1
|
Cun JE, He Z, Fan X, Pan Q, Luo K, He B, Pu Y. Copper-Based Bio-Coordination Nanoparticle for Enhanced Pyroptosis-Cuproptosis Cancer Immunotherapy through Redox Modulation and Glycolysis Inhibition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409875. [PMID: 39757406 DOI: 10.1002/smll.202409875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Copper-based nanoparticles have garnered significant interest in cancer therapy due to their ability to induce oxidative stress and cuproptosis in cancer cells. However, their antitumor effectiveness is constrained by the dynamic redox balance and the metabolic shift between oxidative phosphorylation and glycolysis. Here, a polydopamine-coated copper-α-ketoglutaric acid (α-KG) coordination polymer nanoparticle (CKPP) is designed for combined pyroptosis-cuproptosis cancer immunotherapy by amplifying reactive oxygen species (ROS) production and regulating cellular metabolism. The intracellular redox imbalance is achieved through the synergistic effects of α-KG-induced mitochondrial metabolic reprogramming, photothermally enhanced superoxide dismutase-like activity of polydopamine, and glutathione depletion by copper ions. The multifaceted redox modulation results in a substantial increase in intracellular ROS levels, triggering oxidative stress and subsequent pyroptosis in cancer cells. Furthermore, α-KG shifts cellular metabolism from glycolysis to oxidative phosphorylation, thereby enhancing cuproptosis induced by copper ions. The combination of ROS dyshomeostasis and glycolysis inhibition results in a potent enhancement of pyroptosis-cuproptosis-mediated cancer therapy. In a murine model of colorectal cancer, CKPP exhibited a remarkable anticancer effect, achieving a tumor inhibition rate of 96.3% and complete tumor eradication in two out of five cases. Overall, this bio-engineered metal-organic nanocomposite demonstrates significant potential for treating cancer through combined pyroptosis-cuproptosis cancer immunotherapy.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Ziyun He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
2
|
Pan Q, Tang H, Xie L, Zhu H, Wu D, Liu R, He B, Pu Y. Recent advances in phototherapeutic nanosystems for oral cancer. J Mater Chem B 2024; 12:11560-11572. [PMID: 39420670 DOI: 10.1039/d4tb01919a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Oral cancer is a significant global health challenge, with conventional treatments often resulting in substantial side effects and limited effectiveness. Phototherapy, encompassing photodynamic and photothermal therapy, presents a promising alternative by selectively targeting and destroying cancer cells with minimal systemic toxicity. However, issues such as insufficient light penetration and limited tumor specificity have restricted their clinical use. Recent advancements in nanosystems have addressed these challenges by enhancing the solubility, stability, and tumor-targeting capabilities of phototherapy agents. This review delves into the latest advancements in phototherapeutic nanosystems for oral cancer, focusing on the design of innovative nanoformulations and targeted delivery strategies. Additionally, it summarizes recent approaches to enhance the efficacy of photodynamic therapy for oral cancer and examines phototherapy-based combination treatments. These advancements hold the promise of significantly improving treatment outcomes while minimizing side effects in oral cancer therapy.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Haofu Tang
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Huang Zhu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Med-X Center for Materials, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Luan M, Feng Z, Zhu W, Xing Y, Ma X, Zhu J, Wang Y, Jia Y. Mechanism of metal ion-induced cell death in gastrointestinal cancer. Biomed Pharmacother 2024; 174:116574. [PMID: 38593706 DOI: 10.1016/j.biopha.2024.116574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/11/2024] Open
Abstract
Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.
Collapse
Affiliation(s)
- Muhua Luan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Zhaotian Feng
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan 250013, People's Republic of China; Research Center of Basic Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, People's Republic of China; Department of Medical Laboratory, Weifang Medical University, Weifang 261053, People's Republic of China.
| |
Collapse
|
4
|
Gao Y, Cai X, Zou W, Tang X, Jiang L, Hao J, Zheng Y, Ye X, Ying T, Li A. Self-supplying Cu 2+ and H 2O 2 synergistically enhancing disulfiram-mediated melanoma chemotherapy. RSC Adv 2024; 14:13180-13189. [PMID: 38655468 PMCID: PMC11036371 DOI: 10.1039/d4ra01075b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Disulfiram (DSF) can target and kill cancer cells by disrupting cellular degradation of extruded proteins and has therefore received particular attention for its tumor chemotherapeutic potential. However, the uncontrollable Cu2+/DSF ratio reduces the efficacy of DSF-mediated chemotherapy. Herein, self-supplying Cu2+ and oxidative stress synergistically enhanced DSF-mediated chemotherapy is proposed for melanoma-based on PVP-coated CuO2 nanodots (CPNDs). Once ingested, DSF is broken down to diethyldithiocarbamate (DTC), which is delivered into a tumor via the circulation. Under the acidic tumor microenvironment, CPNDs produce sufficient Cu2+ and H2O2. DTC readily chelates Cu2+ ions to generate CuET, which shows antitumor efficacy. CuET-mediated chemotherapy can be enhanced by H2O2. Sufficient Cu2+ generation can guarantee the maximum efficacy of DSF-mediated chemotherapy. Furthermore, released Cu2+ can be reduced to Cu+ by glutathione (GSH) and O2- in tumor cells, and Cu+ can react with H2O2 to generate toxic hydroxyl radicals (·OH) via a Fenton-like reaction, promoting the efficacy of CuET. Therefore, this study hypothesizes that employing CPNDs instead of Cu2+ ions could enhance DSF-mediated melanoma chemotherapy, providing a simple but efficient strategy for achieving chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Yingqian Gao
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- Department of Ultrasound in Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing Jiangsu China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weijuan Zou
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiuzhen Tang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xinhua Ye
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ao Li
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
5
|
Lahmadi S, Alamery S, Beagan A, Alotaibi K, Alswieleh A. Advanced hybrid silica nanoparticles with pH-responsive diblock copolymer brushes: optimized design for controlled doxorubicin loading and release in cancer therapy. RSC Adv 2024; 14:8819-8828. [PMID: 38495996 PMCID: PMC10941263 DOI: 10.1039/d4ra00282b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
This study delves into the development, characterization, and application of modified mesoporous silica nanoparticles (MSNs) for targeted drug delivery in cancer therapy. MSNs were functionalized with poly(2-(diisopropylamino)ethyl methacrylate) (PDPA) and poly(glycidyl methacrylate) (PGMA), and further modified with cross-linkers DAE and Ornithine. Characterization using FT-IR, SEM, TEM, DLS, and XPS confirmed the successful surface modifications, revealing particle sizes primarily within the 63-94 nm range. The MSNs demonstrated a pH-responsive behavior, crucial for smart drug delivery. Loading and release studies using Doxorubicin (DOX) showed a controlled release, with an 8 μg mg-1 loading capacity. Cytotoxicity assays on Caco2 colon cancer cells revealed that unloaded nano-systems, at concentrations above 45 μM, resulted in approximately 60% cell death, indicating inherent anti-cancer properties. However, variations in cytotoxic effects were observed in drug-loaded MSNs, with some modifications showing reduced anti-cancer activity. These findings highlight the potential of MSNs in drug delivery and cancer treatment, emphasizing the importance of nanoparticle design in therapeutic efficacy.
Collapse
Affiliation(s)
- Shatha Lahmadi
- Department of Chemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Salman Alamery
- Department of Biochemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Abeer Beagan
- Department of Chemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Khalid Alotaibi
- Department of Chemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| | - Abdullah Alswieleh
- Department of Chemistry, College of Science, King Saud University Riyadh Kingdom of Saudi Arabia
| |
Collapse
|
6
|
Zhang P, Zhou C, Ren X, Jing Q, Gao Y, Yang C, Shen Y, Zhou Y, Hu W, Jin F, Xu H, Yu L, Liu Y, Tong X, Li Y, Wang Y, Du J. Inhibiting the compensatory elevation of xCT collaborates with disulfiram/copper-induced GSH consumption for cascade ferroptosis and cuproptosis. Redox Biol 2024; 69:103007. [PMID: 38150993 PMCID: PMC10788306 DOI: 10.1016/j.redox.2023.103007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignant tumors and the fourth leading cause of cancer-related death globally, which is characterized by complicated pathophysiology, high recurrence rate, and poor prognosis. Our previous study has demonstrated that disulfiram (DSF)/Cu could be repurposed for the treatment of HCC by inducing ferroptosis. However, the effectiveness of DSF/Cu may be compromised by compensatory mechanisms that weaken its sensitivity. The mechanisms underlying these compensatory responses are currently unknown. Herein, we found DSF/Cu induces endoplasmic reticulum stress with disrupted ER structures, increased Ca2+ level and activated expression of ATF4. Further studies verified that DSF/Cu induces both ferroptosis and cuproptosis, accompanied by the depletion of GSH, elevation of lipid peroxides, and compensatory increase of xCT. Comparing ferroptosis and cuproptosis, it is interesting to note that GSH acts at the crossing point of the regulation network and therefore, we hypothesized that compensatory elevation of xCT may be a key aspect of the therapeutic target. Mechanically, knockdown of ATF4 facilitated the DSF/Cu-induced cell death and exacerbated the generation of lipid peroxides under the challenge of DSF/Cu. However, ATF4 knockdown was unable to block the compensatory elevation of xCT and the GSH reduction. Notably, we found that DSF/Cu induced the accumulation of ubiquitinated proteins, promoted the half-life of xCT protein, and dramatically dampened the ubiquitination-proteasome mediated degradation of xCT. Moreover, both pharmacologically and genetically suppressing xCT exacerbated DSF/Cu-induced cell death. In conclusion, the current work provides an in-depth study of the mechanism of DSF/Cu-induced cell death and describes a framework for the further understanding of the crosstalk between ferroptosis and cuproptosis. Inhibiting the compensatory increase of xCT renders HCC cells more susceptible to DSF/Cu, which may provide a promising synergistic strategy to sensitize tumor therapy and overcome drug resistance, as it activates different programmed cell death.
