Majadahonda Madrid Spain
| | - Esther Gomez-Ibarlucea
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) Av. Barcelona s/n; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Delyan P. Ivanov
- Division of Cancer and Stem Cells; School of Medicine; Queen's Medical Centre; University of Nottingham; Nottingham NG7 2RD UK
| | - Ruman Rahman
- Division of Cancer and Stem Cells; School of Medicine; Queen's Medical Centre; University of Nottingham; Nottingham NG7 2RD UK
| | - Anna M. Grabowska
- Division of Cancer and Stem Cells; School of Medicine; Queen's Medical Centre; University of Nottingham; Nottingham NG7 2RD UK
| | - Noemi Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) Av. Barcelona s/n; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation; School of Pharmacy; University of Nottingham; Nottingham NG7 2RD UK
| | - Marcos Garcia-Fuentes
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS) Av. Barcelona s/n; Universidade de Santiago de Compostela; 15782 Santiago de Compostela Spain
| |
Collapse
|
8
|
Krivitsky A, Krivitsky V, Polyak D, Scomparin A, Eliyahu S, Gibori H, Yeini E, Pisarevsky E, Blau R, Satchi-Fainaro R. Molecular Weight-Dependent Activity of Aminated Poly(α)glutamates as siRNA Nanocarriers. Polymers (Basel) 2018; 10:E548. [PMID: 30966582 PMCID: PMC6415365 DOI: 10.3390/polym10050548] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 11/25/2022] Open
Abstract
RNA interference (RNAi) can contribute immensely to the area of personalized medicine by its ability to target any gene of interest. Nevertheless, its clinical use is limited by lack of efficient delivery systems. Polymer therapeutics can address many of the challenges encountered by the systemic delivery of RNAi, but suffer from inherent drawbacks such as polydispersity and batch to batch heterogeneity. These characteristics may have far-reaching consequences when dealing with therapeutic applications, as both the activity and the toxicity may be dependent on the length of the polymer chain. To investigate the consequences of polymers' heterogeneity, we have synthesized two batches of aminated poly(α)glutamate polymers (PGAamine), differing in their degree of polymerization, but not in the monomer units or their conjugation. Isothermal titration calorimetry study was conducted to define the binding affinity of these polymers with siRNA. Molecular dynamics simulation revealed that Short PGAamine:siRNA polyplexes exposed a higher amount of amine moieties to the surroundings compared to Long PGAamine. This resulted in a higher zeta potential, leading to faster degradation and diminished gene silencing. Altogether, our study highlights the importance of an adequate physico-chemical characterization to elucidate the structure⁻function-activity relationship, for further development of tailor-designed RNAi delivery vehicles.
Collapse
Affiliation(s)
- Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Vadim Krivitsky
- School of Chemistry, the Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel Aviv 69978, Israel.
| | - Dina Polyak
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Shay Eliyahu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hadas Gibori
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Eilam Yeini
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Evgeni Pisarevsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
9
|
Krivitsky A, Polyak D, Scomparin A, Eliyahu S, Ofek P, Tiram G, Kalinski H, Avkin-Nachum S, Feiner Gracia N, Albertazzi L, Satchi-Fainaro R. Amphiphilic poly(α)glutamate polymeric micelles for systemic administration of siRNA to tumors. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2018; 14:303-315. [PMID: 29127036 DOI: 10.1016/j.nano.2017.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023]
Abstract
RNAi therapeutics carried a great promise to the area of personalized medicine: the ability to target "undruggable" oncogenic pathways. Nevertheless, their efficient tumor targeting via systemic administration had not been resolved yet. Amphiphilic alkylated poly(α)glutamate amine (APA) can serve as a cationic carrier to the negatively-charged oligonucleotides. APA polymers complexed with siRNA to form round-shaped, homogenous and reproducible nano-sized polyplexes bearing ~50 nm size and slightly negative charge. In addition, APA:siRNA polyplexes were shown to be potent gene regulators in vitro. In light of these preferred physico-chemical characteristics, their performance as systemically-administered siRNA nanocarriers was investigated. Intravenously-injected APA:siRNA polyplexes accumulated selectively in tumors and did not accumulate in the lungs, heart, liver or spleen. Nevertheless, the polyplexes failed to induce specific mRNA degradation, hence neither reduction in tumor volume nor prolonged mice survival was seen.
Collapse
Affiliation(s)
- Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Dina Polyak
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Anna Scomparin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Shay Eliyahu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Room 607, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
10
|
Gibori H, Eliyahu S, Krivitsky A, Ben-Shushan D, Epshtein Y, Tiram G, Blau R, Ofek P, Lee JS, Ruppin E, Landsman L, Barshack I, Golan T, Merquiol E, Blum G, Satchi-Fainaro R. Amphiphilic nanocarrier-induced modulation of PLK1 and miR-34a leads to improved therapeutic response in pancreatic cancer. Nat Commun 2018; 9:16. [PMID: 29295989 PMCID: PMC5750234 DOI: 10.1038/s41467-017-02283-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
The heterogeneity of pancreatic ductal adenocarcinoma (PDAC) suggests that successful treatment might rely on simultaneous targeting of multiple genes, which can be achieved by RNA interference-based therapeutic strategies. Here we show a potent combination of microRNA and siRNA delivered by an efficient nanocarrier to PDAC tumors. Using proteomic-microRNA profiles and survival data of PDAC patients from TCGA, we found a novel signature for prolonged survival. Accordingly, we used a microRNA-mimic to increase miR-34a together with siRNA to silence PLK1 oncogene. For in vivo dual-targeting of this combination, we developed a biodegradable amphiphilic polyglutamate amine polymeric nanocarrier (APA). APA-miRNA-siRNA polyplexes systemically administered to orthotopically inoculated PDAC-bearing mice showed no toxicity and accumulated at the tumor, resulting in an enhanced antitumor effect due to inhibition of MYC oncogene, a common target of both miR-34a and PLK1. Taken together, our findings warrant this unique combined polyplex's potential as a novel nanotherapeutic for PDAC.
