1
|
March A, Hebner TS, Choe R, Benoit DSW. Leveraging the predictive power of a 3D in vitro vascularization screening assay for hydrogel-based tissue-engineered periosteum allograft healing. BIOMATERIALS ADVANCES 2025; 169:214187. [PMID: 39827700 PMCID: PMC11815559 DOI: 10.1016/j.bioadv.2025.214187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/04/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
A common strategy for promoting bone allograft healing is the design of tissue-engineered periosteum (TEP) to orchestrate host-tissue infiltration. However, evaluating requires costly and time-consuming in vivo studies. Therefore, in vitro assays are necessary to expedite TEP designs. Since angiogenesis is a critical process orchestrated by the periosteum, this study investigates in vitro 3D cell spheroid vascularization as a predictive tool for TEP-mediated in vivo healing. Spheroids of human umbilical vein endothelial cells (HUVECs) and human mesenchymal stem cells (hMSCs) are encapsulated in enzymatically-degradable poly (ethylene glycol)-based hydrogels and sprout formation, network formation, and angiogenic growth factor secretion are quantified. Hydrogels are also evaluated as TEP-modified allografts for in vivo bone healing with graft vascularization, callus formation, and biomechanical strength quantified as healing metrics. Evaluation of hydrogels highlights the importance of degradation, with 24-fold greater day 1 sprouts observed in degradable hydrogels in vitro and 4-fold greater graft-localized vascular volume at 6-weeks in vivo compared to non-degradable hydrogels. Correlations between in vitro and in vivo studies elucidate linear relationships when comparing in vitro sprout formation and angiocrine production with 3- and 6-week in vivo graft vascularization, 3-week cartilage callus, and 6-week bone callus, with a Pearson's R2 value equal to 0.97 for the linear correlation between in vitro sprout formation and 6-week in vivo vascular volume. Non-linear relationships are found between in vitro measures and bone torque strength at week 6. These correlations suggest that the in vitro sprouting assay has predictive power for in vivo vascularization and bone allograft healing.
Collapse
Affiliation(s)
- Alyson March
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - Tayler S Hebner
- Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA; Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Regine Choe
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA
| | - Danielle S W Benoit
- Department of Biomedical Engineering, Center for Musculoskeletal Research, University of Rochester, 204 Robert B. Goergen Hall, Rochester, NY 14627, USA; Department of Bioengineering, Knight Campus for Accelerating Scientific Impact, University of Oregon, 6231 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
2
|
Yadav P, Singh S, Jaiswal S, Kumar R. Synthetic and natural polymer hydrogels: A review of 3D spheroids and drug delivery. Int J Biol Macromol 2024; 280:136126. [PMID: 39349080 DOI: 10.1016/j.ijbiomac.2024.136126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
This review centers on the synthesis and characterization of both natural and synthetic hydrogels, highlighting their diverse applications across various fields. We will delve into the evolution of hydrogels, focusing on the importance of polysaccharide-based and synthetic variants, which have been particularly chosen for 3D spheroid development in cancer research and drug delivery. A detailed background on the research and specific methodologies, including the in-situ free radical polymerization used for synthesizing these hydrogels, will be extensively discussed. Additionally, the review will explore various applications of these hydrogels, such as their self-healing properties, swelling ratios, pH responsiveness, and cell viability. A comprehensive literature review will support this investigation. Ultimately, this review aims to clearly outline the objectives and significance of hydrogel synthesis and their applications.