Collapse
Affiliation(s)
- Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Xueying Ren
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chen Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Wanye Hu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Feifan Jin
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haifeng Xu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Lingyan Yu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yingchao Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China; Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
7
|
Meng X, Wu J, Hu Z, Zheng X. Intelligent responsive copper-diethyldithiocarbamate-based multifunctional nanomedicine for photothermal-augmented synergistic cancer therapy. J Mater Chem B 2024; 12:1285-1295. [PMID: 38189142 DOI: 10.1039/d3tb02491a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The design of multifunctional nanomedicine through the combination of multimodal treatments to achieve the optimal antitumor effect is essential for cancer therapy. Herein, we design and develop a multifunctional theranostic nanoplatform using an iron ion-doxorubicin (DOX) nanoscale coordination polymer (Fe/DOX NCP) as a shell coating on the surface of polyvinyl pyrrolidone (PVP) stabilized copper-diethyldithiocarbamate nanoparticles (Cu(DDC)2 NPs) for combined tumor chemo-/photothermal/chemodynamic therapy. The obtained Cu(DDC)2@Fe/DOX NPs display pH/laser dual-responsive degradation behavior and also exhibit favorable photothermal performance. Under 808 nm laser irradiation, Cu(DDC)2@Fe/DOX NPs can convert light into heat, which not only kills tumor cells via hyperthermia in photothermal therapy (PTT), but also accelerates the degradation of Fe/DOX NCPs to release Fe3+ and DOX. The liberated Fe3+ can be used to catalyze hydrogen peroxide via the Fenton reaction to produce highly toxic hydroxyl radicals (˙OH) in chemodynamic therapy (CDT). The released DOX and the exposed Cu(DDC)2 can cause significant cell death in combined chemotherapy via a superimposed effect. In vitro and in vivo results prove that Cu(DDC)2@Fe/DOX NPs with laser irradiation present remarkable anticancer performances in hyperthermia-enhanced chemo-/CDT. Therefore, this study provides a new strategy for highly efficient synergistic cancer therapy.
Collapse
Affiliation(s)
- Xiangyu Meng
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Jiayi Wu
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, P. R. China
| | - Zunfu Hu
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- School of Materials Science and Engineering, Linyi University, Linyi 276000, P. R. China
| | - Xiuwen Zheng
- Key Laboratory of Advanced Biomaterials and Nanomedicine in Universities of Shandong, Linyi University, Linyi 276000, P. R. China.
- Qilu Normal University, Jinan, 250200, P. R. China
| |
Collapse
|
8
|
Yin Y, Gao L, Sun P, Zeng L, Zhao Q, Chen S, Liu J, Wang L. pH/ROS dual stimuli-responsive anionic flexible supramolecular organic frameworks for synergistic therapy. Acta Biomater 2023; 172:395-406. [PMID: 37866724 DOI: 10.1016/j.actbio.2023.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Supramolecular organic frameworks (SOFs) have emerged as a promising class of organic porous materials with vast potential as nanocarriers for combination therapy. Here, we successfully construct an anionic flexible supramolecular organic framework (TPP-SOF) by leveraging multiple host-guest interactions. TPP-SOF is fabricated by the hierarchical orthogonal assembly between anionic water-soluble dimacrocyclic host (P5CD), porphyrin photosensitizers (TPP), and ROS-sensitive thioketal linked adamantane dimer (Ada-S-Ada). TPP-SOF exhibits pH-dependent activation of 1O2 production, which further facilitates the cleavage of Ada-S-Ada linker and promotes the disintegration of the framework. Moreover, leveraging electrostatic and hydrophobic interactions, the anionic TPP-SOF serves as an effective platform for loading cationic photosensitizer IR780 and chemotherapeutic prodrug PhenPt(IV), leading to the formation of supramolecular nanoparticles (IR780/Pt@TPP-SOF) for synergistic therapy. The obtained nanoparticles exhibit good stability, efficient generation of 1O2, and photothermal performance. In vitro and in vivo studies indicate that IR780/Pt@TPP-SOF exhibits remarkable synergistic chemo/PDT/PTT effects under 808 and 660 nm light irradiation. This study showcases a deep insight for the development of SOFs and a new approach for delivering cationic drugs and constructing synergistic combination therapy systems. STATEMENT OF SIGNIFICANCE: In this work, a pH/ROS-responsive anionic flexible supramolecular organic framework, TPP-SOF, was innovatively designed by the hierarchical orthogonal assembly, to co-deliver cationic photosensitizer IR780 and prodrug PhenPt(IV) for synergistic cancer therapy. The drug-loaded TPP-SOF is termed IR780/Pt@TPP-SOF, in which the photoactivity of porphyrin within TPP-SOF could be activated under acidic conditions, the 1O2 generated by the photosensitizers could break the thioketal bonds in Ada-S-Ada, leading to the disassembly of the framework and releasing the drugs. This supramolecular drug delivery system displays good biocompatibility and exhibits remarkable synergistic chemo/PDT/PTT effects.
Collapse
Affiliation(s)
- Yongfei Yin
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Liping Gao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Penghao Sun
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China
| | - Lingxiu Zeng
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, Hubei 430071, China.
| | - Shigui Chen
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| | - Jing Liu
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan, Hubei 430071, China; Hubei Clinical Center & Key Lab of Intestinal & Colorectal Diseases, Wuhan, Hubei 430071, China.
| | - Lu Wang
- The Institute for Advanced Studies, Wuhan University, 299 Bayi Road, Wuhan, Hubei 430072, China.
| |
Collapse
|
9
|
Yang Y, Zhu Y, Wang K, Miao Y, Zhang Y, Gao J, Qin H, Zhang Y. Activation of autophagy by in situ Zn 2+ chelation reaction for enhanced tumor chemoimmunotherapy. Bioact Mater 2023; 29:116-131. [PMID: 37456582 PMCID: PMC10345225 DOI: 10.1016/j.bioactmat.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023] Open
Abstract
Chemotherapy can induce a robust T cell antitumor immune response by triggering immunogenic cell death (ICD), a process in which tumor cells convert from nonimmunogenic to immunogenic forms. However, the antitumor immune response of ICD remains limited due to the low immunogenicity of tumor cells and the immunosuppressive tumor microenvironment. Although autophagy is involved in activating tumor immunity, the synergistic role of autophagy in ICD remains elusive and challenging. Herein, we report an autophagy amplification strategy using an ion-chelation reaction to augment chemoimmunotherapy in cancer treatments based on zinc ion (Zn2+)-doped, disulfiram (DSF)-loaded mesoporous silica nanoparticles (DSF@Zn-DMSNs). Upon pH-sensitive biodegradation of DSF@Zn-DMSNs, Zn2+ and DSF are coreleased in the mildly acidic tumor microenvironment, leading to the formation of toxic Zn2+ chelate through an in situ chelation reaction. Consequently, this chelate not only significantly stimulates cellular apoptosis and generates damage-associated molecular patterns (DAMPs) but also activates autophagy, which mediates the amplified release of DAMPs to enhance ICD. In vivo results demonstrated that DSF@Zn-DMSNs exhibit strong therapeutic efficacy via in situ ion chelation and possess the ability to activate autophagy, thus enhancing immunotherapy by promoting the infiltration of T cells. This study provides a smart in situ chelation strategy with tumor microenvironment-responsive autophagy amplification to achieve high tumor chemoimmunotherapy efficacy and biosafety.
