1
|
Khodayari A, Vats S, Mertz G, Schnell CN, Rojas CF, Seveno D. Electrospinning of cellulose nanocrystals; procedure and optimization. Carbohydr Polym 2025; 347:122698. [PMID: 39486938 DOI: 10.1016/j.carbpol.2024.122698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 11/04/2024]
Abstract
Cellulose nanocrystals (CNCs) and cellulose microfibrils (CMFs) are promising materials with the potential to significantly enhance the mechanical properties of electrospun nanofibers. However, the crucial aspect of optimizing their integration into these nanofibers remains a challenge. In this work, we present a method to prepare and electrospin a cellulosic solution, aiming to overcome the existing challenges and realize the optimized incorporation of CNCs into nanofibers. The solution parameters of electrospinning were explored using a combined experimental and simulation (molecular dynamics) approach. Experimental results emphasize the impact of polymer solution concentration on fiber morphology, reinforcing the need for further optimization. Simulations highlight the intricate factors, including the molecular weight of cellulose acetate (CA) polymer chains, electrostatic fields, and humidity, that impact the alignment of CNCs and CMFs. Furthermore, efforts were made to study CNCs/CMFs alignment rate and quality optimization. It is predicted that pure CNCs benefit more from electrostatic alignment, while lower molecular weight CA enables better CNC/CMF alignment.
Collapse
Affiliation(s)
- Ali Khodayari
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium.
| | - Shameek Vats
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Grégory Mertz
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Carla N Schnell
- Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - Carlos Fuentes Rojas
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium; Luxembourg Institute of Science and Technology (LIST), Rue Bommel 5, L-4940 Hautcharage, Luxembourg
| | - David Seveno
- Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven 3001, Belgium
| |
Collapse
|
2
|
Wiwatsamphan P, Tashiro K, Masunaga H, Sasaki S, Chirachanchai S. From Chitin Nanowhisker Colloidal Dispersions to Anisotropic Microfibers: Structural Evolution in Its Transformation Process as Revealed by Synchrotron Wide-Angle X-ray Diffraction Measurements. ACS Macro Lett 2024; 13:1179-1184. [PMID: 39171924 DOI: 10.1021/acsmacrolett.4c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Nanowhiskers in a colloidal dispersion are known to form chiral nematic liquid crystals (CNLC), as seen in a cellulose nanowhisker or so-called cellulose nanocrystal and chitin nanowhisker. In our related work, we clarified that once the thus-created chitin nanowhiskers with surface modified by chitosan (CTWK-CS) in CNLC phase were wet-spun, we could directly obtain anisotropic microfibers containing the highly ordered CTWK-CS. This drastic structural transformation from CNLC to anisotropic microfibers might relate to several important stages, i.e., stage (i) is the alignment of CTWK-CS initiated by a specific concentration and flow to create aggregation in the CNLC state, stage (ii) is the coagulation of CTWK-CS in CNLC to transform to microfibers, and stage (iii) is the drying of the thus-extruded microfibers to allow CTWK-CS alignment. The present work sets up the experimental systems simulating stages (i) and (iii) to reveal the orientational behavior of CTWK-CS and the structural evolution, respectively, by synchrotron 2D WAXD measurement. In stage (i), the high degree of the parallel alignments of CTWK-CS with the chain axis oriented along the flow direction of the colloidal dispersions confirms that the flow and concentration synergistically controlled CTWK-CS alignment. In contrast, for stage (iii), the poor c-axial orientation of CTWK-CS in as-spun wet microfibers gradually changed to the high degree of c-axial orientation along the fiber direction during drying process, indicating a reorientation of CTWK-CS along with dehydration. The present study declares an in situ observation of the direct wet spinning of nanowhiskers about their remarkable alignments in the sheared colloidal dispersions (stage (i)) and their random-to-high reorientation during the drying process of the as-spun wet microfiber (stage (iii)).
