1
|
Yong H. Reentrant Condensation of Polyelectrolytes Induced by Diluted Multivalent Salts: The Role of Electrostatic Gluonic Effects. Biomacromolecules 2024; 25:7361-7376. [PMID: 39432752 PMCID: PMC11558675 DOI: 10.1021/acs.biomac.4c01037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/23/2024]
Abstract
We explore the reentrant condensation of polyelectrolytes triggered by multivalent salts, whose phase-transition mechanism remains under debate. We propose a theory to study the reentrant condensation, which separates the electrostatic effect into two parts: a short-range electrostatic gluonic effect because of sharing of multivalent ions by ionic monomers and a long-range electrostatic correlation effect from all ions. The theory suggests that the electrostatic gluonic effect governs reentrant condensation, requiring a minimum coupling energy to initiate the phase transition. This explains why diluted salts with selective multivalency trigger a polyelectrolyte phase transition. The theory also uncovers that strong adsorption of multivalent ions onto ionic monomers causes low-salt concentrations to induce both collapse and reentry transitions. Additionally, we highlight how the incompatibility of uncharged polyelectrolyte moieties with water affects the polyelectrolyte phase behaviors. The obtained results will contribute to the understanding of biological phase separations if multivalent ions bound to biopolyelectrolytes play an essential role.
Collapse
Affiliation(s)
- Huaisong Yong
- Department of Molecules & Materials, MESA+ Institute, University of Twente, AE 7500 Enschede, the Netherlands
- Institute Theory of Polymers, Leibniz-Institut für Polymerforschung Dresden e.V., D-01069 Dresden, Germany
- School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
2
|
Kumar S, Aswal VK. Evolution of the structure and interaction in the surfactant-dependent heat-induced gelation of protein. SOFT MATTER 2024; 20:5553-5563. [PMID: 38957095 DOI: 10.1039/d4sm00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The addition of a surfactant and/or an increase in temperature disrupt the native structure of proteins, where high temperature further results in protein gelation. However, in a mixed protein-surfactant system, surfactant concentration and temperature have been observed to exhibit both mutually associative and counter-balancing effects towards heat-induced gelation of protein-surfactant dispersion. This study is conducted on globular bovine serum albumin (BSA) protein and cationic surfactant dodecyl trimethyl ammonium bromide (DTAB), which interact strongly owing to their oppositely charged nature. The findings reveal that the BSA-DTAB suspension undergoes gelation with increasing temperature but only at lower concentrations of DTAB, where the presence of the surfactant facilitates gelation (associative effect). Conversely, as the surfactant concentration increases beyond a critical value, temperature-driven gelation of the BSA-DTAB system is completely inhibited, despite surfactant-induced protein denaturation (counter-balancing effect). To conceptualize these results, we compared them with observations made in a system comprising protein and a similarly charged surfactant, sodium dodecyl sulfate (SDS). It has been further demonstrated that the anionic surfactant (SDS) can restrict protein gelation at much lower concentration compared to the cationic surfactant (DTAB). The evolution of the structure and interaction during gel formation/inhibition has been examined to understand the underlying mechanism guiding these sol-gel transitions. We present a comprehensive phase diagram, encompassing the solution/gel states of the protein-surfactant dispersion, with respect to the dispersion temperature, surfactant concentration, and ionic behavior (anionic or cationic) of the surfactants.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
3
|
Furuki T, Nobeyama T, Suetaka S, Matsui R, Fukuoka T, Arai M, Shiraki K. Reentrant condensation of a multicomponent cola/milk system induced by polyphosphate. Food Chem X 2024; 21:101165. [PMID: 38328695 PMCID: PMC10847600 DOI: 10.1016/j.fochx.2024.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Reentrant condensation (RC) is a protein behavior in which the protein solution shifts between the one- and two-phase state more than twice by increasing a single parameter. Although RC would be a candidate mechanism for the physicochemical design of food additives, no realistic model has been established under diverse contaminants like food materials. Here, we found that a mixture of cola and milk yielded RC. At pH 3.2-3.6, cola induced milk condensation at 30-40%, while lower or higher concentrations of cola did not. Furthermore, we reduced this cola/milk system to two pure components, casein in milk and polyphosphate (polyP) in cola, and investigated the characteristics of casein concentration and zeta potential. This was the first experimental demonstration of RC occurrence in a multicomponent system. The well-characterized cola/milk system would explore both the universal nature of proteins and the industrial application of RC.