Collapse
Affiliation(s)
- Yang Yang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| | - Yefei Zhu
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Kairuo Wang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yunqiu Miao
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, PR China
| | - Huanlong Qin
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
- School of Medicine, Shanghai University, Shanghai, 200444, PR China
| |
Collapse
|
10
|
Yang Y, Li M, Chen G, Liu S, Guo H, Dong X, Wang K, Geng H, Jiang J, Li X. Dissecting copper biology and cancer treatment: ‘Activating Cuproptosis or suppressing Cuproplasia’. Coord Chem Rev 2023; 495:215395. [DOI: 10.1016/j.ccr.2023.215395] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
|
11
|
Yang S, Song Y, Hu Y, Chen H, Yang D, Song X. Multifaceted Roles of Copper Ions in Anticancer Nanomedicine. Adv Healthc Mater 2023; 12:e2300410. [PMID: 37027332 DOI: 10.1002/adhm.202300410] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Indexed: 04/08/2023]
Abstract
The significantly increased copper level in tumor tissues and serum indicates the close association of copper ions with tumor development, making copper ions attractive targets in the development of novel tumor treatment methods. The advanced nanotechnology developed in the past decades provides great potential for tumor therapy, among which Cu-based nanotherapeutic systems have received greater attention. Herein, the multifaceted roles of copper ions in cancer progression are summarized and the recent advances in the copper-based nanostructures or nanomedicines for different kinds of tumor therapies including copper depletion therapy, copper-based cytotoxins, copper-ion-based chemodynamic therapy and its combination with other treatments, and copper-ion-induced ferroptosis and cuproptosis activation are discussed. Furthermore, the perspectives for the further development of copper-ion-based nanomedicines for tumor therapy and clinic translation are presented by the authors.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
| | - Yingnan Song
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Yanling Hu
- Nanjing Polytechnic Institute, 210048, Nanjing, China
| | - HongJin Chen
- Department of Cardiac Surgery, Guizhou Institute of Precision Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550009, P. R. China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, Guizhou, 550025, P. R. China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 211816, 30 South Puzhu Road, Nanjing, China
| | - Xuejiao Song
- School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), 211816, 30 South Puzhu Road, Nanjing, China
| |
Collapse
|
12
|
He Y, Yang M, Yang L, Hao M, Wang F, Li X, Taylor EW, Zhang X, Zhang J. Preparation and anticancer actions of CuET-nanoparticles dispersed by bovine serum albumin. Colloids Surf B Biointerfaces 2023; 226:113329. [PMID: 37156027 DOI: 10.1016/j.colsurfb.2023.113329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
Diethyldithiocarbamate-copper complex (CuET) shows promising anticancer effect; nonetheless, preclinical evaluations of CuET are hindered due to poor solubility. We prepared bovine serum albumin (BSA)-dispersed CuET nanoparticles (CuET-NPs) to overcome the shortcoming. Results from a cell-free redox system demonstrated that CuET-NPs reacted with glutathione, leading to form hydroxyl radical. Glutathione-mediated production of hydroxyl radicals may help explain why CuET selectively kills drug-resistant cancer cells with higher levels of glutathione. CuET-NPs dispersed by autoxidation products of green tea epigallocatechin gallate (EGCG) also reacted with glutathione; however, the autoxidation products eradicated hydroxyl radicals; consequently, such CuET-NPs exhibited largely compromised cytotoxicity, suggesting that hydroxyl radical is a crucial mediator of CuET anticancer activity. In cancer cells, BSA-dispersed CuET-NPs exhibited cytotoxic activities equivalent to CuET and induced protein poly-ubiquitination. Moreover, the reported powerful inhibition of CuET on colony formation and migration of cancer cells could be replicated by CuET-NPs. These similarities demonstrate BSA-dispersed CuET-NPs is identical to CuET. Thus, we advanced to pilot toxicological and pharmacological evaluations. CuET-NPs caused hematologic toxicities in mice and induced protein poly-ubiquitination and apoptosis of cancer cells inoculated in mice at a defined pharmacological dose. Given high interest in CuET and its poor solubility, BSA-dispersed CuET-NPs pave the way for preclinical evaluations.
Collapse
Affiliation(s)
- Yufeng He
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mingchuan Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Lumin Yang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Meng Hao
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Fuming Wang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Xiuli Li
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China
| | - Ethan Will Taylor
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC 27402, USA
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jinsong Zhang
- Laboratory of Redox Biology, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea & Food Science, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
13
|
Xiao C, Li J, Wang X, Li S, Xu C, Zhang Z, Hua A, Ding ZY, Zhang BX, Yang X, Li Z. Hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals for cancer therapy. J Control Release 2023; 356:288-305. [PMID: 36870542 DOI: 10.1016/j.jconrel.2023.02.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Cancer stem cells (CSCs) have been recognized as the culprit for tumor progression, treatment resistance, metastasis, and recurrence while redox homeostasis represents the Achilles' Heel of CSCs. However, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs. Here, we report hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@HES NPs), which conspicuously suppress CSCs not only in vitro but also in numerous tumor models in vivo. Furthermore, CuET@HES NPs effectively inhibit CSCs in fresh tumor tissues surgically excised from hepatocellular carcinoma patients. Mechanistically, we uncover that hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanocrystals via copper‑oxygen coordination interactions, thereby promoting copper-diethyldithiocarbamate colloidal stability, cellular uptake, intracellular reactive oxygen species production, and CSCs apoptosis. As all components are widely used in clinics, CuET@HES NPs represent promising treatments for CSCs-rich solid malignancies and hold great clinical translational potentials. This study has critical implications for design of CSCs targeting nanomedicines.
Collapse
Affiliation(s)
- Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiayuan Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xing Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Shiyou Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Chen Xu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhijie Zhang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ao Hua
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Ze-Yang Ding
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Bi-Xiang Zhang
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; GBA Research Innovation Institute for Nanotechnology, Guangdong 510530, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Bioinformatics and Molecular Imaging Key Laboratory, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan 430074, PR China; Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
14
|
Zhou J, Yu Q, Song J, Li S, Li XL, Kang BK, Chen HY, Xu JJ. Photothermally Triggered Copper Payload Release for Cuproptosis-Promoted Cancer Synergistic Therapy. Angew Chem Int Ed Engl 2023; 62:e202213922. [PMID: 36585379 DOI: 10.1002/anie.202213922] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
Cuproptosis is a new form of programmed cell death and exhibits enormous potential in cancer treatment. However, reducing the undesirable Cu ion release in normal tissue and maximizing the copper-induced therapeutic effect in cancer sites are two main challenges. In this study, we constructed a photothermally triggered nanoplatform (Au@MSN-Cu/PEG/DSF) to realize on-demand delivery for synergistic therapy. The released disulfiram (DSF) chelated with Cu2+ in situ to generate highly cytotoxic bis(diethyldithiocarbamate)copper (CuET), causing cell apoptosis, and the formed Cu+ species promoted toxic mitochondrial protein aggregation, leading to cell cuproptosis. Synergistic with photothermal therapy, Au@MSN-Cu/PEG/DSF could effectively kill tumor cells and inhibit tumor growth (inhibition rate up to 80.1 %). These results provide a promising perspective for potential cancer treatment based on cuproptosis, and may also inspire the design of advanced nano-therapeutic platforms.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Qiao Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Juan Song
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Shan Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Xiang-Ling Li
- College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, P.R. China
| | - Bin K Kang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P.R. China
| |
Collapse
|
15
|
DDTC-Cu(I) based metal-organic framework (MOF) for targeted melanoma therapy by inducing SLC7A11/GPX4-mediated ferroptosis. Colloids Surf B Biointerfaces 2023; 225:113253. [PMID: 36934611 DOI: 10.1016/j.colsurfb.2023.113253] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Disulfiram (DSF), a drug for alcohol withdrawal, has attracted extensive scientific attention due to its potential to treat cancer. The metabolite of DSF, diethyl dithiocarbamate (DDTC), forms a Cu-DDTC complex in vivo with copper ions, which has been shown to be a proteasome inhibitor with high antitumor activity. However, the in vivo stability of Cu-DDTC complexes remains a challenge. In this study, the nanomedicine Cu-BTC@DDTC with high antitumor activity was prepared by using the nanoscale metal-organic framework (MOF) Cu-BTC as a carrier and loading diethyldithiocarbamate (DDTC) through coordination interaction. The results showed that Cu-BTC@DDTC had high drug loading and adequate stability, and exhibited DDTC-Cu(I) chemical valence characteristics and polycrystalline structure features. In vitro cytocompatibility investigation and animal xenograft tumor model evaluation demonstrated the anti-cancer potential of Cu-BTC@DDTC, especially the combination of Cu-BTC@DDTC with low-dose cisplatin showed significant antitumor effect and biosafety. This study provides a feasible protocol for developing antitumor drugs based on the drug repurposing strategy.
Collapse
|
16
|
Xu J, Tang X, Yang X, Zhao MX. pH and GSH dual-responsive drug-controlled nanomicelles for breast cancer treatment. Biomed Mater 2023; 18. [PMID: 36720160 DOI: 10.1088/1748-605x/acb7bb] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
We developed a pH/glutathione (GSH) dual-responsive smart nano-drug delivery system to achieve targeted release of a chemotherapeutic drug at breast tumor site. Doxorubicin (DOX) was linked to polyethylene glycol (PEG) through cis-aconitic anhydride (CA) and disulfide bonds (SS) to obtain the PEG-SS-CA-DOX prodrug, which spontaneously assembled into nanomicelles with a particle size of 48 ± 0.45 nm. PEG-SS-CA-DOX micelles achieved an efficient and rapid release of DOX under dual stimulation by weak acidic pH and high GSH content of tumors, with the release amount reaching 88.0% within 48 h. Cellular uptake experiments demonstrated that PEG-SS-CA-DOX micelles could efficiently transport DOX into cells and rapidly release it in the tumor microenvironment. In addition,in vivoantitumor experiments showed that PEG-SS-CA-DOX had a high inhibition rate of 70% against 4T1 breast cancer cells along with good biosafety. In conclusion, dual-responsive smart nanomicelles can achieve tumor-targeted drug delivery and specific drug release, thus improving therapeutic efficacy of drugs.
Collapse
Affiliation(s)
- Jingjing Xu
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Xianjiao Tang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Xiaojing Yang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| | - Mei-Xia Zhao
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University, Kaifeng 475004, People's Republic of China
| |
Collapse
|
17
|
Nejabat M, Samie A, Ramezani M, Alibolandi M, Abnous K, Taghdisi SM. An Overview on Gold Nanorods as Versatile Nanoparticles in Cancer Therapy. J Control Release 2023; 354:221-242. [PMID: 36621644 DOI: 10.1016/j.jconrel.2023.01.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/10/2023]
Abstract
Gold nanorods (GNRs/AuNRs) are a group of gold nanoparticles which their simple surface chemistry allows for various surface modifications, providing the possibility of using them in the fabrication of biocompatible and functional nano-agents for cancer therapy. AuNRs, moreover, exhibit a maximum absorption of longitudinal localized surface plasmon resonance (LSPR) in the near-infrared (NIR) region which overlaps with NIR bio-tissue 'window' suggesting that they are proper tools for thermal ablation of cancer cells. AuNRs can be used for induction of mono or combination therapies by administering various therapeutic approaches such as photothermal therapy (PTT), photodynamic therapy (PDT), chemotherapy (CT), radiotherapy (RT), and gene therapy (GT). In this review, anticancer therapeutic capacities of AuNRs along with different surface modifications are summarized comprehensively. The roles of AuNRs in fabrication of various nano-constructs are also discussed.