Collapse
Affiliation(s)
- Phanicha Wiwatsamphan
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kohji Tashiro
- Knowledge Hub Aichi, Aichi Synchrotron Radiation Center, Minami-Yamaguchi, Seto 489-0965, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Sono Sasaki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Kyoto 606-8585, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Suwabun Chirachanchai
- Center of Excellence in Bioresources to Advanced Materials (B2A-CE), The Petroleum and Petrochemical College, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Guo M, Li Q, Xiao R, Liu D, Cai Y, Peng J, Xue Y, Song T. Macroscopic Spiral Patterns of Cholesteric Cellulose Nanocrystals Induced by Chiral Doping and Vortex Flowing. Biomacromolecules 2023; 24:640-651. [PMID: 36689602 DOI: 10.1021/acs.biomac.2c01033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Negatively surface-charged sulfate cellulose nanocrystals (CNCs) are always slowly self-assembled into left-handed cholesteric mesophases. In this work, macroscopic spiral patterns induced by counterclockwise vortex flowing or chiral doping were investigated. Results show that iridescent patterns of the arithmetic spiral, rose spiral, or latitude ripples were generated under the vortex rotation, indicating a severe microphase separation of CNCs. Moreover, the spiral pattern and rotational symmetry were highly correlated to the twisting and flowability of CNCs as well as chiral dopants. Alternatively, the cholesteric pitch and maximum reflective wavelength (λmax) of CNCs were strongly increased by sinistral dopants other than the dextral ones, indicating an enhanced torsion of left-handed CNC mesophases by the dextral dopants. In addition, macroscopic spiral patterns distinctly existed in dextrally doped CNCs owing to a synergistic chiral enhancement. Therefore, the mechanochiral or chemical chiral transition from microscopic twisting to macroscopic spiral provides a potential inspiration for chiral self-organization of biological macromolecules.
Collapse
Affiliation(s)
- Mengna Guo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Qin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Ruimin Xiao
- Department of Materials, Faculty of Science and Engineering, University of Manchester, Oxford Rd., ManchesterM13 9PL, UK
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Yongqing Cai
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Jinnan Peng
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Yongjun Xue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| | - Tianyou Song
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Technology, Nanjing University of Information Science & Technology, Nanjing, Jiangsu210044, China
| |
Collapse
|
4
|
Zhang X, Kang S, Adstedt K, Kim M, Xiong R, Yu J, Chen X, Zhao X, Ye C, Tsukruk VV. Uniformly aligned flexible magnetic films from bacterial nanocelluloses for fast actuating optical materials. Nat Commun 2022; 13:5804. [PMID: 36192544 PMCID: PMC9530119 DOI: 10.1038/s41467-022-33615-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Naturally derived biopolymers have attracted great interest to construct photonic materials with multi-scale ordering, adaptive birefringence, chiral organization, actuation and robustness. Nevertheless, traditional processing commonly results in non-uniform organization across large-scale areas. Here, we report magnetically steerable uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles with strong magnetic susceptibility, enabling transformation from helicoidal cholesteric (chiral nematic) to uniaxial nematic phase with near-perfect orientation order parameter of 0.98 across large areas. We demonstrate that magnetically triggered high shearing rate of circular flow exceeds those for conventional evaporation-based assembly by two orders of magnitude. This high rate shearing facilitates unconventional unidirectional orientation of nanocrystals along gradient magnetic field and untwisting helical organization. These translucent magnetic films are flexible, robust, and possess anisotropic birefringence and light scattering combined with relatively high optical transparency reaching 75%. Enhanced mechanical robustness and uniform organization facilitate fast, multimodal, and repeatable actuation in response to magnetic field, humidity variation, and light illumination. Naturally derived biopolymers attracted great interest to construct photonic materials but traditional processing commonly results in non-uniform organization across largescale areas. Here, the authors report a uniform biophotonic organization of cellulose nanocrystals decorated with superparamagnetic nanoparticles enabling transformation from helicoidal cholesteric to uniaxial nematic phase with near-perfect orientation.