Collapse
Affiliation(s)
- Paramjeet Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Shiwani Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Sheetal Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Rajesh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
3
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2024:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
4
|
Li C, Rounds CC, Torres VC, He Y, Xu X, Papavasiliou G, Samkoe KS, Brankov JG, Tichauer KM. Quantifying Imaging Agent Binding and Dissociation in 3-D Cancer Spheroid Tissue Culture Using Paired-Agent Principles. Ann Biomed Eng 2024; 52:1625-1637. [PMID: 38409434 PMCID: PMC10174639 DOI: 10.1007/s10439-024-03476-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/10/2024] [Indexed: 02/28/2024]
Abstract
Binding kinetics play an important role in cancer diagnosis and therapeutics. However, current methods of quantifying binding kinetics fail to consider the three-dimensional environment that drugs and imaging agents experience in biological tissue. In response, a methodology to assay agent binding and dissociation in 3-D tissue culture was developed using paired-agent molecular imaging principles. To test the methodology, the uptakes of ABY-029 (an IRDye 800CW-labeled epidermal growth factor receptor (EGFR)-targeted antibody mimetic) and IRDye-700DX carboxylate in 3-D spheroids were measured in four different human cancer cell lines throughout staining and rinsing. A compartment model (optimized for the application) was then fit to the kinetic curves of both imaging agents to estimate binding and dissociation rate constants of the EGFR-targeted ABY-029 agent. A statistically significant correlation was observed between apparent association rate constant (k3) and the receptor concentration experimentally and in simulations (r = 0.99, p < 0.05). A statistically significant difference was found between effective k3 (apparent rate constant of ABY-029 binding to EGFR) values for cell lines with varying levels of EGFR expression (p < 0.05), with no significant difference found between cell lines and controls for other fit parameters. Additionally, a similar binding affinity profile compared to a gold standard method was determined by this model. This low-cost methodology to quantify imaging agent or drug binding affinity in clinically relevant 3-D tumor spheroid models can be used to guide timing of imaging in molecular guided surgery and could have implications in drug development.
Collapse
Affiliation(s)
- Chengyue Li
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Cody C Rounds
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Veronica C Torres
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Yusheng He
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiaochun Xu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Georgia Papavasiliou
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Jovan G Brankov
- Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
5
|
Thang NH, Chien TB, Cuong DX. Polymer-Based Hydrogels Applied in Drug Delivery: An Overview. Gels 2023; 9:523. [PMID: 37504402 PMCID: PMC10379988 DOI: 10.3390/gels9070523] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Polymer-based hydrogels are hydrophilic polymer networks with crosslinks widely applied for drug delivery applications because of their ability to hold large amounts of water and biological fluids and control drug release based on their unique physicochemical properties and biocompatibility. Current trends in the development of hydrogel drug delivery systems involve the release of drugs in response to specific triggers such as pH, temperature, or enzymes for targeted drug delivery and to reduce the potential for systemic toxicity. In addition, developing injectable hydrogel formulations that are easily used and sustain drug release during this extended time is a growing interest. Another emerging trend in hydrogel drug delivery is the synthesis of nano hydrogels and other functional substances for improving targeted drug loading and release efficacy. Following these development trends, advanced hydrogels possessing mechanically improved properties, controlled release rates, and biocompatibility is developing as a focus of the field. More complex drug delivery systems such as multi-drug delivery and combination therapies will be developed based on these advancements. In addition, polymer-based hydrogels are gaining increasing attention in personalized medicine because of their ability to be tailored to a specific patient, for example, drug release rates, drug combinations, target-specific drug delivery, improvement of disease treatment effectiveness, and healthcare cost reduction. Overall, hydrogel application is advancing rapidly, towards more efficient and effective drug delivery systems in the future.
Collapse
Affiliation(s)
- Nguyen Hoc Thang
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Truong Bach Chien
- Faculty of Chemical Technology, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| | - Dang Xuan Cuong
- Innovation and Entrepreneurship Center, Ho Chi Minh City University of Food Industry, 140 Le Trong Tan, Tan Phu Distrist, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
6
|
Qin Y, Li H, Shen HX, Wang CF, Chen S. Rapid Preparation of Superabsorbent Self-Healing Hydrogels by Frontal Polymerization. Gels 2023; 9:gels9050380. [PMID: 37232973 DOI: 10.3390/gels9050380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/27/2023] Open
Abstract
Hydrogels have received increasing interest owing to their excellent physicochemical properties and wide applications. In this paper, we report the rapid fabrication of new hydrogels possessing a super water swelling capacity and self-healing ability using a fast, energy-efficient, and convenient method of frontal polymerization (FP). Self-sustained copolymerization of acrylamide (AM), 3-[Dimethyl-[2-(2-methylprop-2-enoyloxy)ethyl]azaniumyl]propane-1-sulfonate (SBMA), and acrylic acid (AA) within 10 min via FP yielded highly transparent and stretchable poly(AM-co-SBMA-co-AA) hydrogels. Thermogravimetric analysis and Fourier transform infrared spectroscopy confirmed the successful fabrication of poly(AM-co-SBMA-co-AA) hydrogels with a single copolymer composition without branched polymers. The effect of monomer ratio on FP features as well as porous morphology, swelling behavior, and self-healing performance of the hydrogels were systematically investigated, showing that the properties of the hydrogels could be tuned by adjusting the chemical composition. The resulting hydrogels were superabsorbent and sensitive to pH, exhibiting a high swelling ratio of up to 11,802% in water and 13,588% in an alkaline environment. The rheological data revealed a stable gel network. These hydrogels also had a favorable self-healing ability with a healing efficiency of up to 95%. This work contributes a simple and efficient method for the rapid preparation of superabsorbent and self-healing hydrogels.