Collapse
Affiliation(s)
- Masoud Nejabat
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Qiu X, Li Z, Wu Y, Binder WH, Chen S, Zhu J. Core-Coordinated Elliptic Polymer Nanoparticles Loading Copper(II) and Chlorambucil for Cooperative Chemodynamic/Chemotherapy. Biomacromolecules 2022; 23:4519-4531. [PMID: 36250649 DOI: 10.1021/acs.biomac.2c00656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Chemodynamic therapy (CDT) reflects an innovative cancer treatment modality; however, to enhance its relatively low therapeutic efficiency, rational combination with extra therapeutic modes is highly appreciated. Here, core-coordinated amphiphilic, elliptic polymer nanoparticles (Cu/CBL-POEGEA NPs) are constructed via the self-assembly of a glutathione (GSH)-responsive polymer-drug conjugate, bearing side-chain acylthiourea (ATU) motifs which behave as ligands capable of coordinating Cu(II), such a design is featured by combined chemo (CT)/CDT with dual GSH depletion collectively triggered by the Cu(II) reduction reaction and disulfide bond breakage. To do so, an amphiphilic random copolymer poly[oligo(ethylene glycol)ethyl acrylate-co-thiourea] [P(OEGEA-co-ATU)] is synthesized, followed by conjugation of chlorambucil (CBL) to ATU motifs linked via a disulfide bond, thus yielding the targeted P[OEGEA-co-(ATU-g-CBL)]. In such a system, hydrophilic POEGEA serves as the biocompatible section and ATU motifs coordinate Cu(II), resulting in core-coordinated elliptic Cu/CBL-POEGEA NPs. Benefitting from the GSH-induced reduction reaction, Cu(II) is converted into Cu(I) and subsequently react with endogenous H2O2 to create •OH, realizing GSH-depletion-promoted CDT. Additionally, the disulfide bond endows GSH-responsive CBL release and provokes further GSH decline, finally realizing combined CDT/CT toward enhancing antitumor outcomes, and in vitro as well as in vivo studies indeed reveal remarkable efficacy. Such a system can provide valuable advantages to create novel nanomedicines toward cascade antitumor therapy.
Collapse
Affiliation(s)
- Xiaoyang Qiu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zeke Li
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yanggui Wu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wolfgang H Binder
- Chair of Macromolecular Chemistry, Faculty of Natural Science II (Chemistry, Physics and Mathematics), Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, Halle (Saale) D-06120, Germany
| | - Senbin Chen
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
19
|
Buffet-style Cu(II) for enhance disulfiram-based cancer therapy. J Colloid Interface Sci 2022; 624:734-746. [PMID: 35696791 DOI: 10.1016/j.jcis.2022.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 01/26/2023]
Abstract
Studies have shown that disulfiram (DSF) can combine with Cu2+ to form bis(N, N-diethyldithiocarbamate) copper(II) complex (CuET) as antitumor drugs. However, there is insufficient endogenous Cu2+ dose to eradicate cancer cells selectively. Inspired by the buffet, we use Cu2+ doped hollow zeolitic imidazolate framework nanoparticles (HZIFCu) as the carrier and equipped with DSF and indocyanine green (ICG) and targeted by folic acid (FA) (D&I@HZIFCu-FA) to enhance DSF-based cancer therapy. D&I@HZIFCu-FA could effectively supply Cu2+ by a buffet-style, assisting the "DSF-to-CuET" transformation in the tumor. Additionally, self-supply Cu2+ could convert H2O2 into ·OH by triggering a Fenton-like reaction for chemo-dynamic therapy, and ICG achieves photothermal therapy for tumors under laser irradiation. This work provides a buffet-style for Cu2+ to make DSF a strong candidate for cancer treatment by combining chemotherapy, chemo-dynamic therapy, and photothermal therapy and inspires more research about its applications in tumor therapy.
Collapse
|
20
|
Copper-olsalazine metal-organic frameworks as a nanocatalyst and epigenetic modulator for efficient inhibition of colorectal cancer growth and metastasis. Acta Biomater 2022; 152:495-506. [PMID: 36087871 DOI: 10.1016/j.actbio.2022.08.076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022]
Abstract
Despite the extensive explorations of nanoscale metal-organic frameworks (nanoMOFs) in drug delivery, the intrinsic bioactivity of nanoMOFs, such as anticancer activity, is severely underestimated owing to the overlooked integration of the hierarchical components including nanosized MOFs and molecular-level organic ligands and metal-organic complexes. Herein, we propose a de novo design of multifunctional bioactive nanoMOFs ranging from molecular to nanoscale level, and demonstrate this proof-of-concept by a copper-olsalazine (Olsa, a clinically approved drug for inflammatory bowel disease, here as a bioactive linker and DNA hypomethylating agent) nanoMOF displaying a multifaceted anticancer mechanism: (1) Cu-Olsa nanoMOF-mediated redox dyshomeostasis for enhanced catalytic tumor therapy, (2) targeting downregulation of cyclooxygenase-2 by the organic complex of Cu2+ and Olsa, and (3) Olsa-mediated epigenetic regulation. Cu-Olsa nanoMOF displayed an enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors, improved the expression of tumor suppressors TIMP3 and AXIN2 by epigenetic modulation, and fulfilled selective inhibition of colorectal cancer cells over normal cells. The hyaluronic acid-modified nanoMOF further verified the efficient suppression of CT26 colorectal tumor growth and metastasis in murine models. Overall, these results suggest that Olsa-based MOF presents a platform of epigenetic therapy-synergized nanomedicine for efficient cancer treatment and provides a powerful strategy for the design of intrinsically bioactive nanoMOFs. STATEMENT OF SIGNIFICANCE: Metal-organic frameworks (MOFs) with intrinsic bioactivities such as anticancer and antibacterial activity are of great interest. Herein, we reported a bioactive copper-olsalazine (Cu-Olsa) nanoMOF as a nanodrug for colorectal cancer treatment. This nanoMOF per se displayed enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors for nanocatalytic tumor therapy. Upon dissociation into small molecular copper-organic complex and olsalazine in cancer cells, COX-2 inhibition and epigenetic modulation were fulfilled for selective inhibition of colorectal cancer growth and metastasis.
Collapse
|
21
|
Disulfiram: A Food and Drug Administration-approved multifunctional role in synergistically drug delivery systems for tumor treatment. Int J Pharm 2022; 626:122130. [PMID: 36007849 DOI: 10.1016/j.ijpharm.2022.122130] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 10/15/2022]
Abstract
Disulfiram (DSF), a Food and Drug Administration (FDA)-approved drug for the treatment of alcoholism, has been found to have antitumor activity. DSF showed better antitumor efficiency when it was used in combination with certain antitumor drugs. DSF plays an important role in cancer treatment. It has been used as multidrug resistance (MDR) modulator to reverse MDR and can also combine with copper ions (Cu2+), which will produce copper diethyldithiocarbamate (Cu[DDC]2) complex with antitumor activity. The synergistic targeted drug delivery for cancer treatment based on DSF, especially the combination with exogenous Cu2+ and its forms of administration, has attracted extensive attention in the biomedical field. In this review, we summarize these synergistic delivery systems, in the hope that they will contribute to the continuous optimization and development of more advanced drug delivery systems. Furthermore, we discuss the current limitation and future directions of DSF-based drug delivery systems in the field of tumor therapy. Hopefully, our work may inspire further innovation of DSF-based antitumor drug delivery systems.
Collapse
|
22
|
Ren M, Zhu X, Wang J, Chen L, Cai L, Zhang J, Wang L, Yu Z, Zhou H. Interface-Engineered Mesoporous FeB with Programmed Drug Release for Synergistic Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36438-36450. [PMID: 35925798 DOI: 10.1021/acsami.2c09419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The pursuit of mesoporous Fe-based nanoagents addresses the field of developing alternative Fe-bearing nanoagents for synergistic cancer therapy with the expectation that the use of an essential element may avoid the issues raised by the exogenous administration of other metal element-based nanoagents. Herein, we highlight the interface-engineered mesoporous FeB (mFeB) where the core mFeB is interfacially oxidized into an FeOOH nanosheet loaded with the chemotherapeutic drug doxorubicin (DOX) and further encapsuled within the double-sulfide-bonded SiO2 outer layer, denoted as mFeB@DOX-ss-SiO2, which can realize programmed drug release for synergistic cancer theranostics. When only in a tumor microenvironment, the nanoagent can be activated to release DOX from the mFeB and FeOOH nanosheets as well as expose the easily oxidized mFeB to spontaneously transform to FeOOH nanosheets with Fenton activity to facilitate chemodynamic therapy (CDT). In addition, the high photothermal conversion efficiency of mFeB@DOX-ss-SiO2 would promote CDT. Also, owing to the inherent nature of ferromagnetism and red fluorescence of DOX, mFeB@DOX-ss-SiO2 can realize T2-weighted magnetic resonance imaging and fluorescence imaging. In vivo mouse model experiments demonstrate that mFeB@DOX-ss-SiO2 with good biocompatibility realizing CDT/photothermal therapy/chemotherapy achieved complete tumor suppression. This study opens up a new way to explore theranostic nanoagents.
