1
|
Gavhane UA, Joshi DC, Jayakannan M. Size- and Shape-controlled Biodegradable Polymer Brushes Based on l-Amino Acid for Intracellular Drug Delivery and Deep-Tissue Penetration. Biomacromolecules 2024; 25:3756-3774. [PMID: 38713492 DOI: 10.1021/acs.biomac.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We report size- and shape-controlled polymer brushes based on l-amino acid bioresource and study the role of polymer topology on the enzymatic biodegradation and deep-tissue penetration under in vitro and in vivo. For this purpose, l-tyrosine-based propargyl-functionalized monomer is tailor-made and polymerized via solvent-free melt polycondensation strategy to yield hydrophobic and clickable biodegradable poly(ester-urethane)s. Postpolymerization click chemistry strategy is applied to make well-defined amphiphilic one-dimensional rodlike and three-dimensional spherical polymer brushes by merely varying the lengths of PEG-azides in the reaction. These core-shell polymer brushes are found to be nontoxic and nonhemolytic and capable of loading clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared biomarker IR-780. In vitro enzymatic drug-release kinetics and lysotracker-assisted real-time live-cell confocal bioimaging revealed that the rodlike polymer brush is superior than its spherical counterparts for faster cellular uptake and enzymatic biodegradation at the endolysosomal compartments to release DOX at the nucleus. Further, in vivo live-animal bioimaging by IVIS technique established that the IR-780-loaded rodlike polymer brush exhibited efficient deep-tissue penetration ability and emphasized the importance of polymer brush topology control for biological activity. Polymer brushes exhibit good stability in the blood plasma for more than 72 h, they predominately accumulate in the digestive organs like liver and kidney, and they are less toxic to heart and brain tissues. IVIS imaging of cryotome tissue slices of organs confirmed the deep-penetrating ability of the polymer brushes. The present investigation opens opportunity for bioderived and biodegradable polymer brushes as next-generation smart drug-delivery scaffolds.
Collapse
Affiliation(s)
- Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
2
|
Zanata DDM, Felisberti MI. Thermo- and pH-responsive POEGMA-b-PDMAEMA-b-POEGMA triblock copolymers. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Sarkar J, Chan KBJ, Goto A. Reduction-responsive double hydrophilic block copolymer nano-capsule synthesized via RCMP-PISA. Polym Chem 2021. [DOI: 10.1039/d0py01764g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Double hydrophilic block copolymer vesicles synthesized via RCMP-PISA are degradable under a reductive conditions.
Collapse
Affiliation(s)
- Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Kai Bin Jonathan Chan
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
4
|
Plucinski A, Lyu Z, Schmidt BVKJ. Polysaccharide nanoparticles: from fabrication to applications. J Mater Chem B 2021; 9:7030-7062. [DOI: 10.1039/d1tb00628b] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The present review highlights the developments in polysaccharide nanoparticles with a particular focus on applications in biomedicine, cosmetics and food.
Collapse
Affiliation(s)
| | - Zan Lyu
- School of Chemistry, University of Glasgow, G12 8QQ Glasgow, UK
| | | |
Collapse
|
5
|
Plank M, Hartmann F, Kuttich B, Kraus T, Gallei M. Self-assembly of amphiphilic poly(2-hydroxyethyl methacrylate)-containing block copolymers in the vicinity of cellulose fibres. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Oh T, Hoshino Y, Miura Y. Aggregation of a double hydrophilic block glycopolymer: the effect of block polymer ratio. J Mater Chem B 2020; 8:10101-10107. [PMID: 33112358 DOI: 10.1039/d0tb02093a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Double hydrophilic block glycopolymers (DHBGs) composed of glycopolymers and polyethylene glycol (PEG) aggregate in aqueous solution. However, there are no guidelines to direct and design DHBG aggregation. Herein, we investigated the effect of the ratio of glycopolymer length to PEG length on the structure, and report that structure size could be influenced by the block polymer ratio. Nine kinds of DHBG with different glycopolymers and PEG lengths were synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. The aggregation capability of DHBG was investigated by transmission electron microscopy (TEM) and dynamic light scattering (DLS). In all cases, the DHBGs formed the spherical structures, even when the PEG and glycopolymer lengths were quite different. The size of the structure was controlled by the ratio of the PEG length to the glycopolymer length. The aggregation of the DHBGs was induced by hydrogen bonding between the sugar moieties. The aggregation of the DHBG was affected by temperature and concentration.