Collapse
Affiliation(s)
- Ying Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Hao Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Hai-Xia Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 5 Xin Mofan Road, Nanjing 210009, China
| |
Collapse
|
7
|
Friend NE, McCoy AJ, Stegemann JP, Putnam AJ. A combination of matrix stiffness and degradability dictate microvascular network assembly and remodeling in cell-laden poly(ethylene glycol) hydrogels. Biomaterials 2023; 295:122050. [PMID: 36812843 PMCID: PMC10191204 DOI: 10.1016/j.biomaterials.2023.122050] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/30/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023]
Abstract
The formation of functional capillary blood vessels that can sustain the metabolic demands of transplanted parenchymal cells remains one of the biggest challenges to the clinical realization of engineered tissues for regenerative medicine. As such, there remains a need to better understand the fundamental influences of the microenvironment on vascularization. Poly(ethylene glycol) (PEG) hydrogels have been widely adopted to interrogate the influence of matrix physicochemical properties on cellular phenotypes and morphogenetic programs, including the formation of microvascular networks, in part due to the ease with which their properties can be controlled. In this study, we co-encapsulated endothelial cells and fibroblasts in PEG-norbornene (PEGNB) hydrogels in which stiffness and degradability were tuned to assess their independent and synergistic effects on vessel network formation and cell-mediated matrix remodeling longitudinally. Specifically, we achieved a range of stiffnesses and differing rates of degradation by varying the crosslinking ratio of norbornenes to thiols and incorporating either one (sVPMS) or two (dVPMS) cleavage sites within the matrix metalloproteinase- (MMP-) sensitive crosslinker, respectively. In less degradable sVPMS gels, decreasing the crosslinking ratio (thereby decreasing the initial stiffness) supported enhanced vascularization. When degradability was increased in dVPMS gels, all crosslinking ratios supported robust vascularization regardless of initial mechanical properties. The vascularization in both conditions was coincident with the deposition of extracellular matrix proteins and cell-mediated stiffening, which was greater in dVPMS conditions after a week of culture. Collectively, these results indicate that enhanced cell-mediated remodeling of a PEG hydrogel, achieved either by reduced crosslinking or increased degradability, leads to more rapid vessel formation and higher degrees of cell-mediated stiffening.
Collapse
Affiliation(s)
- Nicole E Friend
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Atticus J McCoy
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Jan P Stegemann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA
| | - Andrew J Putnam
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, USA.
| |
Collapse
|
8
|
Borges FTP, Papavasiliou G, Teymour F. Characterizing the Molecular Architecture of Hydrogels and Crosslinked Polymer Networks beyond Flory-Rehner. II: Experiments. Biomacromolecules 2023; 24:1585-1603. [PMID: 36929746 DOI: 10.1021/acs.biomac.2c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
We previously [Borges, F. T. P. Biomacromolecules 2020, 21(12), 5104-5118] introduced a novel methodology for the characterization of the dimensions and architecture of hydrogel networks that provides more detailed information than the classical Flory-Rehner theory [Canal, T.; Peppas, N. A. J. Biomed. Mater. Res. 1989, 23, 1183-1193]. In this article, we illustrate our methodology by applying it to the phototerpolymerization of N-vinyl-2-pyrrolidone (NVP), ethylene glycol methyl ether acrylate (EGA), and poly(ethylene glycol) diacrylate (PEGDA). The experimental design includes 120 formulations using different fractions of the three monomers. Experimental measurements determined the mass swelling ratio and were coupled with theory to compute the internal dimensions of the network. Results demonstrate how the use of a macromeric crosslinker leads to unique network architectures not predicted by classical F-R theory, e.g., the figure shows that the mass between crosslinks predicted by F-R is actually distributed between branches and the backbone. The methodology presented offers a path toward optimizing/customizing hydrogel properties to suit the size and shape of the specific therapeutic targeted for drug delivery.