Collapse
Affiliation(s)
- Xiaofang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, China.,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Saewon Kang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Katarina Adstedt
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Minkyu Kim
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Rui Xiong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.,State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Juan Yu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA
| | - Xinran Chen
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Xulin Zhao
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Chunhong Ye
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
5
|
Piezoelectric Nanogenerator Based on Electrospun Cellulose Acetate/Nanocellulose Crystal Composite Membranes for Energy Harvesting Application. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-021-1252-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Guo M, Li Y, Yan X, Song J, Liu D, Li Q, Su F, Shi X. Sustainable iridescence of cast and shear coatings of cellulose nanocrystals. Carbohydr Polym 2021; 273:118628. [PMID: 34561019 DOI: 10.1016/j.carbpol.2021.118628] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 12/19/2022]
Abstract
As an eco-friendly sustainable iridescent coating, cholesteric cellulose nanocrystal (CNC) is susceptible to substrate effects or shearing effects. In this work, interface interaction and liquid crystal phase transition were evaluated for fabricating iridescent cast or shear coatings of CNCs onto substrates of polystyrene, glass, ceramic, wood, stainless steel, metal, or metal alloy. Three types of substrate effects and four categories of shearing effects on the structure color mechanism of CNC coatings were proposed. Practically, several efficient approaches, such as increasing colloidal concentration, enhancing water-retention of substrates, raising processing temperature, slowing down shearing speed, or doping functional additives were involved. Hence, a feasible strategy was provided for preparing sustainable, iridescent, stable, and industrially scalable coatings of CNCs.
Collapse
Affiliation(s)
- Mengna Guo
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yu Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xueyi Yan
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Jianing Song
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Dagang Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Qin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Fan Su
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xingwei Shi
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Wang X, Feng N, Shi Z, Zhou N, Lu J, Huang J, Gan L. Stimuli-responsive flexible membrane via co-assembling sodium alginate into assembly membranes of rod-like cellulose nanocrystals with an achiral array. Carbohydr Polym 2021; 262:117949. [PMID: 33838826 DOI: 10.1016/j.carbpol.2021.117949] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Uniaxially assembling cellulose nanocrystals (CNCs) can induce strong solid-state emission based on optical inelastic scattering, whereas the CNC assembly membranes are not flexible enough for further applications. Thus, we introduced CNC into flexible sodium alginate (SA) and further controlled the assembly structure of CNC to increase the membrane toughness and maintain the emission properties. The results indicated that the stretchability increased from 0.027 % to 37 % when 33-37% when 33 % SA was introduced. The assembly achirality was controlled by tuning CNC concentration in suspension, and the co-assembly could further control the wavelength of the assembly-induced emission from 420 nm to 440 nm. Furthermore, the improved stretchability made assembly membrane an optical sensor, whose excitation wavelength blue-shifted about 30 nm under a 30 % strain. The emission of the co-assembly membrane could also respond to humidity, and this cellulose-based material should have great potential in biosensor and wearable devices.
Collapse
Affiliation(s)
- Xuhong Wang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China
| | - Na Feng
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China
| | - Zhenxu Shi
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China
| | - Na Zhou
- School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832003, PR China
| | - Jun Lu
- College of Food Science & Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441003, PR China
| | - Jin Huang
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China; School of Chemistry and Chemical Engineering, and Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bintuan, Shihezi University, Shihezi 832003, PR China; Joint International Research Laboratory of Biomass-Based Macromolecular Chemistry and Materials, Chongqing 400715, PR China.
| | - Lin Gan
- School of Chemistry and Chemical Engineering, and Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, PR China; Joint International Research Laboratory of Biomass-Based Macromolecular Chemistry and Materials, Chongqing 400715, PR China.