Collapse
Affiliation(s)
- Hadas Gibori
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Shay Eliyahu
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dikla Ben-Shushan
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yana Epshtein
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Rachel Blau
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Joo Sang Lee
- Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA
| | - Eytan Ruppin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
- Department of Computer Science and Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD, 20742, USA
- Blavatnik School of Computer Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Limor Landsman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Iris Barshack
- Department of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Talia Golan
- Department of Pathology, Sheba Medical Center, Tel Hashomer, 52621, Israel
| | - Emmanuelle Merquiol
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Ein Kerem Campus, The Hebrew University, Jerusalem, Israel
| | - Galia Blum
- The Institute for Drug Research, School of Pharmacy, Faculty of Medicine, Ein Kerem Campus, The Hebrew University, Jerusalem, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
11
|
Ofek P, Tiram G, Satchi-Fainaro R. Angiogenesis regulation by nanocarriers bearing RNA interference. Adv Drug Deliv Rev 2017; 119:3-19. [PMID: 28163106 DOI: 10.1016/j.addr.2017.01.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/22/2022]
Abstract
Since the approval of bevacizumab as anti-angiogenic therapy in 2004 by the FDA, an array of angiogenesis inhibitors have been developed and approved. However, results were disappointing with regard to their therapeutic efficacy. RNA interference approaches offer the possibility of rational design with high specificity, lacking in many current drug treatments for various diseases including cancer. However, in vivo delivery issues still represent a significant obstacle for widespread clinical applications. In the current review, we summarize the advances in the last decade in the field of angiogenesis-targeted RNA interference approaches, with special emphasis on oncology applications. We present pro-angiogenic and anti-angiogenic factors as potential targets, experimental evidence and clinical trials data on angiogenesis regulation by RNA interference. Consequent challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Paula Ofek
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
12
|
Scomparin A, Florindo HF, Tiram G, Ferguson EL, Satchi-Fainaro R. Two-step polymer- and liposome-enzyme prodrug therapies for cancer: PDEPT and PELT concepts and future perspectives. Adv Drug Deliv Rev 2017; 118:52-64. [PMID: 28916497 DOI: 10.1016/j.addr.2017.09.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 09/07/2017] [Indexed: 12/14/2022]
Abstract
Polymer-directed enzyme prodrug therapy (PDEPT) and polymer enzyme liposome therapy (PELT) are two-step therapies developed to provide anticancer drugs site-selective intratumoral accumulation and release. Nanomedicines, such as polymer-drug conjugates and liposomal drugs, accumulate in the tumor site due to extravasation-dependent mechanism (enhanced permeability and retention - EPR - effect), and further need to cross the cellular membrane and release their payload in the intracellular compartment. The subsequent administration of a polymer-enzyme conjugate able to accumulate in the tumor tissue and to trigger the extracellular release of the active drug showed promising preclinical results. The development of polymer-enzyme, polymer-drug conjugates and liposomal drugs had undergone a vast advancement over the past decades. Several examples of enzyme mimics for in vivo therapy can be found in the literature. Moreover, polymer therapeutics often present an enzyme-sensitive mechanism of drug release. These nanomedicines can thus be optimal substrates for PDEPT and this review aims to provide new insights and stimuli toward the future perspectives of this promising combination.
Collapse
Affiliation(s)
- Anna Scomparin
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Helena F Florindo
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Galia Tiram
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elaine L Ferguson
- Advanced Therapies Group, Oral and Biomedical Sciences, School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff CF14 4XY, UK
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler School of Medicine, Room 607, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
13
|
Systemic delivery of siRNA by aminated poly( α )glutamate for the treatment of solid tumors. J Control Release 2017; 257:132-143. [DOI: 10.1016/j.jconrel.2016.06.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 12/26/2022]
|
14
|
Cavallaro G, Farra R, Craparo EF, Sardo C, Porsio B, Giammona G, Perrone F, Grassi M, Pozzato G, Grassi G, Dapas B. Galactosylated polyaspartamide copolymers for siRNA targeted delivery to hepatocellular carcinoma cells. Int J Pharm 2017; 525:397-406. [DOI: 10.1016/j.ijpharm.2017.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/23/2016] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
|
15
|
Jiang B, He H, Yao L, Zhang T, Huo J, Sun W, Yin L. Harmonizing the Intracellular Kinetics toward Effective Gene Delivery Using Cancer Cell-Targeted and Light-Degradable Polyplexes. Biomacromolecules 2017; 18:877-885. [PMID: 28165729 DOI: 10.1021/acs.biomac.6b01774] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Benchun Jiang
- Department
of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Hua He
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials and Devices,
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Li Yao
- Department
of Nephrology, the First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Tong Zhang
- Department
of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Jianping Huo
- Department
of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Wei Sun
- Department
of General Surgery, Affiliated Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Lichen Yin
- Jiangsu
Key Laboratory for Carbon-Based Functional Materials and Devices,
Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| |
Collapse
|