Collapse
Affiliation(s)
- Fernando T P Borges
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Georgia Papavasiliou
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| | - Fouad Teymour
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, United States
| |
Collapse
|
9
|
Chalard AE, Dixon AW, Taberner AJ, Malmström J. Visible-Light Stiffness Patterning of GelMA Hydrogels Towards In Vitro Scar Tissue Models. Front Cell Dev Biol 2022; 10:946754. [PMID: 35865624 PMCID: PMC9294371 DOI: 10.3389/fcell.2022.946754] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Variations in mechanical properties of the extracellular matrix occurs in various processes, such as tissue fibrosis. The impact of changes in tissue stiffness on cell behaviour are studied in vitro using various types of biomaterials and methods. Stiffness patterning of hydrogel scaffolds, through the use of stiffness gradients for instance, allows the modelling and studying of cellular responses to fibrotic mechanisms. Gelatine methacryloyl (GelMA) has been used extensively in tissue engineering for its inherent biocompatibility and the ability to precisely tune its mechanical properties. Visible light is now increasingly employed for crosslinking GelMA hydrogels as it enables improved cell survival when performing cell encapsulation. We report here, the photopatterning of mechanical properties of GelMA hydrogels with visible light and eosin Y as the photoinitiator using physical photomasks and projection with a digital micromirror device. Using both methods, binary hydrogels with areas of different stiffnesses and hydrogels with stiffness gradients were fabricated. Their mechanical properties were characterised using force indentation with atomic force microscopy, which showed the efficiency of both methods to spatially pattern the elastic modulus of GelMA according to the photomask or the projected pattern. Crosslinking through projection was also used to build constructs with complex shapes. Overall, this work shows the feasibility of patterning the stiffness of GelMA scaffolds, in the range from healthy to pathological stiffness, with visible light. Consequently, this method could be used to build in vitro models of healthy and fibrotic tissue and study the cellular behaviours involved at the interface between the two.
Collapse
Affiliation(s)
- Anaïs E. Chalard
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
- *Correspondence: Anaïs E. Chalard, ; Jenny Malmström,
| | - Alexander W. Dixon
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
| | - Andrew J. Taberner
- The Auckland Bioengineering Institute (ABI), The University of Auckland, Auckland, New Zealand
- Department of Engineering Science, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
| | - Jenny Malmström
- Department of Chemical and Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
- *Correspondence: Anaïs E. Chalard, ; Jenny Malmström,
| |
Collapse
|
10
|
Yang Y, Hu J, Liu J, Qin Y, Mao J, Liang Y, Wang G, Shen H, Wang C, Chen S. Rapid synthesis of biocompatible bilayer hydrogels via frontal polymerization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Yang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Jie Hu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Ji‐Dong Liu
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Ying Qin
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Jian Mao
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Yunzheng Liang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Gefei Wang
- Department of General Surgery, Jinling Hospital Nanjing Medical University Nanjing China
| | - Haixia Shen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Cai‐Feng Wang
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical Engineering, College of Chemical Engineering Nanjing Tech University Nanjing China
| |
Collapse
|
11
|
β-Sheet to Random Coil Transition in Self-Assembling Peptide Scaffolds Promotes Proteolytic Degradation. Biomolecules 2022; 12:biom12030411. [PMID: 35327603 PMCID: PMC8945919 DOI: 10.3390/biom12030411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 12/20/2022] Open
Abstract
One of the most desirable properties that biomaterials designed for tissue engineering or drug delivery applications should fulfill is biodegradation and resorption without toxicity. Therefore, there is an increasing interest in the development of biomaterials able to be enzymatically degraded once implanted at the injury site or once delivered to the target organ. In this paper, we demonstrate the protease sensitivity of self-assembling amphiphilic peptides, in particular, RAD16-I (AcN-RADARADARADARADA-CONH2), which contains four potential cleavage sites for trypsin. We detected that when subjected to thermal denaturation, the peptide secondary structure suffers a transition from β-sheet to random coil. We also used Matrix-Assisted Laser Desorption/Ionization-Time-Of-Flight (MALDI-TOF) to detect the proteolytic breakdown products of samples subjected to incubation with trypsin as well as atomic force microscopy (AFM) to visualize the effect of the degradation on the nanofiber scaffold. Interestingly, thermally treated samples had a higher extent of degradation than non-denatured samples, suggesting that the transition from β-sheet to random coil leaves the cleavage sites accessible and susceptible to protease degradation. These results indicate that the self-assembling peptide can be reduced to short peptide sequences and, subsequently, degraded to single amino acids, constituting a group of naturally biodegradable materials optimal for their application in tissue engineering and regenerative medicine.