Collapse
Affiliation(s)
- Tomohiro Furuki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Ishikawa Prefectural Nanao High School, E-1-1 Nishi-fujihashi, Nanao, Ishikawa 926-0817, Japan
| | - Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| | - Shunji Suetaka
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Ryokei Matsui
- Ishikawa Prefectural Nanao High School, E-1-1 Nishi-fujihashi, Nanao, Ishikawa 926-0817, Japan
| | - Tatsuhiko Fukuoka
- Ishikawa Prefectural Nanao High School, E-1-1 Nishi-fujihashi, Nanao, Ishikawa 926-0817, Japan
| | - Munehito Arai
- Department of Integrated Sciences, College of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8573, Japan
| |
Collapse
|
4
|
Saurabh S, Zhang Q, Seddon JM, Lu JR, Kalonia C, Bresme F. Unraveling the Microscopic Mechanism of Molecular Ion Interaction with Monoclonal Antibodies: Impact on Protein Aggregation. Mol Pharm 2024; 21:1285-1299. [PMID: 38345400 PMCID: PMC10915798 DOI: 10.1021/acs.molpharmaceut.3c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Understanding and predicting protein aggregation represents one of the major challenges in accelerating the pharmaceutical development of protein therapeutics. In addition to maintaining the solution pH, buffers influence both monoclonal antibody (mAb) aggregation in solution and the aggregation mechanisms since the latter depend on the protein charge. Molecular-level insight is necessary to understand the relationship between the buffer-mAb interaction and mAb aggregation. Here, we use all-atom molecular dynamics simulations to investigate the interaction of phosphate (Phos) and citrate (Cit) buffer ions with the Fab and Fc domains of mAb COE3. We demonstrate that Phos and Cit ions feature binding mechanisms, with the protein that are very different from those reported previously for histidine (His). These differences are reflected in distinctive ion-protein binding modes and adsorption/desorption kinetics of the buffer molecules from the mAb surface and result in dissimilar effects of these buffer species on mAb aggregation. While His shows significant affinity toward hydrophobic amino acids on the protein surface, Phos and Cit ions preferentially bind to charged amino acids. We also show that Phos and Cit anions provide bridging contacts between basic amino acids in neighboring proteins. The implications of such contacts and their connection to mAb aggregation in therapeutic formulations are discussed.
Collapse
Affiliation(s)
- Suman Saurabh
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College, London W12 0BZ, U.K.
| | - Qinkun Zhang
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College, London W12 0BZ, U.K.
| | - John M. Seddon
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College, London W12 0BZ, U.K.
| | - Jian R. Lu
- Biological
Physics Group, School of Physics and Astronomy, Faculty of Science
and Engineering, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Cavan Kalonia
- Dosage
Form Design and Development, BioPharmaceutical Development, BioPharmaceuticals
R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Fernando Bresme
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College, London W12 0BZ, U.K.
| |
Collapse
|
5
|
Chauhan A, Chaudhury S. Multivalent Salt-Induced Self-Assembly of Amphiphilic Polyelectrolytes of Different Charge Fractions: A Coarse-Grained Molecular Dynamics Simulation Study. J Phys Chem B 2024; 128:2037-2044. [PMID: 38359799 DOI: 10.1021/acs.jpcb.3c07886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Amphiphilic polymers with both hydrophobic and hydrophilic blocks are of great interest for their potential applications in drug delivery. Their self-assembly behavior in response to environmental factors like ion charge and multivalent salt concentration has been the subject of recent investigation. Our study utilizes coarse-grained molecular dynamics simulations to investigate the aggregation behavior of amphiphilic copolymers upon introducing tetravalent salt at varying charge fractions. We identify a critical concentration, Cs*, where the aggregation number reaches its maximum for each charge fraction, followed by a subsequent decrease at the excessive salt regime. This study reveals distinct morphological transitions in response to increasing salt concentration and decreasing charged fractions, namely, (i) stable dispersed micelles, (ii) a singular micelle comprising all copolymer chains, and (iii) redispersed micelles, particularly evident at lower charged fractions. Our study highlights the significant influence of tetravalent salt and charge fractions of polyelectrolyte chains on the self-assembly behavior of polyelectrolyte copolymers.