Collapse
Affiliation(s)
- Mengjuan Ren
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China
| | - Xiaojiao Zhu
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China
| | - Junjun Wang
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China
| | - Lei Chen
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China
| | - Longxiao Cai
- First Clinical Medical College of Anhui Medical University, Hefei 230601, P. R. China
| | - Jie Zhang
- Institute of Physical Science and Information Technology, Faculty of Health Sciences, Anhui University, Hefei 230601, P. R. China
| | - Lianke Wang
- Institute of Physical Science and Information Technology, Faculty of Health Sciences, Anhui University, Hefei 230601, P. R. China
| | - Zhipeng Yu
- Institute of Physical Science and Information Technology, Faculty of Health Sciences, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- College of Chemistry and Chemical Engineering, Anhui University and Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Hefei 230601, P. R. China
| |
Collapse
|
23
|
Cun JE, Pan Y, Zhang Z, Lu Y, Li J, Pan Q, Gao W, Luo K, He B, Pu Y. Photo-enhanced upcycling H 2O 2 into hydroxyl radicals by IR780-embedded Fe 3O 4@MIL-100 for intense nanocatalytic tumor therapy. Biomaterials 2022; 287:121687. [PMID: 35872555 DOI: 10.1016/j.biomaterials.2022.121687] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/15/2022] [Indexed: 02/08/2023]
Abstract
Reactive oxygen species (ROS)-based nanocatalytic tumor therapy is alluring owing to the capability to generate highly cytotoxic ∙OH radicals from tumoral H2O2. However, the antitumor efficacy is highly dependent on the radical generation efficiency and challenged by the high levels of antioxidative glutathione (GSH) in cancer cells. Herein, we report an IR-780 decorated, GSH-depleting Fe3O4@MIL-100 (IFM) nanocomposite for photo-enhanced tumor catalytic therapy by extensive production of ∙OH, which is realized by an integration of excellent peroxidase-like activity of IFM, selective upregulation of tumoral H2O2 by β-lapachone, and localized hyperthermia by near infrared light irradiation. IFM shows potentiated antiproliferative effect in 4T1 cancer cells by ∙OH overproduction and glutathione scavenging, inducing intracellular redox dyshomeostasis and cell death by concurrent apoptosis and ferroptosis. In vivo antitumor investigation further demonstrates photoacoustic and fluorescence imaging-guided combinational therapy with a tumor inhibition rate of 96.4%. This study provides a strategy of photo-enhanced nanocatalytic tumor therapy by tumor-specific H2O2 amplification and hyperthermia.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yang Pan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yao Lu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Junhua Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu, 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
24
|
Guo W, Ji T, Deng Y, Liu J, Gou Y, Dong W. Facile synthesis of a glutathione-depleting Cu(II)-half-salamo-based coordination polymer for enhanced chemodynamic therapy. Dalton Trans 2022; 51:11884-11891. [PMID: 35876194 DOI: 10.1039/d2dt01786e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemodynamic therapy (CDT), utilizing Fenton catalysts to convert intracellular H2O2 into toxic hydroxyl radicals (˙OH) to kill cancer cells, has a wide application prospect in tumor treatment because of its high selectivity. Its anticancer effect, however, is unsatisfactory due to the overexpressed glutathione (GSH). Herein, a GSH-depleting Cu(II)-half-salamo-based coordination polymer (CuCP) was prepared and validated by single crystal X-ray crystallography, Hirshfeld surface analyses and DFT calculations. The Cu(II) ions in the coordination polymer are five-coordinated bearing slightly twisted square pyramidal coordination environments and are bridged by phenoxy and alkoxy groups. After internalization by tumor cells, the CuCP could be biodegraded and reduced by GSH to generate a large amount of Cu(I), simultaneously depleting GSH. Subsequently, the Cu(I) ions interact with H2O2 to generate toxic ˙OH through a Fenton-like reaction to enhance their anticancer efficacy. Our study provides useful insights into designing smarter metal-based anticancer agents to improve the CDT efficiency in cancer therapy.
Collapse
Affiliation(s)
- Wenting Guo
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Tongxi Ji
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Yunhu Deng
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Jia Liu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Yantong Gou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| | - Wenkui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
25
|
Polymeric Nanosystems Applied for Metal-Based Drugs and Photosensitizers Delivery: The State of the Art and Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14071506. [PMID: 35890401 PMCID: PMC9320085 DOI: 10.3390/pharmaceutics14071506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology-based approaches for targeting the delivery and controlled release of metal-based therapeutic agents have revealed significant potential as tools for enhancing the therapeutic effect of metal-based agents and minimizing their systemic toxicities. In this context, a series of polymer-based nanosized systems designed to physically load or covalently conjugate metal-based therapeutic agents have been remarkably improving their bioavailability and anticancer efficacy. Initially, the polymeric nanocarriers were applied for platinum-based chemotherapeutic agents resulting in some nanoformulations currently in clinical tests and even in medical applications. At present, these nanoassemblies have been slowly expanding for nonplatinum-containing metal-based chemotherapeutic agents. Interestingly, for metal-based photosensitizers (PS) applied in photodynamic therapy (PDT), especially for cancer treatment, strategies employing polymeric nanocarriers have been investigated for almost 30 years. In this review, we address the polymeric nanocarrier-assisted metal-based therapeutics agent delivery systems with a specific focus on non-platinum systems; we explore some biological and physicochemical aspects of the polymer–metallodrug assembly. Finally, we summarize some recent advances in polymeric nanosystems coupled with metal-based compounds that present potential for successful clinical applications as chemotherapeutic or photosensitizing agents. We hope this review can provide a fertile ground for the innovative design of polymeric nanosystems for targeting the delivery and controlled release of metal-containing therapeutic agents.
Collapse
|
26
|
Huang Z, Luo Y, Zhang T, Ding Y, Chen M, Chen J, Liu Q, Huang Y, Zhao C. A Stimuli-Responsive Small-Molecule Metal-Carrying Prochelator: A Novel Prodrug Design Strategy for Metal Complexes. Angew Chem Int Ed Engl 2022; 61:e202203500. [PMID: 35513877 DOI: 10.1002/anie.202203500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Indexed: 12/25/2022]
Abstract
Selective activation of prodrugs is an important approach to reduce the side effects of disease treatment. We report a prodrug design concept for metal complexes, termed "metal-carrying prochelator", which can co-carry a metal ion and chelator within a single small-molecule compound and remain inert until it undergoes a specifically triggered intramolecular chelation to synthesize a bioactive metal complex in situ for targeted therapy. As a proof-of-concept, we designed a H2 O2 -responsive small-molecule prochelator, DPBD, based on the strong chelator diethyldithiocarbamate (DTC) and copper. DPBD can carry Cu2+ (DPBD-Cu) and respond to elevated H2 O2 levels in tumor cells by releasing DTC, which rapidly chelates Cu2+ from DPBD-Cu affording a DTC-copper complex with high cytotoxicity, realizing potent antitumor efficacy with low systemic toxicity. Thus, with its unique intramolecularly triggered activation mechanism, this concept based on a small-molecule metal-carrying prochelator can help in the prodrug design of metal complexes.
Collapse
Affiliation(s)
- Zeqian Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yaqing Ding
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jie Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qiuxing Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
27
|
Cun JE, Fan X, Pan Q, Gao W, Luo K, He B, Pu Y. Copper-based metal-organic frameworks for biomedical applications. Adv Colloid Interface Sci 2022; 305:102686. [PMID: 35523098 DOI: 10.1016/j.cis.2022.102686] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 12/11/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of important porous, crystalline materials composed of metal ions (clusters) and organic ligands. Owing to the unique redox chemistry, photochemical and electrical property, and catalytic activity of Cu2+/+, copper-based MOFs (Cu-MOFs) have been recently and extensively explored in various biomedical fields. In this review, we first make a brief introduction to the synthesis of Cu-MOFs and their composites, and highlight the recent synthetic strategies of two most studied representatives, three-dimensional HKUST-1 and two-dimensional Cu-TCPP. The recent advances of Cu-MOFs in the applications of cancer treatment, bacterial inhibition, biosensing, biocatalysis, and wound healing are summarized and discussed. Furthermore, we propose a prospect of the future development of Cu-MOFs in biomedical fields and beyond.
Collapse
Affiliation(s)
- Ju-E Cun
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
28
|
Alqahtani AA, Aslam H, Shukrullah S, Fatima H, Naz MY, Rahman S, Mahnashi MH, Irfan M. Nanocarriers for Smart Therapeutic Strategies to Treat Drug-Resistant Tumors: A Review. Assay Drug Dev Technol 2022; 20:191-210. [DOI: 10.1089/adt.2022.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Hira Aslam
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Shazia Shukrullah
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Hareem Fatima
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Yasin Naz
- Department of Physics, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saifur Rahman
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| | - Mater H. Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Muhammad Irfan
- Electrical Engineering Department, College of Engineering, Najran University, Najran, Saudi Arabia
| |
Collapse
|
29
|
Wang L, Yu Y, Zhou C, Wan R, Li Y. Anticancer effects of disulfiram: a systematic review of in vitro, animal, and human studies. Syst Rev 2022; 11:109. [PMID: 35655266 PMCID: PMC9161604 DOI: 10.1186/s13643-021-01858-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 11/18/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Cancer morbidity and mortality rates remain high, and thus, at present, considerable efforts are focused on finding drugs with higher sensitivity against tumor cells and fewer side effects. Disulfiram (DSF), as an anti-alcoholic drug, kills the cancer cells by inducing apoptosis. Several preclinical and clinical studies have examined the potential of repurposing DSF as an anticancer treatment. This systematic review aimed to assess evidence regarding the antineoplastic activity of DSF in in vitro and in vivo models, as well as in humans. METHODS Two authors independently conducted this systematic review of English and Chinese articles from the PubMed, Embase, and the Cochrane Library databases up to July 2019. Eligible in vitro studies needed to include assessments of the apoptosis rate by flow cytometry using annexin V/propidium iodide, and studies in animal models and clinical trials needed to examine tumor inhibition rates, and progression-free survival (PFS) and overall survival (OS), respectively. Data were analyzed using descriptive statistics. RESULTS Overall, 35 studies, i.e., 21 performed in vitro, 11 based on animal models, and three clinical trials, were finally included. In vitro and animal studies indicated that DSF was associated with enhanced apoptosis and tumor inhibition rates, separately. Human studies showed that DSF prolongs PFS and OS. The greatest anti-tumor activity was observed when DSF was used as combination therapy or as a nanoparticle-encapsulated molecule. There was no noticeable body weight loss after DSF treatment, which indicated that there was no major toxicity of DSF. CONCLUSIONS This systematic review provides evidence regarding the anti-tumor activity of DSF in vitro, in animals, and in humans and indicates the optimal forms of treatment to be evaluated in future research.