Collapse
|
12
|
Khalili MH, Afsar A, Zhang R, Wilson S, Dossi E, Goel S, Impey SA, Aria AI. Thermal response of multi-layer UV crosslinked PEGDA hydrogels. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Li Q, Shen HX, Liu C, Wang CF, Zhu L, Chen S. Advances in Frontal Polymerization Strategy: from Fundamentals to Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101514] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Xu Z, Zhang L, Bentil SA, Bratlie KM. Gellan gum-gelatin viscoelastic hydrogels as scaffolds to promote fibroblast differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 129:112370. [PMID: 34579889 DOI: 10.1016/j.msec.2021.112370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/31/2021] [Accepted: 08/10/2021] [Indexed: 11/18/2022]
Abstract
Fabricating hydrogel scaffolds that are both bioreactive toward fibroblasts while still mechanically compatible with surrounding tissue is a major challenge in tissue engineering. This is because the outcome of scaffold implantation is largely determined by fibroblasts differentiating toward myofibroblasts, which is characterized by the expression of α-smooth muscle actin (α-SMA). Previous studies promoted fibroblasts differentiation by increasing scaffold substrate stiffness. However, the stiffness of scaffold has to be compatible with surrounding tissue, as mismatched stiffness may cause initial hyperplasia and inappropriate endothelial layer development. Therefore, we adjusted the hydrogel chemical component, and thus viscoelasticity to affect the mechano-signaling of fibroblasts and promote fibroblasts differentiation. Elastic gellan gum and viscoelastic gelatin were hybridized at different ratios to fabricate hydrogel scaffold with varied stress-relaxation. Vitronectin (VN) was used to further regulate the interaction between fibroblasts and the substrate. Fibroblast differentiation, characterized by α-SMA area per cell, increased from~3000-4000 μm2/cell on less viscoelastic gels to ~5000 μm2/cell on the most viscoelastic gel. Fibroblasts seeded on hydrogels had a slower migration rate on more viscoelastic hydrogels (slowest at 38 ± 14 μm/h) compared to the migration speed on less viscoelastic hydrogels (74 ± 20 μm/h). VN slowed the migration speed on all hydrogels. The organization of collagen deposited by fibroblasts cultured on the hydrogels was characterized by second harmonic generation (SHG), which showed that collagen was more organized (parallel) on more viscoelastic hydrogels. In summary, we provided a novel strategy to fabricate hydrogel scaffolds that can promote fibroblasts differentiation while keeping the stiffness compatible with blood vessels. The most viscoelastic hydrogel studied here meets these requirements best.