Collapse
Affiliation(s)
- Akshay Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Srabanti Chaudhury
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
6
|
Saha D, Kumar S, Mata JP, Whitten AE, Aswal VK. Competitive effects of salt and surfactant on the structure of nanoparticles in a binary system of nanoparticle and protein. Phys Chem Chem Phys 2023; 25:22130-22144. [PMID: 37563993 DOI: 10.1039/d3cp02619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Small-angle neutron scattering (SANS) and dynamic light scattering (DLS) experiments have been carried out to study the competitive effects of NaCl and sodium dodecyl sulfate (SDS) surfactant on the evolution of the structure and interactions in a silica nanoparticle-Bovine serum albumin (BSA) protein system. The unique advantage of contrast-matching SANS has been utilized to particularly probe the structure of nanoparticles in the multi-component system. Silica nanoparticles and BSA protein both being anionic remain largely individual in the solution without significant adsorption. The non-adsorbing nature of protein is known to cause depletion attraction between nanoparticles at higher protein concentrations. The nanoparticles undergo immediate aggregation in the nanoparticle-BSA system on the addition of a small amount of salt [referred as the critical salt concentration (CSC)], much less than that required to induce aggregation in a pure nanoparticle dispersion. The salt ions screen the electrostatic repulsion between the nanoparticles, whereby the BSA-induced depletion attraction dominates the system and contributes to the nanoparticle aggregation of a mass fractal kind of morphology. Further, the addition of SDS in this system interestingly suppresses nanoparticle aggregation for salt concentrations lower than the CSC. The presence of SDS gives rise to additional electrostatic repulsion in the system by binding with the BSA protein via electrostatic and hydrophobic interactions. For salt concentrations higher than the CSC, the formation of clusters of nanoparticles is inevitable even in the presence of protein-surfactant complexes, but the mass fractal kind of branched aggregates transform to surface fractals. This has been attributed to the BSA-SDS complex induced depletion attraction along with salt-driven screening of electrostatic repulsion. Thus, the interplay of depletion and electrostatic and hydrophobic interactions has been utilized to tune the structures formed in a multicomponent silica nanoparticle-BSA-SDS/NaCl system.
Collapse
Affiliation(s)
- Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Juelich Centre for Neutron Science-4, Forschungszentrum Juelich, Juelich-52425, Germany
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
7
|
Hansen J, Egelhaaf SU, Platten F. Protein solutions close to liquid-liquid phase separation exhibit a universal osmotic equation of state and dynamical behavior. Phys Chem Chem Phys 2023; 25:3031-3041. [PMID: 36607608 DOI: 10.1039/d2cp04553b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Liquid-liquid phase separation (LLPS) of protein solutions is governed by highly complex protein-protein interactions. Nevertheless, it has been suggested that based on the extended law of corresponding states (ELCS), as proposed for colloids with short-range attractions, one can rationalize not only the thermodynamics, but also the structure and dynamics of such systems. This claim is systematically and comprehensively tested here by static and dynamic light scattering experiments. Spinodal lines, the isothermal osmotic compressibility κT and the relaxation rate of concentration fluctuations Γ are determined for protein solutions in the vicinity of LLPS. All these quantities are found to exhibit a corresponding-states behavior. This means that, for different solution conditions, these quantities are essentially the same if considered at similar reduced temperature or second virial coefficient. For moderately concentrated solutions, the volume fraction ϕ dependence of κT and Γ can be consistently described by Baxter's model of adhesive hard spheres. The off-critical, asymptotic T behavior of κT and Γ close to LLPS is consistent with the scaling laws predicted by mean-field theory. Thus, the present work aims at a comprehensive experimental test of the applicability of the ELCS to structural and dynamical properties of concentrated protein solutions.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
8
|
Cases
Díaz J, Lozano-Torres B, Giménez-Marqués M. Boosting Protein Encapsulation through Lewis-Acid-Mediated Metal-Organic Framework Mineralization: Toward Effective Intracellular Delivery. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7817-7827. [PMID: 36117882 PMCID: PMC9476658 DOI: 10.1021/acs.chemmater.2c01338] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/15/2022] [Indexed: 05/10/2023]
Abstract
Encapsulation of biomolecules using metal-organic frameworks (MOFs) to form stable biocomposites has been demonstrated to be a valuable strategy for their preservation and controlled release, which has been however restricted to specific electrostatic surface conditions. We present a Lewis-acid-mediated general in situ strategy that promotes the spontaneous MOF growth on a broad variety of proteins, for the first time, regardless of their surface nature. We demonstrate that MOFs based on cations exhibiting considerable inherent acidity such as MIL-100(Fe) enable efficient biomolecule encapsulation, including elusive alkaline proteins previously inaccessible by the well-developed in situ azolate-based MOF encapsulation. Specifically, we prove the MIL-100(Fe) scaffold for the encapsulation of a group of proteins exhibiting very different isoelectric points (5 < pI < 11), allowing triggered release under biocompatible conditions and retaining their activity after exposure to denaturing environments. Finally, we demonstrate the potential of the myoglobin-carrying biocomposite to facilitate the delivery of O2 into hypoxic human lung carcinoma A549 cells, overcoming hypoxia-associated chemoresistance.