| |
Collapse
|
8
|
Huang L, Yuan W, Hong Y, Fan S, Yao X, Ren T, Song L, Yang G, Zhang Y. 3D printed hydrogels with oxidized cellulose nanofibers and silk fibroin for the proliferation of lung epithelial stem cells. CELLULOSE (LONDON, ENGLAND) 2021; 28:241-257. [PMID: 33132545 PMCID: PMC7590576 DOI: 10.1007/s10570-020-03526-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 10/10/2020] [Indexed: 05/06/2023]
Abstract
A novel biomaterial ink consisting of regenerated silk fibroin (SF) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized bacterial cellulose (OBC) nanofibrils was developed for 3D printing lung tissue scaffold. Silk fibroin backbones were cross-linked using horseradish peroxide/H2O2 to form printed hydrogel scaffolds. OBC with a concentration of 7wt% increased the viscosity of inks during the printing process and further improved the shape fidelity of the scaffolds. Rheological measurements and image analyses were performed to evaluate inks printability and print shape fidelity. Three-dimensional construct with ten layers could be printed with ink of 1SF-2OBC (SF/OBC = 1/2, w/w). The composite hydrogel of 1SF-1OBC (SF/OBC = 1/1, w/w) printed at 25 °C exhibited a significantly improved compressive strength of 267 ± 13 kPa and a compressive stiffness of 325 ± 14 kPa at 30% strain, respectively. The optimized printing parameters for 1SF-1OBC were 0.3 bar of printing pressure, 45 mm/s of printing speed and 410 μm of nozzle diameter. Furthermore, OBC nanofibrils could be induced to align along the print lines over 60% degree of orientation, which were analyzed by SEM and X-ray diffraction. The orientation of OBC nanofibrils along print lines provided physical cues for guiding the orientation of lung epithelial stem cells, which maintained the ability to proliferate and kept epithelial phenotype after 7 days' culture. The 3D printed SF-OBC scaffolds are promising for applications in lung tissue engineering.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 People’s Republic of China
| | - Wei Yuan
- Department of Urology, Weifang People’s Hospital, Weifang Medical University, Weifang, 261000 Shandong People’s Republic of China
| | - Yue Hong
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 People’s Republic of China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 People’s Republic of China
| | - Xiang Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 People’s Republic of China
| | - Tao Ren
- Department of Respiratory Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 People’s Republic of China
| | - Lujie Song
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 People’s Republic of China
- Shanghai Oriental Institute for Urologic Reconstruction, Shanghai, 200233 People’s Republic of China
| | - Gesheng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 People’s Republic of China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 People’s Republic of China
| |
Collapse
|
9
|
Thomas P, Duolikun T, Rumjit NP, Moosavi S, Lai CW, Bin Johan MR, Fen LB. Comprehensive review on nanocellulose: Recent developments, challenges and future prospects. J Mech Behav Biomed Mater 2020; 110:103884. [DOI: 10.1016/j.jmbbm.2020.103884] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 01/26/2023]
|
10
|
Prathapan R, Tabor RF, Garnier G, Hu J. Recent Progress in Cellulose Nanocrystal Alignment and Its Applications. ACS APPLIED BIO MATERIALS 2020; 3:1828-1844. [DOI: 10.1021/acsabm.0c00104] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ragesh Prathapan
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rico F. Tabor
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Gil Garnier
- Bioresources Processing Research Institute of Australia (BioPRIA), Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
11
|
Mesophase transition of cellulose nanocrystals aroused by the incorporation of two cellulose derivatives. Carbohydr Polym 2020; 233:115843. [PMID: 32059895 DOI: 10.1016/j.carbpol.2020.115843] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/23/2019] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
Cellulose nanocrystals (CNCs) per their twisting structure and high aspect ratio and charged surface property are increasingly receiving great attention in chiral photonic crystal and pigment fabrication. However, the cholesteric mesophases of CNCs is unstable and easily destroyed by the additives with high Mw. In this work, hydroxypropyl cellulose (HPC) and carboxymethyl cellulose (CMC) are incorporated into CNCs for a continuous mesophase transition monitoring. We investigated the effects of HPC and CMC on the properties of CNCs with respect to the morphology, mesophase, rheology, and structure-color properties. Our results showed that the addition of CMC (≥ 1 wt%) prevented the formation of a continuous cholesteric phase but resulting in a fast gelation due to the strong repulsion between CMC and CNCs. Alternatively, the cholesteric phase was well-preserved in the CNC/HPC in which HPC (< 10 wt%) served as an efficient tuner of phase transition, color hue and rheology properties.
Collapse
|
12
|
Cho M, Ko FK, Renneckar S. Molecular Orientation and Organization of Technical Lignin-Based Composite Nanofibers and Films. Biomacromolecules 2019; 20:4485-4493. [PMID: 31647629 DOI: 10.1021/acs.biomac.9b01242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural materials are highly anisotropic, maximizing performance of the polymeric structures while conserving mass and enhancing function. In synthetic materials, nanoscale fibers produced by electrospinning often contain molecular alignment of polymers along the fiber axis achieving some similarity to natural fibers. In this study, isolated softwood kraft lignin (SKL) was electrospun into aligned fibers utilizing a special collector. The molecular organization of lignin within the aligned nanofibers was investigated by polarized light optical microscopy. Furthermore, the functional groups that had preferred alignment along the fiber axis were identified with polarized Fourier transform infrared (FTIR) spectroscopy based on dichroism measurements. In addition, nanocrystalline cellulose (NCC) was added to the lignin solutions in order to create composite nanofibers. Both the orientation of NCC within the nanoscale fibers and the impact this component had on the degree of orientation of SKL within the aligned nanofibers were revealed by utilizing polarized FTIR. Finally, solvent cast lignin films were analyzed for their anisotropic polarizability, demonstrating birefringence with and without nanocrystalline cellulose. The work provided unique insight into both preferred orientation (fibers) and assembly (films) for technical lignin due to processing.