Collapse
Affiliation(s)
- Zihao Xu
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Ling Zhang
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Sarah A Bentil
- Department of Mechanical Engineering, Iowa State University, Ames, IA 50011, United States of America
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, United States of America; Department of Chemical & Biological Engineering, Iowa State University, Ames, Iowa 50011, United States of America.
| |
Collapse
|
15
|
Vernerey FJ, Lalitha Sridhar S, Muralidharan A, Bryant SJ. Mechanics of 3D Cell-Hydrogel Interactions: Experiments, Models, and Mechanisms. Chem Rev 2021; 121:11085-11148. [PMID: 34473466 DOI: 10.1021/acs.chemrev.1c00046] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hydrogels are highly water-swollen molecular networks that are ideal platforms to create tissue mimetics owing to their vast and tunable properties. As such, hydrogels are promising cell-delivery vehicles for applications in tissue engineering and have also emerged as an important base for ex vivo models to study healthy and pathophysiological events in a carefully controlled three-dimensional environment. Cells are readily encapsulated in hydrogels resulting in a plethora of biochemical and mechanical communication mechanisms, which recapitulates the natural cell and extracellular matrix interaction in tissues. These interactions are complex, with multiple events that are invariably coupled and spanning multiple length and time scales. To study and identify the underlying mechanisms involved, an integrated experimental and computational approach is ideally needed. This review discusses the state of our knowledge on cell-hydrogel interactions, with a focus on mechanics and transport, and in this context, highlights recent advancements in experiments, mathematical and computational modeling. The review begins with a background on the thermodynamics and physics fundamentals that govern hydrogel mechanics and transport. The review focuses on two main classes of hydrogels, described as semiflexible polymer networks that represent physically cross-linked fibrous hydrogels and flexible polymer networks representing the chemically cross-linked synthetic and natural hydrogels. In this review, we highlight five main cell-hydrogel interactions that involve key cellular functions related to communication, mechanosensing, migration, growth, and tissue deposition and elaboration. For each of these cellular functions, recent experiments and the most up to date modeling strategies are discussed and then followed by a summary of how to tune hydrogel properties to achieve a desired functional cellular outcome. We conclude with a summary linking these advancements and make the case for the need to integrate experiments and modeling to advance our fundamental understanding of cell-matrix interactions that will ultimately help identify new therapeutic approaches and enable successful tissue engineering.
Collapse
Affiliation(s)
- Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States.,Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Shankar Lalitha Sridhar
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, Boulder, Colorado 80309-0428, United States
| | - Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States
| | - Stephanie J Bryant
- Materials Science and Engineering Program, University of Colorado at Boulder, 4001 Discovery Drive, Boulder, Colorado 80309-613, United States.,Department of Chemical and Biological Engineering, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States.,BioFrontiers Institute, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, Colorado 80309-0596, United States
| |
Collapse
|
16
|
Liu J, Long H, Zeuschner D, Räder AFB, Polacheck WJ, Kessler H, Sorokin L, Trappmann B. Synthetic extracellular matrices with tailored adhesiveness and degradability support lumen formation during angiogenic sprouting. Nat Commun 2021; 12:3402. [PMID: 34099677 PMCID: PMC8184799 DOI: 10.1038/s41467-021-23644-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
A major deficit in tissue engineering strategies is the lack of materials that promote angiogenesis, wherein endothelial cells from the host vasculature invade the implanted matrix to form new blood vessels. To determine the material properties that regulate angiogenesis, we have developed a microfluidic in vitro model in which chemokine-guided endothelial cell sprouting into a tunable hydrogel is followed by the formation of perfusable lumens. We show that long, perfusable tubes only develop if hydrogel adhesiveness and degradability are fine-tuned to support the initial collective invasion of endothelial cells and, at the same time, allow for matrix remodeling to permit the opening of lumens. These studies provide a better understanding of how cell-matrix interactions regulate angiogenesis and, therefore, constitute an important step towards optimal design criteria for tissue-engineered materials that require vascularization. Current tissue engineering strategies lack materials that promote angiogenesis. Here the authors develop a microfluidic in vitro model in which chemokine-guided endothelial cell sprouting into a tunable hydrogel is followed by the formation of perfusable lumens to determine the material properties that regulate angiogenesis.