Collapse
|
9
|
Pandit S, Kundu S, Aswal VK. Effect of monovalent salts on molecular interactions of globular protein (BSA) above its isoelectric point. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Pandit S, Kundu S, Aswal VK. Interaction among bovine serum albumin (BSA) molecules in the presence of anions: a small-angle neutron scattering study. J Biol Phys 2022; 48:237-251. [PMID: 35416637 DOI: 10.1007/s10867-022-09608-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/30/2022] [Indexed: 01/01/2023] Open
Abstract
Protein-protein interaction in solution strongly depends on dissolved ions and solution pH. Interaction among globular protein (bovine serum albumin, BSA), above and below of its isoelectric point (pI ≈ 4.8), is studied in the presence of anions (Cl-, Br-, I-, F-, SO42-) using small-angle neutron scattering (SANS) technique. The SANS study reveals that the short-range attraction among BSA molecules remains nearly unchanged in the presence of anions, whereas the intermediate-range repulsive interaction increases following the Hofmeister series of anions. Although the interaction strength modifies below and above the pI of BSA, it nearly follows the series.
Collapse
Affiliation(s)
- Subhankar Pandit
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Assam, 781035, Garchuk, Guwahati, India
| | - Sarathi Kundu
- Soft Nano Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Assam, 781035, Garchuk, Guwahati, India.
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400 085, India
| |
Collapse
|
11
|
Effect of Temperature on Re-entrant Condensation of Globular Protein in Presence of Tri-valent Ions. J Fluoresc 2022; 32:791-797. [DOI: 10.1007/s10895-021-02874-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022]
|
12
|
Saha D, Kumar S, Ray D, Mata JP, Whitten AE, Aswal VK. Tuning of silica nanoparticle-lysozyme protein complexes in the presence of the SDS surfactant. SOFT MATTER 2022; 18:434-445. [PMID: 34908081 DOI: 10.1039/d1sm01340h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The structures of the complexes of anionic silica nanoparticle (size ∼ 16 nm)-lysozyme (cationic) protein, tuned by the addition of the anionic surfactant sodium dodecyl sulfate (SDS), have been investigated by dynamic light scattering (DLS) and small-angle neutron scattering (SANS). The unique advantage of contrast variation SANS has been used to probe the role of individual components in binary and ternary systems. The cationic lysozyme protein (at pH ∼ 7) adsorbs on the anionic silica nanoparticles and forms mass fractal aggregates due to the strong attractive interaction, whereas similarly charged SDS does not interact physically with silica nanoparticles. The presence of SDS, however, remarkably affects the nanoparticle-protein interactions via binding with the oppositely charged segments of lysozyme. In general, the SDS-lysozyme complexes possess a variety of structures (e.g., insoluble complexes of Ly(DS)8, crystalline structure, or micelle-like structure) depending on the surfactant-to-protein molar ratio (S/P). In the ternary system (HS40-lysozyme-SDS), lysozyme preferentially binds with SDS, instead of directly to nanoparticles. At low S/Ps (0 ≤ S/P ≤ 10), the SDS concentration is not enough to fully neutralize the charge of lysozyme, leading to the formation of cationic SDS-lysozyme complex-mediated nanoparticle aggregation. The morphology of the nanoparticle-(lysozyme-SDS) complexes is also found to be mass fractal kind where the fractal dimension increases with increasing SDS concentration. At S/P > 10, there is sufficient SDS to fully neutralize the lysozyme in the absence of competing charges from the particle but it is at S/P = 50 before all lysozyme desorbs from the particle and binds completely to the overwhelming amount of SDS, creating an oppositely charged lysozyme-SDS complex, which is repelled from the particle.