Collapse
Affiliation(s)
- Ling Wang
- Department of Gastric Cancer Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, P.R. China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, P.R. China
| | - Yang Yu
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, P.R. China.,Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, P.R. China
| | - Cong Zhou
- Shaoxing People's Hospital, Shaoxing, Zhejiang, 312000, P.R. China
| | - Run Wan
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, P.R. China.,Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, P.R. China
| | - Yumin Li
- Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, P.R. China. .,Department of Tumor Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, P.R. China.
| |
Collapse
|
30
|
Huang Z, Luo Y, Zhang T, Ding Y, Chen M, Chen J, Liu Q, Huang Y, Zhao C. A Stimuli‐Responsive Small‐Molecule Metal‐Carrying Prochelator: A Novel Prodrug Design Strategy for Metal Complexes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zeqian Huang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yong Luo
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Tao Zhang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yaqing Ding
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Meixu Chen
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Jie Chen
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Qiuxing Liu
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
31
|
Liu H, Kong Y, Liu Z, Guo X, Yang B, Yin T, He H, Gou J, Zhang Y, Tang X. Sphingomyelin-based PEGylation Cu(DDC)2 Liposomes Prepared via the Dual Function of Cu2+ for Cancer Therapy: Facilitating DDC Loading and Exerting Synergistic Antitumor Effects. Int J Pharm 2022; 621:121788. [DOI: 10.1016/j.ijpharm.2022.121788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/28/2022]
|
32
|
Zhang T, Kephart J, Bronson E, Anand M, Daly C, Spasojevic I, Bakthavatsalam S, Franz K, Berg H, Karachaliou GS, James OG, Howard L, Halabi S, Harrison MR, Armstrong AJ, George DJ. Prospective clinical trial of disulfiram plus copper in men with metastatic castration-resistant prostate cancer. Prostate 2022; 82:858-866. [PMID: 35286730 DOI: 10.1002/pros.24329] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND In preclinical models of prostate cancer (PC), disulfiram (DSF) reduced tumor growth only when co-administered with copper (Cu), and Cu uptake in tumors is partially regulated by androgen-receptor signaling. However, prior trials of DSF in PC used DSF as monotherapy. OBJECTIVE To assess the safety and efficacy of concurrent administration of DSF with Cu, we conducted a phase 1b clinical trial of patients with metastatic castration-resistant prostate cancer (mCRPC) receiving Cu with DSF. DESIGN, SETTING, AND PARTICIPANTS Patients with mCRPC were treated in two cohorts: mCRPC with nonliver/peritoneal metastases (A), and mCRPC with liver and/or peritoneal metastases (B). Baseline Cu avidity was measured by 64 CuCl2 PET scan. Intravenous (IV) CuCl2 was given weekly for three doses with oral daily DSF followed by daily oral Cu gluconate and DSF until disease progression. DSF and metabolite diethyldithiocarbamic acid methyl ester (Me-DDC) levels in plasma were measured. DSF and Me-DDC were then assessed for cytotoxicity in vitro. RESULTS We treated nine patients with mCRPC (six on cohort A and three on cohort B). Bone and nodal metastases showed differential and heterogeneous Cu uptake on 64 CuCl2 PET scans. No confirmed PSA declines or radiographic responses were observed. Median PFS was 2.8 months and median OS was 8.3 months. Common adverse events included fatigue and psychomotor depression; no Grade 4/5 AEs were observed. Me-DDC was measurable in all samples (LOQ = 0.512 ng/ml), whereas DSF was not (LOQ = 0.032 ng/ml, LOD = 0.01 ng/ml); Me-DDC was not cytotoxic in vitro. CONCLUSIONS Oral DSF is not an effective treatment for mCRPC due to rapid metabolism into an inactive metabolite, Me-DDC. This trial has stopped enrollment and further work is needed to identify a stable DSF formulation for treatment of mCRPC.
Collapse
Affiliation(s)
- Tian Zhang
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Division of Hematology and Oncology, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Julie Kephart
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
| | - Elizabeth Bronson
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
| | - Monika Anand
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
| | - Christine Daly
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
| | - Ivan Spasojevic
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | | | - Katherine Franz
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Hannah Berg
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
| | - Georgia S Karachaliou
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
| | - Olga G James
- Division of Nuclear Medicine, Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Lauren Howard
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Susan Halabi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina, USA
| | - Michael R Harrison
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Andrew J Armstrong
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Division of Urology, Department of Surgery, Duke University, Durham, North Carolina, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, USA
| | - Daniel J George
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, North Carolina, USA
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina, USA
- Division of Urology, Department of Surgery, Duke University, Durham, North Carolina, USA
| |
Collapse
|
33
|
Li X, Luo R, Liang X, Wu Q, Gong C. Recent advances in enhancing reactive oxygen species based chemodynamic therapy. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.11.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Liu J, Fu S, Xie J, Zhang J, Pan J, Chu C, Liu G, Ju S. Application of Self-Assembly Nanoparticles Based on DVDMS for Fenton-Like Ion Delivery and Enhanced Sonodynamic Therapy. BIOSENSORS 2022; 12:255. [PMID: 35448315 PMCID: PMC9025210 DOI: 10.3390/bios12040255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/07/2022] [Accepted: 04/13/2022] [Indexed: 05/14/2023]
Abstract
Upon harnessing low-intensity ultrasound to activate sonosensitizers, sonodynamic therapy (SDT) induces cancer cell death through the reactive oxygen species (ROS) mediated pathway. Compared with photodynamic therapy (PDT), SDT possesses numerous advantages, including deeper tissue penetration, higher accuracy, fewer side effects, and better patient compliance. Sinoporphyrin sodium (DVDMS), a sonosensitizer approved by the FDA, has drawn abundant attention in clinical research, but there are some deficiencies. In order to further improve the efficiency of DVDMS, many studies have applied self-assembly nanotechnology to modify it. Furthermore, the combined applications of SDT/chemodynamic therapy (CDT) have become a research hotspot in tumor therapy. Therefore, we explored the self-assembly of nanoparticles based on DVDMS and copper to combine SDT and CDT. A cost-effective sonosensitizer was synthesized by dropping CuCl2 into the DVDMS solution with the assistance of PVP. The results revealed that the nanostructures could exert excellent treatment effects on tumor therapy and perform well for PET imaging, indicating the potential for cancer theranostics. In vitro and in vivo experiments showed that the nanoparticles have outstanding biocompatibility, higher ROS production efficiency, and antitumor efficacy. We believe this design can represent a simple approach to combining SDT and CDT with potential applications in clinical treatment and PET imaging.
Collapse
Affiliation(s)
- Jinqiang Liu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210000, China;
| | - Shiying Fu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Jiaxuan Xie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Jianzhong Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Jintao Pan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Chengchao Chu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; (S.F.); (J.X.); (J.Z.); (J.P.)
| | - Shenghong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210000, China;
| |
Collapse
|
35
|
A facile synthesis of Cu(II) diethyldithiocarbamate from monovalent copper-cysteamine and disulfiram. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Zhuang Y, Han S, Fang Y, Huang H, Wu J. Multidimensional transitional metal-actuated nanoplatforms for cancer chemodynamic modulation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Jia C, Guo Y, Wu FG. Chemodynamic Therapy via Fenton and Fenton-Like Nanomaterials: Strategies and Recent Advances. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2103868. [PMID: 34729913 DOI: 10.1002/smll.202103868] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Chemodynamic therapy (CDT), a novel cancer therapeutic strategy defined as the treatment using Fenton or Fenton-like reaction to produce •OH in the tumor region, was first proposed by Bu, Shi, and co-workers in 2016. Recently, with the rapid development of Fenton and Fenton-like nanomaterials, CDT has attracted tremendous attention because of its unique advantages: 1) It is tumor-selective with low side effects; 2) the CDT process does not depend on external field stimulation; 3) it can modulate the hypoxic and immunosuppressive tumor microenvironment; 4) the treatment cost of CDT is low. In addition to the Fe-involved CDT strategies, the Fenton-like reaction-mediated CDT strategies have also been proposed, which are based on many other metal elements including copper, manganese, cobalt, titanium, vanadium, palladium, silver, molybdenum, ruthenium, tungsten, cerium, and zinc. Moreover, CDT has been combined with other therapies like chemotherapy, radiotherapy, phototherapy, sonodynamic therapy, and immunotherapy for achieving enhanced anticancer effects. Besides, there have also been studies that extend the application of CDT to the antibacterial field. This review introduces the latest advancements in the nanomaterials-involved CDT from 2018 to the present and proposes the current limitations as well as future research directions in the related field.