Collapse
Affiliation(s)
- Jifeng Liu
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hongyan Long
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Andreas F B Räder
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, USA
| | - Horst Kessler
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Lydia Sorokin
- Institute of Physiological Chemistry and Pathobiochemistry and Cells in Motion Interfaculty Centre (CiMIC), University of Münster, Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
| |
Collapse
|
17
|
He YJ, Santana MF, Staneviciute A, Pimentel MB, Yang F, Goes J, Kawaji K, Vaicik MK, Abdulhadi R, Hibino N, Papavasiliou G. Cell-Laden Gradient Hydrogel Scaffolds for Neovascularization of Engineered Tissues. Adv Healthc Mater 2021; 10:e2001706. [PMID: 33511790 PMCID: PMC8035317 DOI: 10.1002/adhm.202001706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Gradients in mechanical properties, physical architecture and biochemical composition exist in a variety of complex tissues, yet 3D in vitro models that enable investigation of these cues on cellular processes, especially those contributing to vascularization of engineered tissues are limited. Here, a photopolymerization approach to create cell-laden hydrogel biomaterials with decoupled and combined gradients in modulus, immobilized cell adhesive peptide (RGD) concentration, and proteolytic degradation enabling spatial encapsulation of vascular spheroids is reported to elucidate their impact on vascular sprouting in 3D culture. Vascular spheroids encapsulated in these gradient scaffolds exhibit spatial variations in total sprout length. Scaffolds presenting an immobilized RGD gradient promote biased vascular sprouting toward increasing RGD concentration. Importantly, biased sprouting is found to be dependent on immobilized RGD gradient characteristics, including magnitude and slope, with increases in these factors contributing to significant enhancements in biased sprouting responses. Conversely, reduction in biased sprouting responses is observed in combined gradient scaffolds possessing opposing gradients in RGD and modulus. The presented work is the first to demonstrate the use of a cell-laden biomaterial platform to systematically investigate the role of multiple scaffold gradients as well as gradient slope, magnitude and orientation on vascular sprouting responses in 3D culture.
Collapse
Affiliation(s)
- Yusheng J He
- Department of Surgery, University of Chicago, 5841 S Maryland Ave, Suit E500, Chicago, IL, 60637, USA
| | - Martin F Santana
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| | - Austeja Staneviciute
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| | - Marja B Pimentel
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| | - Feipeng Yang
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| | - Jacob Goes
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| | - Keigo Kawaji
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| | - Marcella K Vaicik
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| | - Rayan Abdulhadi
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| | - Narutoshi Hibino
- Department of Surgery, University of Chicago, 5841 S Maryland Ave, Suit E500, Chicago, IL, 60637, USA
| | - Georgia Papavasiliou
- Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn Street, Suite 314, Chicago, IL, 60616, USA
| |
Collapse
|
18
|
Li C, Torres VC, He Y, Xu X, Basheer Y, Papavasiliou G, Samkoe KS, Brankov JG, Tichauer KM. Intraoperative Detection of Micrometastases in Whole Excised Lymph Nodes Using Fluorescent Paired-Agent Imaging Principles: Identification of a Suitable Staining and Rinsing Protocol. Mol Imaging Biol 2021; 23:537-549. [PMID: 33591478 DOI: 10.1007/s11307-021-01587-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Correctly identifying nodal status is recognized as a critical prognostic factor in many cancer types and is essential to guide adjuvant treatment. Currently, surgical removal of lymph nodes followed by pathological examination is commonly performed as a standard-of-care to detect node metastases. However, conventional pathology protocols are time-consuming, yet less than 1 % of lymph node volumes are examined, resulting in a 30-60 % rate of missed micrometastases (0.2-2 mm in size). PROCEDURES This study presents a method to fluorescently stain excised lymph nodes using paired-agent molecular imaging principles, which entail co-administration of a molecular-targeted imaging agent with a suitable control (untargeted) agent, whereby any nonspecific retention of the targeted agent is accounted for by the signal from the control agent. Specifically, it was demonstrated that by dual-needle continuous infusion of either an antibody-based imaging agent pair (epidermal growth factor receptor (EGFR) targeted agent: IRDye-800CW labeled Cetuximab; control agent: IRDye-700DX-IgG) or an Affibody-based pair (EGFR targeted Affibody® agent: ABY-029; control agent IRDYe-700DX carboxylate) at 0.3 ml/min. RESULTS The results demonstrated the possibility to achieve >99 % sensitivity and > 95 % specificity for detection of a single micrometastasis (~0.2 mm diameter) in a whole lymph node within 22 min of tissue processing time. CONCLUSION The detection capabilities offer substantial improvements over existing intraoperative lymph node biopsy methods (e.g., frozen pathology has a micrometastasis sensitivity <20 %).