Collapse
Affiliation(s)
- Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Jitendra P Mata
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Andrew E Whitten
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
13
|
Hansen J, Uthayakumar R, Pedersen JS, Egelhaaf SU, Platten F. Interactions in protein solutions close to liquid-liquid phase separation: ethanol reduces attractions via changes of the dielectric solution properties. Phys Chem Chem Phys 2021; 23:22384-22394. [PMID: 34608908 DOI: 10.1039/d1cp03210k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ethanol is a common protein crystallization agent, precipitant, and denaturant, but also alters the dielectric properties of solutions. While ethanol-induced unfolding is largely ascribed to its hydrophobic parts, its effect on protein phase separation and inter-protein interactions remains poorly understood. Here, the effects of ethanol and NaCl on the phase behavior and interactions of protein solutions are studied in terms of the metastable liquid-liquid phase separation (LLPS) and the second virial coefficient B2 using lysozyme solutions. Determination of the phase diagrams shows that the cloud-point temperatures are reduced and raised by the addition of ethanol and salt, respectively. The observed trends can be explained using the extended law of corresponding states as changes of B2. The results for B2 agree quantitatively with those of static light scattering and small-angle X-ray scattering experiments. Furthermore, B2 values calculated based on inter-protein interactions described by the Derjaguin-Landau-Verwey-Overbeek (DLVO) potential and considering the dielectric solution properties and electrostatic screening due to the ethanol and salt content quantitatively agree with the experimentally observed B2 values.
Collapse
Affiliation(s)
- Jan Hansen
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Rajeevann Uthayakumar
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Jan Skov Pedersen
- iNANO Interdisciplinary Nanoscience Center and Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Stefan U Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany. .,Institute of Biological Information Processing (IBI-4: Biomacromolecular Systems and Processes), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany
| |
Collapse
|
14
|
Kumar S, Saha D, Ray D, Abbas S, Aswal VK. Unusual stability of protein molecules in the presence of multivalent counterions. Phys Rev E 2021; 104:L012603. [PMID: 34412269 DOI: 10.1103/physreve.104.l012603] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
Proteins are known to undergo denaturation and form different phases with varying physicochemical parameters. We report unusual stability of bovine serum albumin protein against commonly used denaturants (temperature and surfactant) in the charged reversal reentrant phase, caused by the multivalent counterions. Unlike monovalent counterions, which promote the denaturants' induced protein unfolding, the unfolding is restricted in the presence of multivalent ions. The observations are beyond the scope of general understanding of protein unfolding and are believed to be governed by ion-ion correlations driven strong condensation of the multivalent ions.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Sohrab Abbas
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.,Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
15
|
Saha D, Ray D, Kumar S, Kohlbrecher J, Aswal VK. Interaction of a bovine serum albumin (BSA) protein with mixed anionic-cationic surfactants and the resultant structure. SOFT MATTER 2021; 17:6972-6984. [PMID: 34236073 DOI: 10.1039/d1sm00264c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The interaction of a bovine serum albumin (BSA) protein with the mixture of anionic sodium dodecyl sulfate (SDS) and cationic dodecyltrimethylammonium bromide (DTAB) has been investigated by small-angle neutron scattering (SANS) and dynamic light scattering (DLS). Both SDS and DTAB as individuals interact electrostatically as well as hydrophobically with BSA and form connected protein-decorated micelle like complexes in the aqueous solution, in which the well-defined surfactant micelles are organized along the randomly distributed unfolded polypeptide chain of the protein. The protein-surfactant interaction has been tuned by adding different molar mixtures of SDS and DTAB in BSA aqueous solution. It is found that a lower molar fraction of either surfactant in the protein-mixed surfactant complexes results in the formation of a connected protein-decorated micelle structure similar to those of pure surfactants. As the molar fraction of one of the surfactants in the mixture approaches the equimolar fraction, the structure formed by the protein-mixed surfactant is very different from the connected protein-decorated micelle like structure. Different microstructures of BSA-mixed surfactant complexes are formed, mostly governed by the structure of mixed surfactants arising from the strong electrostatic interaction of oppositely charged components. In this case, unfolded proteins wrap the structures of mixed surfactants around their surface. Along with the connected protein-decorated micelle like structure, rod-like and bilayer vesicles of protein-surfactant complexes are formed at different molar fractions of mixed surfactants.