Collapse
|
13
|
Huang L, Du X, Fan S, Yang G, Shao H, Li D, Cao C, Zhu Y, Zhu M, Zhang Y. Bacterial cellulose nanofibers promote stress and fidelity of 3D-printed silk based hydrogel scaffold with hierarchical pores. Carbohydr Polym 2019; 221:146-156. [PMID: 31227153 DOI: 10.1016/j.carbpol.2019.05.080] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/19/2019] [Accepted: 05/28/2019] [Indexed: 12/11/2022]
Abstract
One of the latest trends in the regenerative medicine is the development of 3D-printing hydrogel scaffolds with biomimetic structures for tissue regeneration and organ reconstruction. However, it has been practically difficult to achieve a highly biomimetic hydrogel scaffolds with proper mechanical properties matching the natural tissue. Here, bacterial cellulose nanofibers (BCNFs) were applied to improve the structural resolution and enhance mechanical properties of silk fibroin (SF)/gelatin composite hydrogel scaffolds. The SF-based hydrogel scaffolds with hierarchical pores were fabricated via 3D-printing followed by lyophilization. Results showed that the tensile strength of printed sample increased significantly with the addition of BCNFs in the bioink. Large pores and micropores in the scaffolds were achieved by designing printing pattern and lyophilization after extrusion. The pores ranging from 10 to 20 μm inside the printed filaments served as host for cellular infiltration, while the pores with a diameter from 300 to 600 μm circled by printed filaments ensured sufficient nutrient supply. These 3D-printed composite scaffolds with remarkable mechanical properties and hierarchical pore structures are promising for further tissue engineering applications.
Collapse
Affiliation(s)
- Li Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Xiaoyu Du
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, PR China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| | - Gesheng Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Huili Shao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201301, PR China
| | - Chengbo Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, PR China; School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Yufang Zhu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, PR China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Belt and Road Joint Laboratory of Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
14
|
Meng X, Pan H, Lu T, Chen Z, Chen Y, Zhang D, Zhu S. Photonic-structured fibers assembled from cellulose nanocrystals with tunable polarized selective reflection. NANOTECHNOLOGY 2018; 29:325604. [PMID: 29757154 DOI: 10.1088/1361-6528/aac44b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Fibers with self-assembled photonic structures are of special interest due to their unique photonic properties and potential applications in the smart textile industry. Inspired by nature, the photonic-structured fibers were fabricated through the self-assembly of chiral nematic cellulose nanocrystals (CNCs) and the fibers showed tunably brilliant and selectively reflected colors under crossed-polarization. A simple wet-spinning method was applied to prepare composite fibers of the mixed CNC matrix and polyvinyl alcohol (PVA) additions. During the processing, a cholesteric CNC phase formed photonic fibers through a self-assembly process. The selective color reflection of the composite fibers in the polarized condition showed a typical red-shift tendency with an increase in the PVA content, which was attributed to the increased helical pitch of the CNC. Furthermore, the polarized angle could also alter the reflected colors. Owing to their excellent selective reflection properties under the polarized condition, CNC-based photonic fibers are promising as the next-generation of smart fibers, applied in the fields of specific display and sensing.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Meng X, Pan H, Zhu C, Chen Z, Lu T, Xu D, Li Y, Zhu S. Coupled Chiral Structure in Graphene-Based Film for Ultrahigh Thermal Conductivity in Both In-Plane and Through-Plane Directions. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22611-22622. [PMID: 29888597 DOI: 10.1021/acsami.8b05514] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of high-performance thermal management materials to dissipate excessive heat both in plane and through plane is of special interest to maintain efficient operation and prolong the life of electronic devices. Herein, we designed and constructed a graphene-based composite film, which contains chiral liquid crystals (cellulose nanocrystals, CNCs) inside graphene oxide (GO). The composite film was prepared by annealing and compacting of self-assembled GO-CNC, which contains chiral smectic liquid crystal structures. The helical arranged nanorods of carbonized CNC act as in-plane connections, which bridge neighboring graphene sheets. More interestingly, the chiral structures also act as through-plane connections, which bridge the upper and lower graphene layers. As a result, the graphene-based composite film shows extraordinary thermal conductivity, in both in-plane (1820.4 W m-1 K-1) and through-plane (4.596 W m-1 K-1) directions. As a thermal management material, the heat dissipation and transportation behaviors of the composite film were investigated using a self-heating system and the results showed that the real-time temperature of the heater covered with the film was 44.5 °C lower than a naked heater. The prepared film shows a much higher efficiency of heat transportation than the commonly used thermal conductive Cu foil. Additionally, this graphene-based composite film exhibits excellent mechanical strength of 31.6 MPa and an electrical conductivity of 667.4 S cm-1. The strategy reported here may open a new avenue to the development of high-performance thermal management films.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Hui Pan
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Chengling Zhu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Zhixin Chen
- School of Mechanical, Materials & Mechatronics Engineering , University of Wollongong , Wollongong , NSW 2522 , Australia
| | - Tao Lu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Da Xu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
16
|
Zhao X, Zheng H, Qu D, Jiang H, Fan W, Sun Y, Xu Y. A supramolecular approach towards strong and tough polymer nanocomposite fibers. RSC Adv 2018; 8:10361-10366. [PMID: 35540482 PMCID: PMC9078929 DOI: 10.1039/c8ra01066h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/04/2018] [Indexed: 11/21/2022] Open
Abstract
Polymer nanocomposite fibers are important one-dimensional nanomaterials that hold promising potential in a broad range of technological applications. It is, however, challenging to organize advanced polymer nanocomposite fibers with sufficient mechanical properties and flexibility. Here, we demonstrate that strong, tough and flexible polymer nanocomposite fibers can be approached by electrospinning of a supramolecular ensemble of dissimilar and complementary components including flexible multiwalled carbon nanotubes (CNT), and stiff cellulose nanocrystals (CNC) in an aqueous poly(vinyl alcohol) (PVA) system. CNT and CNC are bridged by a water-soluble aggregation-induced-emission (AIE) molecule that forms π-π stacking with CNT via its conjugated chains, and electrostatic attraction with CNC through its positive charges leading to a soluble CNT-AIE-CNC ensemble, which further assembles with PVA through hydrogen bonds. A high level of ordering of the nanoscale building blocks combined with hydrogen bonding leads to a more efficient stress transfer path between the reinforcing unit and the polymer. The nanocomposite fiber mat is capable of selective detection of nitroaromatic explosives.
Collapse
Affiliation(s)
- Xiaojuan Zhao
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China +86 431 85168607
| | - Hongzhi Zheng
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China +86 431 85168607
| | - Dan Qu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China +86 431 85168607
| | - Haijing Jiang
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China +86 431 85168607
| | - Wei Fan
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China +86 431 85168607
| | - Yuyuan Sun
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China +86 431 85168607
| | - Yan Xu
- State Key Lab of Inorganic Synthesis and Preparative Chemistry, Jilin University 2699 Qianjin Street Changchun 130012 China +86 431 85168607
| |
Collapse
|
17
|
Huan S, Liu G, Cheng W, Han G, Bai L. Electrospun Poly(lactic acid)-Based Fibrous Nanocomposite Reinforced by Cellulose Nanocrystals: Impact of Fiber Uniaxial Alignment on Microstructure and Mechanical Properties. Biomacromolecules 2018; 19:1037-1046. [DOI: 10.1021/acs.biomac.8b00023] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Siqi Huan
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P R China
| | - Guoxiang Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P R China
| | - Wanli Cheng
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P R China
| | - Guangping Han
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P R China
| | - Long Bai
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), Northeast Forestry University, Harbin 150040, P R China
| |
Collapse
|