Collapse
Affiliation(s)
- Chenyang Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Yuxin Guo
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, P. R. China
| |
Collapse
|
38
|
Pan Q, Xie L, Liu R, Pu Y, Wu D, Gao W, Luo K, He B. Two birds with one stone: Copper metal-organic framework as a carrier of disulfiram prodrug for cancer therapy. Int J Pharm 2022; 612:121351. [PMID: 34883206 DOI: 10.1016/j.ijpharm.2021.121351] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 02/05/2023]
Abstract
Disulfiram (DSF) has a copper (II)-potentiated anticancer activity in various cancers. Synchronous delivery of DSF and cupric ions to tumor tissues is challenging but holds great potential in improving antitumor outcomes and promoting clinical translation. Herein, we reported a disulfiram prodrug (DQ)-loaded and glucose oxidase (GOD) conjugated copper (II)-based nanoscale metal-organic framework (MOF), MPDG, for tumor-specific, enhanced chemo-chemodynamic therapy. Copper MOF, MOF-199, played a dual role of drug nanocarrier of DQ and copper ion reservoir for sufficient generation of copper (II) diethylthiocarbamate (Cu(DTC)2), a complex of DSF and Cu2+. GOD improved the stability of Cu(II) nano-depot and enabled catalytic generation of H2O2 in response to high concentration of glucose in cancer cells. The catalytically generating and endogenous H2O2 boosted the activation of encapsulated H2O2-activatable prodrug DQ to generate highly cytotoxic Cu(CDTC)2 in situ for tumor-specific chemotherapy. Meanwhile, the elevated H2O2 significantly augmented the production of OH for enhanced chemodynamic therapy. The self-activated amplified chemo-chemodynamic therapy nanosystem led to a significantly enhanced inhibition of 4T1 murine breast cancer cells (half inhibitory concentration reduced from 5 μg/mL to 0.8 μg/mL) in the presence of glucose. The in vivo study verified that MPDG showed the highest tumor inhibition rate of 86.2% and negligible toxicity to main organs. Overall, this study provides a novel disulfiram prodrug/Cu2+ co-delivery strategy for enhanced and selective cancer treatment.
Collapse
Affiliation(s)
- Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Li Xie
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Rong Liu
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and Molecular Imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
39
|
Geng Y, Sun R, Zhang Y, Zhou Z, Shen Y. Copper (Ⅱ)/cis-platinum -loaded nanogels as an adjuvant potentiate disulfiram antitumor efficacy. Biomater Sci 2022; 10:1384-1392. [DOI: 10.1039/d1bm01795k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disulfiram (DSF) is nontoxic and exerts anticancer activity by forming highly toxic chelate via its metabolite diethyldithiocarbamate with transition metal ions. However, there are not enough such ions in the...
Collapse
|
40
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Leveraging disulfiram to treat cancer: Mechanisms of action, delivery strategies, and treatment regimens. Biomaterials 2021; 281:121335. [PMID: 34979419 DOI: 10.1016/j.biomaterials.2021.121335] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/07/2021] [Accepted: 12/24/2021] [Indexed: 02/07/2023]
Abstract
Disulfiram (DSF) has been used as an alcoholism drug for 70 years. Recently, it has attracted increasing attention owing to the distinguished anticancer activity, which can be further potentiated by the supplementation of Cu2+. Although encouraging anticancer results are obtained in lab, the clinical outcomes of oral DSF are not satisfactory, which urges an in-depth understanding of the underlying mechanisms, bottlenecks, and proposal of potential methods to address the dilemma. In this review, a critical summarization of various molecular biological anticancer mechanisms of DSF/Cu2+ is provided and the predicament of orally delivering DSF in clinical oncotherapy is explained by the metabolic barriers. We highlight the recent advances in the DSF/Cu2+ delivery strategies and the emerging treatment regimens for cancer treatment. Last but not the least, we summarize the clinical trials regarding DSF and make a prospect of DSF/Cu-based cancer therapy.
Collapse
|
42
|
Zhang H, Lv Z, Xue D, Zhang T, Jin L, Cao Y, Zhang S, Wang Y, Zhang H. A Tumor Microenvironment-Responsive Theranostic Agent for Synergetic Therapy of Disulfiram-Based Chemotherapy and Chemodynamic Therapy. J Phys Chem Lett 2021; 12:10880-10885. [PMID: 34730355 DOI: 10.1021/acs.jpclett.1c03184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Despite the fact that chemotherapy has been widely used in the clinical treatment of breast cancer, the toxicity of chemotherapeutics to normal tissues cannot be ignored due to the low specificity. Therefore, due to the non-negligible toxicity of chemotherapeutic agents to normal tissues, tumor microenvironment (TME)-responsive cancer therapy has attracted a great deal of attention. Here, we report a TME-responsive theranostic nanoagent MnOx@PAA@HKUST-1-DSF@BSA fabricated via a layer-by-layer synthesis method. Once endocytosed by tumor cells, the nanoagent can be degraded into Mn2+ for magnetic resonance imaging and Cu2+ for Fenton-like reaction and chelating with released disulfiram in situ, achieving enhanced chemotherapy. Both in vitro and in vivo experiments demonstrate that the TME-targeted nanoagent can efficiently kill tumor cells. This work provides an alternative option for effective imaging and treatment of breast cancer without collateral damage to normal tissues.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Zhijia Lv
- University of Science and Technology of China, Hefei 230026, China
| | - Dongzhi Xue
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
| | - Tianqi Zhang
- The second hospital of Jilin University, Changchun 130041, China
| | - Longhai Jin
- The second hospital of Jilin University, Changchun 130041, China
| | - Yue Cao
- The first hospital of Jilin University, Changchun 130041, China
| | - Shuai Zhang
- The first hospital of Jilin University, Changchun 130041, China
| | - Yinghui Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry (CIAC), Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Hefei 230026, China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
43
|
Copper Dithiocarbamates: Coordination Chemistry and Applications in Materials Science, Biosciences and Beyond. INORGANICS 2021. [DOI: 10.3390/inorganics9090070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Copper dithiocarbamate complexes have been known for ca. 120 years and find relevance in biology and medicine, especially as anticancer agents and applications in materials science as a single-source precursor (SSPs) to nanoscale copper sulfides. Dithiocarbamates support Cu(I), Cu(II) and Cu(III) and show a rich and diverse coordination chemistry. Homoleptic [Cu(S2CNR2)2] are most common, being known for hundreds of substituents. All contain a Cu(II) centre, being either monomeric (distorted square planar) or dimeric (distorted trigonal bipyramidal) in the solid state, the latter being held together by intermolecular C···S interactions. Their d9 electronic configuration renders them paramagnetic and thus readily detected by electron paramagnetic resonance (EPR) spectroscopy. Reaction with a range of oxidants affords d8 Cu(III) complexes, [Cu(S2CNR2)2][X], in which copper remains in a square-planar geometry, but Cu–S bonds shorten by ca. 0.1 Å. These show a wide range of different structural motifs in the solid-state, varying with changes in anion and dithiocarbamate substituents. Cu(I) complexes, [Cu(S2CNR2)2]−, are (briefly) accessible in an electrochemical cell, and the only stable example is recently reported [Cu(S2CNH2)2][NH4]·H2O. Others readily lose a dithiocarbamate and the d10 centres can either be trapped with other coordinating ligands, especially phosphines, or form clusters with tetrahedral [Cu(μ3-S2CNR2)]4 being most common. Over the past decade, a wide range of Cu(I) dithiocarbamate clusters have been prepared and structurally characterised with nuclearities of 3–28, especially exciting being those with interstitial hydride and/or acetylide co-ligands. A range of mixed-valence Cu(I)–Cu(II) and Cu(II)–Cu(III) complexes are known, many of which show novel physical properties, and one Cu(I)–Cu(II)–Cu(III) species has been reported. Copper dithiocarbamates have been widely used as SSPs to nanoscale copper sulfides, allowing control over the phase, particle size and morphology of nanomaterials, and thus giving access to materials with tuneable physical properties. The identification of copper in a range of neurological diseases and the use of disulfiram as a drug for over 50 years makes understanding of the biological formation and action of [Cu(S2CNEt2)2] especially important. Furthermore, the finding that it and related Cu(II) dithiocarbamates are active anticancer agents has pushed them to the fore in studies of metal-based biomedicines.
Collapse
|
44
|
Abu‑Serie MM, Eltarahony M. Novel nanoformulation of disulfiram with bacterially synthesized copper oxide nanoparticles for augmenting anticancer activity: an in vitro study. Cancer Nanotechnol 2021. [DOI: 10.1186/s12645-021-00097-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
Background
Disulfiram (DS), in the presence of copper (Cu), exhibited potent broad anticancer activity. However, its clinical application is limited due to the poor solubility and stability. Hence, a novel nanocombination of DS with bacterially synthesized copper oxide nanoparticles (CuO NPs) was prepared herein to improve the anticancer efficacy of the typical DS–Cu complex. Our design utilized the nanocharacterization and prooxidant effect-mediated anticancer activity of CuO NPs which may lead to enhanced cellular uptake and thus improved anticancer efficacy of this unique nanocomplex.
Results
The characterized DS–CuO NPs exhibited high stability in serum and the strongest selective anticancer activity, with the lowest half-maximum inhibitory concentration (IC50 < 15 nM), against human breast, lung and liver cancer cells, by >10-fold, compared to DS–Cu, CuO NPs and Cu. Importantly, DS–CuO NPs revealed better synergistic anticancer effect and higher cellular uptake than DS–Cu. Moreover, this novel nanocomplex showed higher prooxidant effect-mediated apoptosis and anti-metastatic potential. This was accomplished by elevating cellular reactive species content with inhibiting the antioxidant defenders (functional marker of cancer stem cells (aldehyde dehydrogenase) and nuclear factor erythroid 2-related factor2), matrix metallopeptidase 9 and NF-κB as well as enhancing p53 expression.