Collapse
Affiliation(s)
- Debasish Saha
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 PSI Villigen, Switzerland
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India. and Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
16
|
Lenton S, Hervø-Hansen S, Popov AM, Tully MD, Lund M, Skepö M. Impact of Arginine-Phosphate Interactions on the Reentrant Condensation of Disordered Proteins. Biomacromolecules 2021; 22:1532-1544. [PMID: 33730849 PMCID: PMC8045028 DOI: 10.1021/acs.biomac.0c01765] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Re-entrant condensation results in the formation of a condensed protein regime between two critical ion concentrations. The process is driven by neutralization and inversion of the protein charge by oppositely charged ions. Re-entrant condensation of cationic proteins by the polyvalent anions, pyrophosphate and tripolyphosphate, has previously been observed, but not for citrate, which has similar charge and size compared to the polyphosphates. Therefore, besides electrostatic interactions, other specific interactions between the polyphosphate ions and proteins must contribute. Here, we show that additional attractive interactions between arginine and tripolyphosphate determine the re-entrant condensation and decondensation boundaries of the cationic, intrinsically disordered saliva protein, histatin 5. Furthermore, we show by small-angle X-ray scattering (SAXS) that polyvalent anions cause compaction of histatin 5, as would be expected based solely on electrostatic interactions. Hence, we conclude that arginine-phosphate-specific interactions not only regulate solution properties but also influence the conformational ensemble of histatin 5, which is shown to vary with the number of arginine residues. Together, the results presented here provide further insight into an organizational mechanism that can be used to tune protein interactions in solution of both naturally occurring and synthetic proteins.
Collapse
Affiliation(s)
- Samuel Lenton
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Stefan Hervø-Hansen
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Anton M Popov
- BM29 BIOSAXS, European Synchroton Radiation Facility, 71 avenue des Martyrs, Grenoble, Isère 38043, France
| | - Mark D Tully
- BM29 BIOSAXS, European Synchroton Radiation Facility, 71 avenue des Martyrs, Grenoble, Isère 38043, France
| | - Mikael Lund
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.,LINXS-Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| | - Marie Skepö
- Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden.,LINXS-Lund Institute of Advanced Neutron and X-ray Science, Scheelevägen 19, SE-223 70 Lund, Sweden
| |
Collapse
|
17
|
Bruntha A, Radhipriya R, Palanisamy T, Dhathathreyan A. Elastic compliance and adsorption profiles of Bovine serum albumin at fluid/solid interface in the presence of electrolytes. Biophys Chem 2021; 269:106523. [PMID: 33341694 DOI: 10.1016/j.bpc.2020.106523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 11/24/2022]
Abstract
Non-trivial topology of proteins under shear suggests that even small structural changes in proteins result in dramatic variations in the mechanical properties and stability. In this study, we have analysed the elastic compliance of solvated bovine serum albumin (BSA) with NaCl,MgCl2, FeCl3 of concentration-ranging from 50 mM to 250 mM using Quartz crystal microbalance with dissipation. The compliance shows a reverse Hofmeister trend (Na +
Collapse
Affiliation(s)
- A Bruntha
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - R Radhipriya
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India
| | - Thanikaivelan Palanisamy
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - A Dhathathreyan
- Advanced Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
Isolation and Self-Association Studies of Beta-Lactoglobulin. Int J Mol Sci 2020; 21:ijms21249711. [PMID: 33352705 PMCID: PMC7766286 DOI: 10.3390/ijms21249711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate isolated β-lactoglobulin (β-LG) from the whey protein isolate (WPI) solution using the column chromatography with SP Sephadex. The physicochemical characterization (self-association, the pH stability in various salt solutions, the identification of oligomeric forms) of the protein obtained have been carried out. The electrophoretically pure β-LG fraction was obtained at pH 4.8. The fraction was characterized by the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/TOF MS) technique. The use of the HCCA matrix indicated the presence of oligomeric β-LG forms, while the SA and DHB matrices enabled the differentiation of A and B isoforms in the sample. The impact of sodium chloride, potassium chloride, ammonium sulfate, and sodium citrate in dispersion medium on β-LG electrophoretic stability in solution was also studied. Type of the dispersion medium led to the changes in the isoelectric point of protein. Sodium citrate stabilizes protein in comparison to ammonium sulfate. Additionally, the potential of capillary electrophoresis (CE) with UV detection using bare fused capillary to monitor β-LG oligomerization was discussed. Obtained CE data were further compared by the asymmetric flow field flow fractionation coupled with the multi-angle light scattering detector (AF4-MALS). It was shown that the β-LG is a monomer at pH 3.0, dimer at pH 7.0. At pH 5.0 (near the isoelectric point), oligomers with structures from dimeric to octameric are formed. However, the appearance of the oligomers equilibrium is dependent on the concentration of protein. The higher quantity of protein leads to the formation of the octamer. The far UV circular dichroism (CD) spectra carried out at pH 3.0, 5.0, and 7.0 confirmed that β-sheet conformation is dominant at pH 3.0, 5.0, while at pH 7.0, this conformation is approximately in the same quantity as α-helix and random structures.