Collapse
Affiliation(s)
- Takahiro Oh
- Department of Chemical Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| | | | | |
Collapse
|
7
|
Plucinski A, Willersinn J, Lira RB, Dimova R, Schmidt BVKJ. Aggregation and Crosslinking of Poly(
N,N
‐dimethylacrylamide)‐
b
‐pullulan Double Hydrophilic Block Copolymers. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alexander Plucinski
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| | - Jochen Willersinn
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| | - Rafael B. Lira
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- Moleculaire BiofysicaZernike Instituut Rijksuniversiteit Groningen Groningen Netherlands
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
| | - Bernhard V. K. J. Schmidt
- Max Planck Institute of Colloids and Interfaces Am Mühlenberg 1 Potsdam 14476 Germany
- School of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
8
|
Nutan B, Jewrajka SK. PEGylated gold nanoparticles promoted rapid macromolecular chain-end transformation and formation of injectable hydrogels. J Mater Chem B 2020; 8:465-477. [DOI: 10.1039/c9tb02001b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Highly stable PEGylated Au NPs with low grafting density exhibit significant effect towards azide–alkyne click cycloaddition and Michael addition reactions leading to rapid formation of injectable hydrogels and biologically relevant macromolecules.
Collapse
Affiliation(s)
- Bhingaradiya Nutan
- Membrane Science and Separation Technology Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
| | - Suresh K. Jewrajka
- Membrane Science and Separation Technology Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Academy of Scientific and Innovative Research (AcSIR)
- Ghaziabad-201002
- India
| |
Collapse
|
9
|
Al Nakeeb N, Nischang I, Schmidt BVKJ. Tannic Acid-Mediated Aggregate Stabilization of Poly( N-vinylpyrrolidone)- b-poly(oligo (ethylene glycol) methyl ether methacrylate) Double Hydrophilic Block Copolymers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E662. [PMID: 31035517 PMCID: PMC6566864 DOI: 10.3390/nano9050662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
Abstract
The self-assembly of block copolymers in aqueous solution is an important field in modern polymer science that has been extended to double hydrophilic block copolymers (DHBC) in recent years. In here, a significant improvement of the self-assembly process of DHBC in aqueous solution by utilizing a linear-brush macromolecular architecture is presented. The improved self-assembly behavior of poly(N-vinylpyrrolidone)-b-poly(oligo(ethylene glycol) methyl ether methacrylate) (PVP-b-P(OEGMA)) and its concentration dependency is investigated via dynamic light scattering (DLS) (apparent hydrodynamic radii ≈ 100-120 nm). Moreover, the DHBC assemblies can be non-covalently crosslinked with tannic acid via hydrogen bonding, which leads to the formation of small aggregates as well (apparent hydrodynamic radius ≈ 15 nm). Non-covalent crosslinking improves the self-assembly and stabilizes the aggregates upon dilution, reducing the concentration dependency of aggregate self-assembly. Additionally, the non-covalent aggregates can be disassembled in basic media. The presence of aggregates was studied via cryogenic scanning electron microscopy (cryo-SEM) and DLS before and after non-covalent crosslinking. Furthermore, analytical ultracentrifugation of the formed aggregate structures was performed, clearly showing the existence of polymer assemblies, particularly after non-covalent crosslinking. In summary, we report on the completely hydrophilic self-assembled structures in solution formed from fully biocompatible building entities in water.
Collapse
Affiliation(s)
- Noah Al Nakeeb
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Ivo Nischang
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| | - Bernhard V K J Schmidt
- Max-Planck Institute of Colloids and Interfaces, Department of Colloid Chemistry, Am Mühlenberg 1, 14476 Potsdam, Germany.
| |
Collapse
|
10
|
Lim J, Matsuoka H, Yusa SI, Saruwatari Y. Temperature-Responsive Behavior of Double Hydrophilic Carboxy-Sulfobetaine Block Copolymers and Their Self-Assemblies in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1571-1582. [PMID: 30558410 DOI: 10.1021/acs.langmuir.8b02952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The block copolymer poly(2-((2-(methacryloyloxy)ethyl)dimethylammonio)acetate)- b-poly(3-( N-(2-metharyloylethyl)- N, N-dimethylammonio)propanesulfonate) (PGLBT- b-PSPE) was synthesized by reversible addition-fragmentation chain transfer (RAFT) technique under precise control. The PGLBT- b-PSPE block copolymers showed upper critical solution temperature (UCST) behavior originating from PSPE moieties. Unlike PSPE homopolymers, the transmittance change with temperature was gradual, and unexpected retardation or slight changes in a reverse direction were found at the intermediate stage. Light scattering and 1H NMR studies proved that the block copolymers formed spherical micelles that were composed of a PSPE core and PGLBT shell around room temperature and lower temperatures, and slowly disassociated with temperature increase. During the transition, fast (small particle) and slow (large particle) diffusive modes were detected by dynamic light scattering (DLS), which implied that the unimers were escaping from the self-assembled structure and swollen micelles, respectively. At sufficiently high temperatures where the solutions became almost transparent, the slow mode eventually disappeared, and only the fast mode remained. In addition, once the polymeric particles are formed, the size did not vary much with additional cooling. The transition point and the pattern of transmittance alteration were dependent on the degree of polymerization and the [PGLBT]:[PSPE] ratios; more PGLBT made the block copolymer less responsive to temperature and led the cloud point to lower degrees. However, random copolymers PGLBT- r-PSPE did not show any temperature-responsivity, and even small amount of GLBTs (10%) distributed in a PSPE chain significantly suppressed the transition.