Collapse
Affiliation(s)
- Chengyue Li
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Veronica C Torres
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Yusheng He
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Xiaochun Xu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Yusairah Basheer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Georgia Papavasiliou
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Kimberley S Samkoe
- Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755, USA
| | - Jovan G Brankov
- Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Kenneth M Tichauer
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
19
|
Rismanian M, Saidi MS, Kashaninejad N. A microfluidic concentration gradient generator for simultaneous delivery of two reagents on a millimeter-sized sample. J Flow Chem 2020. [DOI: 10.1007/s41981-020-00104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Pradhan S, Banda OA, Farino CJ, Sperduto JL, Keller KA, Taitano R, Slater JH. Biofabrication Strategies and Engineered In Vitro Systems for Vascular Mechanobiology. Adv Healthc Mater 2020; 9:e1901255. [PMID: 32100473 PMCID: PMC8579513 DOI: 10.1002/adhm.201901255] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/24/2020] [Indexed: 12/17/2022]
Abstract
The vascular system is integral for maintaining organ-specific functions and homeostasis. Dysregulation in vascular architecture and function can lead to various chronic or acute disorders. Investigation of the role of the vascular system in health and disease has been accelerated through the development of tissue-engineered constructs and microphysiological on-chip platforms. These in vitro systems permit studies of biochemical regulation of vascular networks and parenchymal tissue and provide mechanistic insights into the biophysical and hemodynamic forces acting in organ-specific niches. Detailed understanding of these forces and the mechanotransductory pathways involved is necessary to develop preventative and therapeutic strategies targeting the vascular system. This review describes vascular structure and function, the role of hemodynamic forces in maintaining vascular homeostasis, and measurement approaches for cell and tissue level mechanical properties influencing vascular phenomena. State-of-the-art techniques for fabricating in vitro microvascular systems, with varying degrees of biological and engineering complexity, are summarized. Finally, the role of vascular mechanobiology in organ-specific niches and pathophysiological states, and efforts to recapitulate these events using in vitro microphysiological systems, are explored. It is hoped that this review will help readers appreciate the important, but understudied, role of vascular-parenchymal mechanotransduction in health and disease toward developing mechanotherapeutics for treatment strategies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Omar A. Banda
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Cindy J. Farino
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John L. Sperduto
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Keely A. Keller
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - Ryan Taitano
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
| | - John H. Slater
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, 161 Colburn Lab, Newark, DE, 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19711, USA
| |
Collapse
|
21
|
Yang G, Mahadik B, Choi JY, Fisher JP. Vascularization in tissue engineering: fundamentals and state-of-art. ACTA ACUST UNITED AC 2020; 2. [PMID: 34308105 DOI: 10.1088/2516-1091/ab5637] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Vascularization is among the top challenges that impede the clinical application of engineered tissues. This challenge has spurred tremendous research endeavor, defined as vascular tissue engineering (VTE) in this article, to establish a pre-existing vascular network inside the tissue engineered graft prior to implantation. Ideally, the engineered vasculature can be integrated into the host vasculature via anastomosis to supply nutrient to all cells instantaneously after surgery. Moreover, sufficient vascularization is of great significance in regenerative medicine from many other perspectives. Due to the critical role of vascularization in successful tissue engineering, we aim to provide an up-to-date overview of the fundamentals and VTE strategies in this article, including angiogenic cells, biomaterial/bio-scaffold design and bio-fabrication approaches, along with the reported utility of vascularized tissue complex in regenerative medicine. We will also share our opinion on the future perspective of this field.
Collapse
Affiliation(s)
- Guang Yang
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Bhushan Mahadik
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| | - Ji Young Choi
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America
| | - John P Fisher
- Tissue Engineering and Biomaterials Laboratory, Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, United States of America.,Center for Engineering Complex Tissues, University of Maryland, College Park, MD, United States of America
| |
Collapse
|