Collapse
|
19
|
Matsarskaia O, Roosen‐Runge F, Schreiber F. Multivalent ions and biomolecules: Attempting a comprehensive perspective. Chemphyschem 2020; 21:1742-1767. [PMID: 32406605 PMCID: PMC7496725 DOI: 10.1002/cphc.202000162] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Ions are ubiquitous in nature. They play a key role for many biological processes on the molecular scale, from molecular interactions, to mechanical properties, to folding, to self-organisation and assembly, to reaction equilibria, to signalling, to energy and material transport, to recognition etc. Going beyond monovalent ions to multivalent ions, the effects of the ions are frequently not only stronger (due to the obviously higher charge), but qualitatively different. A typical example is the process of binding of multivalent ions, such as Ca2+ , to a macromolecule and the consequences of this ion binding such as compaction, collapse, potential charge inversion and precipitation of the macromolecule. Here we review these effects and phenomena induced by multivalent ions for biological (macro)molecules, from the "atomistic/molecular" local picture of (potentially specific) interactions to the more global picture of phase behaviour including, e. g., crystallisation, phase separation, oligomerisation etc. Rather than attempting an encyclopedic list of systems, we rather aim for an embracing discussion using typical case studies. We try to cover predominantly three main classes: proteins, nucleic acids, and amphiphilic molecules including interface effects. We do not cover in detail, but make some comparisons to, ion channels, colloidal systems, and synthetic polymers. While there are obvious differences in the behaviour of, and the relevance of multivalent ions for, the three main classes of systems, we also point out analogies. Our attempt of a comprehensive discussion is guided by the idea that there are not only important differences and specific phenomena with regard to the effects of multivalent ions on the main systems, but also important similarities. We hope to bridge physico-chemical mechanisms, concepts of soft matter, and biological observations and connect the different communities further.
Collapse
Affiliation(s)
| | - Felix Roosen‐Runge
- Department of Biomedical Sciences and Biofilms-Research Center for Biointerfaces (BRCB), Faculty of Health and SocietyMalmö UniversitySweden
- Division of Physical ChemistryLund UniversitySweden
| | | |
Collapse
|
20
|
Valencia L, Nomena EM, Monti S, Rosas-Arbelaez W, Mathew AP, Kumar S, Velikov KP. Multivalent ion-induced re-entrant transition of carboxylated cellulose nanofibrils and its influence on nanomaterials' properties. NANOSCALE 2020; 12:15652-15662. [PMID: 32496493 DOI: 10.1039/d0nr02888f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we identify and characterize a new intriguing capability of carboxylated cellulose nanofibrils that could be exploited to design smart nanomaterials with tuned response properties for specific applications. Cellulose nanofibrils undergo a multivalent counter-ion induced re-entrant behavior at a specific multivalent metal salt concentration. This effect is manifested as an abrupt increase in the strength of the hydrogel that returns upon a further increment of salt concentration. We systematically study this phenomenon using dynamic light scattering, small-angle X-ray scattering, and molecular dynamics simulations based on a reactive force field. We find that the transitions in the nanofibril microstructure are mainly because of the perturbing actions of multivalent metal ions that induce conformational changes of the nanocellulosic chains and thus new packing arrangements. These new aggregation states also cause changes in the thermal and mechanical properties as well as wettability of the resulting films, upon water evaporation. Our results provide guidelines for the fabrication of cellulose-based films with variable properties by the simple addition of multivalent ions.