Collapse
Affiliation(s)
- Jongmin Lim
- Department of Polymer Chemistry , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Hideki Matsuoka
- Department of Polymer Chemistry , Kyoto University , Katsura , Nishikyo-ku, Kyoto 615-8510 , Japan
| | - Shin-Ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering , University of Hyogo , 2167 Shosha , Himeji , Hyogo 671-2280 , Japan
| | - Yoshiyuki Saruwatari
- Osaka Organic Chemical Industry Ltd. , 7-20 Azuchi-machi, 1chome , Chuo-ku, Osaka 541-0052 , Japan
| |
Collapse
|
11
|
Al Nakeeb N, Kochovski Z, Li T, Zhang Y, Lu Y, Schmidt BVKJ. Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline α-cyclodextrin domains. RSC Adv 2019; 9:4993-5001. [PMID: 35514641 PMCID: PMC9060675 DOI: 10.1039/c8ra10672j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/31/2019] [Indexed: 11/22/2022] Open
Abstract
Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via α-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for α-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Self-assembly of the double hydrophilic block copolymer poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) and supramolecular crosslinking via α-cyclodextrin in water is presented.![]()
Collapse
Affiliation(s)
- Noah Al Nakeeb
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
| | - Zdravko Kochovski
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
| | - Tingting Li
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
- State Key Laboratory of Fine Chemicals
| | - Youjia Zhang
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
| | - Yan Lu
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
- Institute of Chemistry
| | | |
Collapse
|
12
|
Quan J, Shen FW, Cai H, Zhang YN, Wu H. Galactose-Functionalized Double-Hydrophilic Block Glycopolymers and Their Thermoresponsive Self-Assembly Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10721-10731. [PMID: 30113172 DOI: 10.1021/acs.langmuir.8b01516] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Glycopolymers with large galactose units are attractive in biological processes because of their ability to selectively recognize lectin proteins. Recently, thermoresponsive double-hydrophilic block glycopolymers (TDHBGs) have been designed, which allow sugar residues to expose or hide via the lower critical solution temperature (LCST)-type phase transition. In this work, we first synthesize a new type of TDHBGs, composed of a thermoresponsive poly(di(ethylene glycol)methyl ether methacrylate) block and a galactose-functionalized, poly(6- O-vinyladipoyl-d-galactose) (POVNG) block. The LCST can be tuned by varying the size of the POVNG block. Then, we have systematically investigated their thermoresponsive self-assembly behavior, using static and dynamic light scattering techniques, combined with transmission electron microscopy (TEM) imaging. It is found that the TDHBGs possess both micellization and LCST-type transition, and there exist strong interactions between them, depending on the concentration and structure of the TDHBGs. It is particularly interesting that for the same type of TDHBGs under different conditions, such interactions result in rich morphologies of the formed micelles (or nanoparticles) such as spheres, hollow spheres, prolate ellipsoids, crystal-like, and so on, thus potentially enriching their biological applications by noting that they are hepatoma-targeting glycopolymers.
Collapse
Affiliation(s)
- Jing Quan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Fa-Wei Shen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hao Cai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Yi-Na Zhang
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, and College of Chemistry, Chemical Engineering and Biotechnology , Donghua University , Shanghai 201620 , P. R. China
| | - Hua Wu
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences , ETH Zurich , 8093 Zurich , Switzerland
| |
Collapse
|
13
|
Oh T, Nagao M, Hoshino Y, Miura Y. Self-Assembly of a Double Hydrophilic Block Glycopolymer and the Investigation of Its Mechanism. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8591-8598. [PMID: 29957990 DOI: 10.1021/acs.langmuir.8b01527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report the self-assembly of a double hydrophilic block glycopolymer (DHBG) via hydrogen bonding and coordinate bonding. This DHBG, composed of poly(ethylene)glycol (PEG) and glycopolymer, self-assembled into a well-defined structure. The DHBG was prepared through the controlled radical polymerization of trimethylsilyl-protected propargyl methacrylate using a PEG-based reversible addition-fragmentation chain transfer reagent, followed by sugar conjugation using click chemistry. The DHBG self-assembly capability was investigated by transmission electron microscopy and dynamic light scattering. Interestingly, the DHBG self-assembled into a spherical structure in aqueous solution. Hydrogen bonding and coordinate bonding with Ca2+ were identified as the driving forces for self-assembly.