Conclusion
All of the aforementioned findings verified that this novel nanocomplex was capable of improving the therapeutic index of the conventional DS–Cu complex. The potent selective anticancer activity of this promising nanomedicine merits further investigation, as a separate future study, using animal models as preliminary step before its clinical application.
Graphic abstract
Collapse
|
45
|
Jin S, Pu Y, Guo Z, Zhu W, Li S, Zhou X, Gao W, He B. A double-layer dura mater based on poly(caprolactone- co-lactide) film and polyurethane sponge: preparation, characterization, and biodegradation study. J Mater Chem B 2021; 9:3863-3873. [PMID: 33928320 DOI: 10.1039/d1tb00454a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Synthetic, biodegradable polymers hold great potential in dura mater substitution. In this study, a dura mater-mimetic double-layer film@sponge composite was developed. The composite contains a poly(caprolactone-co-lactide) (PCLA) film and polyurethane (PU) sponge, which simulates the hard and soft layers of dura mater, respectively. PCLA films were prepared by a solution-casting method and showed excellent mechanical properties and tolerance to water. PU sponge was hydrophilic and had a high water-absorption rate (about 500%). The double-layer composite (film@sponge) integrated the good mechanical properties of the films and the good water absorption of the sponge. The excellent biocompatibility and biodegradability of the PCLA film@PU sponge composites were verified by in vitro degradation and cytotoxicity study and the in vivo implantation in the back of rats. Importantly, the film@sponge composite had a suitable degradation rate and good biocompatibility, holding potential in the field of dural repair.
Collapse
Affiliation(s)
- Shu Jin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Wangwei Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Sai Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Xi Zhou
- Ningbo Baoting Biotechnology Co., Ltd, Ningbo 315001, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
46
|
Guo Z, Bai Y, Zhang Z, Mei H, Li J, Pu Y, Zhao N, Gao W, Wu F, He B, Xie J. Thermosensitive polymer hydrogel as a physical shield on colonic mucosa for colitis treatment. J Mater Chem B 2021; 9:3874-3884. [PMID: 33928321 DOI: 10.1039/d1tb00499a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis (UC), is a chronic disease characterized by diffuse mucosal inflammation limited to the colon. Topical drug delivery systems that could be facilely performed and efficiently retained at colon sites are attractive for clinical IBD treatment. Herein, we report the exploration of an injectable thermosensitive copolymer hydrogel as a topical formulation for IBD treatment and demonstrate its feasibility in UC treatment by shielding ulcer sites from the external environment and being a drug reservoir for sustained release. Poly(aliphatic ester)-based triblock copolymer, poly(dl-lactic acid)-poly(ethylene glycol)-poly(dl-lactic acid) (PDLLA-PEG-PDLLA), adopts the solution state at room temperature yet a gel state at body temperature when the polymer concentration is more than 11%. The gel acts not only as a physical mucosal barrier for protecting ulcer sites from microorganisms like bacteria but also as a mesalazine depot for enhanced drug retention in the colon for localized, sustained drug release. In vivo UC treatment reveals that blank gel as a mucosal protector shows nearly the same treatment effect to mesalazine SR granules. Mesalazine-loaded gel significantly suppresses inflammation and has the best outcomes of indices such as colonic length, mucosal injury index, pathological tissue, and inflammatory factor. The injectable thermosensitive polymer hydrogel represents a novel, robust platform for the efficient treatment of IBD by acting as a physical shield to block out the pro-inflammatory factors as well as a drug depot for enhanced drug retention and controlled delivery.
Collapse
Affiliation(s)
- Zhaoyuan Guo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yun Bai
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Heng Mei
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jing Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Nan Zhao
- Puliyan (Nanjing) Medical Science & Technology Co. LTD, Nanjing 210042, China
| | - Wenxia Gao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fang Wu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.
| | - Jing Xie
- Department of Stomatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
47
|
Disulfiram-loaded copper sulfide nanoparticles for potential anti-glioma therapy. Int J Pharm 2021; 607:120978. [PMID: 34371152 DOI: 10.1016/j.ijpharm.2021.120978] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 01/11/2023]
Abstract
Disulfiram (DSF) is an effective copper (Cu2+)-dependent antitumor agent. In the present study, we explored use of transferrin (Tf)-modified DSF/copper sulfide (CuS) nanocomplex (Tf-DSF/CuS) for glioma therapy. Tf was used as glioma targeting motifs, DSF as an anticancer agent, and CuS as a source of Cu2+ ions and a photothermal agent. DSF was loaded on CuS by metal-chelation, and released from the nanocomplex under acidic condition. The Tf-DSF/CuS complex exhibited high cytotoxic effect in vitro. Notably, cytotoxic activity was correlated with pH triggered release of Cu2+ which initiated non-toxicity to toxicity switch of DSF. Ultrasound-targeted microbubble destruction (UTMD) technique was used for highly selective accumulation of intravenous injected Tf-DSF/CuS in the glioma orthotopic tumor as compared with the free drugs and non-targeted DSF/CuS groups. Magnetic resonance imaging and pathological examinations showed that Tf-DSF/CuS effectively suppressed tumor growth, with an inhibition ratio of ~85%. Additionally, DSF load did not compromise photothermal conversion ability of CuS nanoparticles. Efficacy of the photothermal ablation therapy of Tf-DSF/CuS was evaluated under 808 nm laser irradiation both in vitro and in vivo. These findings show that copper-sulfide based disulfiram nanoparticles are effective agents for anti-glioma therapy.
Collapse
|
48
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
49
|
Hou L, Liu Y, Liu W, Balash M, Zhang H, Zhang Y, Zhang H, Zhang Z. In situ triggering antitumor efficacy of alcohol-abuse drug disulfiram through Cu-based metal-organic framework nanoparticles. Acta Pharm Sin B 2021; 11:2016-2030. [PMID: 34386335 PMCID: PMC8343114 DOI: 10.1016/j.apsb.2021.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/18/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although approved as an alcohol-abuse drug, disulfiram (DSF) exhibited potential anticancer activity when chelated with copper (Cu). However, the low level of intrinsic Cu, toxicity originated from exogenous Cu supplementation, and poor stability of DSF in vivo severely limited its application in cancer treatment. Herein, we proposed an in situ DSF antitumor efficacy triggered system, taking advantages of Cu-based metal-organic framework (MOF). In detail, DSF was encapsulated into Cu-MOF nanoparticles (NPs) during its formation, and the obtained NPs were coated with hyaluronic acid to enhance the tumor targetability and biocompatibility. Notably, DSF loaded Cu-MOF NPs maintained stability and integrity without Cu2+ leakage in blood circulation, thus showing excellent biosafety. Once accumulating at tumor site, NPs were internalized into tumor cells via receptor-mediated endocytosis and released DSF and Cu2+ simultaneously in the hyaluronidase-enriched and acidic intracellular tumor microenvironment. This profile lead to in situ chelation reaction between DSF and Cu2+, generating toxic DSF/Cu complex against tumor cells. Both in vitro and in vivo results demonstrated the programmed degradation and recombination property of Cu-based MOF NPs, which facilitated the tumor-specific chemotherapeutic effects of DSF. This system provided a promising strategy for the application of DSF in tumor therapy.
Collapse
Affiliation(s)
- Lin Hou
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
- School of Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Yanlong Liu
- School of Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Wei Liu
- School of Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Mervat Balash
- School of Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Hongling Zhang
- School of Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Yi Zhang
- Biotherapy Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Huijuan Zhang
- School of Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmacy, School of Pharmaceutical Sciences, Zhengzhou University; Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
50
|
Liu S, Khan AR, Yang X, Dong B, Ji J, Zhai G. The reversal of chemotherapy-induced multidrug resistance by nanomedicine for cancer therapy. J Control Release 2021; 335:1-20. [PMID: 33991600 DOI: 10.1016/j.jconrel.2021.05.012] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) of cancer is a persistent problem in chemotherapy. Scientists have considered the overexpressed efflux transporters responsible for MDR and chemotherapy failure. MDR extremely limits the therapeutic effect of chemotherapy in cancer treatment. Many strategies have been applied to solve this problem. Multifunctional nanoparticles may be one of the most promising approaches to reverse MDR of tumor. These nanoparticles can keep stability in the blood circulation and selectively accumulated in the tumor microenvironment (TME) either by passive or active targeting. The stimuli-sensitive or organelle-targeting nanoparticles can release the drug at the targeted-site without exposure to normal tissues. In order to better understand reversal of MDR, three main strategies are concluded in this review. First strategy is the synergistic effect of chemotherapeutic drugs and ABC transporter inhibitors. Through directly inhibiting overexpressed ABC transporters, chemotherapeutic drugs can enter into resistant cells without being efflux. Second strategy is based on nanoparticles circumventing over-expressed efflux transporters and directly targeting resistance-related organelles. Third approach is the combination of multiple therapy modes overcoming cancer resistance. At last, numerous researches demonstrated cancer stem-like cells (CSCs) had a deep relation with drug resistance. Here, we discuss two different drug delivery approaches of nanomedicine based on CSC therapy.
Collapse
Affiliation(s)
- Shangui Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Abdur Rauf Khan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Bo Dong
- Department of cardiovascular medicine, Shandong Provincial Hospital, Jinan 250021, PR China
| | - Jianbo Ji
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012, PR China.
| |
Collapse
|