Collapse
Affiliation(s)
- Luis Valencia
- Division of Materials and Environmental Chemistry, Stockholm University, Frescativägen 8, 10691, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
21
|
Yao K, Sun L, Ding X, Wang Y, Liu T, Liu C, Tan J, Zhao L, Xu B, Romsted L. Simultaneous determination of interfacial molarities of an alcohol, bromide ion, and water during an alcohol induced microstructural transition: the difference between medium and long chain alcohols. SOFT MATTER 2020; 16:5148-5156. [PMID: 32395738 DOI: 10.1039/d0sm00665c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The transitions between surfactant aggregate structures are triggered by changes in chemical or physical stimulations, including addition of additives. Effects of added alcohols on aggregate morphologies correlate strongly with alcohol chain length. The local molarities of alcohol, water, and counterions in the interfacial regions play an important role in controlling the aggregate morphologies. However, direct experimental estimates of changes of interfacial alcohol molarities during alcohol induced micelle-to-vesicle transitions have never been reported. Ellipsoidal-wormlike micelle-vesicle transitions in CTAB/KBr aqueous solutions in the presence of long-chain octanol were characterized by using combined rheological, dynamic light scattering (DLS), transmission electron microscopy (TEM) and turbidity measurements. However, the transitions are absent with added butanol. The chemical trapping method (CT) was employed to understand the differences between medium- and long-chain alcohols in determining aggregate morphology. The CT method was used to estimate interfacial water, alcohol, and counterion molarities with increasing stoichiometric alcohol concentrations. With 55 mM alcohol added, the interfacial octanol molarity is 0.9 M, which is three times higher than that for butanol. With added octanol, the ellipsoidal-wormlike micelle-vesicle transition is accompanied by a concurrent sharp increase of interfacial water molarities and a decrease of interfacial counterion molarity, which is not observed with added butanol. The CT data was also employed to estimate the changes of Israelachvili's packing parameter with increasing added alcohol concentration. Our result provides critical molecular level information for understanding the morphological transitions of CTAB/additives.
Collapse
Affiliation(s)
- Kaixin Yao
- Department of Applied Chemistry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Lijie Sun
- Department of Applied Chemistry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Xiaoxuan Ding
- Department of Applied Chemistry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Yuzhao Wang
- Department of Applied Chemistry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Tianze Liu
- Department of Applied Chemistry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Changyao Liu
- Department of Applied Chemistry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Jiajing Tan
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Li Zhao
- Department of Applied Chemistry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Baocai Xu
- Department of Applied Chemistry, Beijing Technology and Business University, No. 11 Fucheng Road, Beijing, 100048, People's Republic of China.
| | - Larry Romsted
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road Piscataway, New Jersey 08854, USA
| |
Collapse
|
22
|
Patil R, Marathe D, Roy SP, Ray D, Aswal VK, Jha PK, Bahadur P, Tiwari S. Colloidal stability of graphene oxide nanosheets in association with triblock copolymers: A neutron scattering analysis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110559. [PMID: 32228907 DOI: 10.1016/j.msec.2019.110559] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 11/29/2019] [Accepted: 12/14/2019] [Indexed: 02/06/2023]
Abstract
This study investigates stabilization of graphene oxide (GO) nanosheets in polyethylene oxide-polypropylene oxide (PEO-PPO) block copolymers (P103, P123 and F127). Changes in micellization of copolymers upon GO addition were monitored using dynamic light (DLS) and small angle neutron scattering (SANS). Structural developments at sheet surface were studied with two possibilities; (i) adsorption of PPO block over hydrophobic basal plane allowing the engagement of hydrophilic PEO with aqueous bulk, and (ii) adsorption of micelles mediated via carboxylated groups. Insignificant changes in micellar parameters for P123 and P127 were indicative of their inferior interaction with GO. On the other hand, P103 micelles exhibited high affinity for sheets, noticeable as emergence of mass fractals and more than two-fold enhancement in micelle number density. The latter allowed coverage of entire surface with P103 micelles. Existence of mass fractals was verified by extracting the form and structure factors from the fitted SANS data. Spectroscopic and thermogravimetric analyses illustrated non-covalent adsorption of copolymer aggregates. It was interesting to note that the dispersion remained stable against protein and electrolyte addition. A comprehensive understanding on colloidal stability can be valuable for drug delivery applications of GO sheets.
Collapse
Affiliation(s)
- Rahul Patil
- Uka Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Dipika Marathe
- Uka Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Samaresh P Roy
- Uka Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
| | - Prafulla K Jha
- Department of Physics, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Sanjay Tiwari
- Uka Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India.
| |
Collapse
|
23
|
Understanding the bioconjugation reaction of phenthoate with human serum albumin: New insights from experimental and computational approaches. Toxicol Lett 2019; 314:124-132. [DOI: 10.1016/j.toxlet.2019.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/11/2019] [Accepted: 07/26/2019] [Indexed: 12/19/2022]
|