Collapse
Affiliation(s)
- Takahiro Oh
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Masanori Nagao
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Yu Hoshino
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| | - Yoshiko Miura
- Department of Chemical Engineering , Kyushu University , 744 Motooka , Nishiku , Fukuoka 819-0395 , Japan
| |
Collapse
|
14
|
Jeong YH, Shin HW, Kwon JY, Lee SM. Cisplatin-Encapsulated Polymeric Nanoparticles with Molecular Geometry-Regulated Colloidal Properties and Controlled Drug Release. ACS APPLIED MATERIALS & INTERFACES 2018; 10:23617-23629. [PMID: 29923700 DOI: 10.1021/acsami.8b06905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Encapsulation of chemotherapeutic agents inside a nanoscale delivery platform can provide an attractive therapeutic strategy with many pharmaceutical benefits, such as increased plasma solubility, prolonged in vivo circulation, and reduced acute toxicity. Given that the biological activities of polymeric nanoparticles are highly dependent on their colloidal structures, the molecular geometry-regulated programming of self-assembled nanoscale architecture is of great interest for chemical design of an ideal delivery platform. In this report, we demonstrate that the molecular geometry of block-copolymer excipients can govern the level of drug-loading capacity and core hydrophobicity of polymeric nanoparticles, which can eventually control the pH-sensitive drug-release property. Atom-transfer radical polymerization was employed as a controlled synthetic method for the copolymer excipients, which contain the metal-chelating poly(acrylic acid) block linked to either a small mPEG-grafted poly(methacrylate) to generate a bulky brush-like chains or a simple linear mPEG segment. During the coordination of cis-diammineplatinum(II) as an active pharmacophore of cisplatin, aqueous-phase size-exclusion chromatography analyses exhibited highly different self-association kinetic regimes prompted by versatile molecular geometry of copolymer excipients, which further allows us to explore the molecular geometry-colloidal property relationship.
Collapse
Affiliation(s)
- Yun-Ho Jeong
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Hyeon-Woo Shin
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Ji-Yeong Kwon
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| | - Sang-Min Lee
- Department of Chemistry , The Catholic University of Korea , Bucheon , Gyeonggi-do 14662 , Korea
| |
Collapse
|
15
|
Li T, Kumru B, Al Nakeeb N, Willersinn J, Schmidt BVKJ. Thermoadaptive Supramolecular α-Cyclodextrin Crystallization-Based Hydrogels via Double Hydrophilic Block Copolymer Templating. Polymers (Basel) 2018; 10:E576. [PMID: 30966610 PMCID: PMC6404023 DOI: 10.3390/polym10060576] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/16/2018] [Accepted: 05/21/2018] [Indexed: 12/14/2022] Open
Abstract
Supramolecular hydrogels play a prominent role in contemporary research of hydrophilic polymers. Especially, hydrogels based on α-cyclodextrin/poly(ethylene glycol) (α-CD/PEG) complexation and crystal formation are studied frequently. Here, the effect of double hydrophilic block copolymers (DHBCs) on α-CD/PEG hydrogel properties is investigated. Therefore, a novel DHBC, namely poly(N-vinylpyrrolidone)-b-poly(oligo ethylene glycol methacrylate) (PVP-b-POEGMA), was synthesized via a combination of reversible deactivation radical polymerization and modular conjugation methods. In the next step, hydrogel formation was studied after α-CD addition. Interestingly, DHBC-based hydrogels showed a significant response to thermal history. Heating of the gels to different temperatures led to different mechanical properties after cooling to ambient temperature, i.e., gels with mechanical properties similar to the initial gels or weak flowing gels were obtained. Thus, the hydrogels showed thermoadaptive behavior, which might be an interesting property for future applications in sensing.
Collapse
Affiliation(s)
- Tingting Li
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Baris Kumru
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Noah Al Nakeeb
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Jochen Willersinn
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | |
Collapse
|
16
|
|