1
|
Albashir D, Lu H, Gouda M, Acharya DR, Danhassan UA, Bakur A, Shi Y, Chen Q. A novel polydiacetylene-functionalized fibrinogen paper-based biosensor for on-spot and rapid detection of Staphylococcus aureus. Food Chem 2024; 458:140291. [PMID: 38959795 DOI: 10.1016/j.foodchem.2024.140291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 06/04/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
Staphylococcus aureus contamination continues to be a harmful foodborne pathogen threatening of human health, and there is a growing need for rapid detection technologies. This study proposed a novel paper biosensor based on a polydiacetylene (PDA) polymer functionalized fibrinogen (Fg) for the detection of S. aureus in food sources. The fluorophore was developed based on the high binding ability of fibrinogen-binding proteins on the surface of S. aureus. This binding caused twisting in the PDA backbone, leading to changes in chromatic and fluorescent. The detection limit of this method was 50.1 CFU/mL for S. aureus-contaminated foodstuffs and 65.0 CFU/mL for the pure S. aureus culture, and the novelty came from its rapidity and selectivity for S. aureus compared to other foodborne bacteria. In summary, the present work provides a rapid detection method for S. aureus detection, which will help in addressing food safety-related issues.
Collapse
Affiliation(s)
- Dafaallah Albashir
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Mostafa Gouda
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Nutrition and Food Science, National Research Centre, Dokki, Giza 12622, Egypt
| | - Dev Raj Acharya
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | | | - Abdelmoneim Bakur
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Sciences and Technology, University of Kordofan, El Obeid, Sudan
| | - Ying Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Qihe Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Tao C, Wang J, Zhu Y, Ding C, Shen Z, Sun D, Cao S, Jiang X, Li Y, Liu C, Zhang Q, Li S, Zhang X, Shi Q, Kong D. A highly sensitive fluorescence biosensor for aflatoxins B 1 detection based on polydiacetylene liposomes combined with exonuclease III-assisted recycling amplification. Mikrochim Acta 2024; 191:397. [PMID: 38877314 DOI: 10.1007/s00604-024-06482-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
A fluorescence biosensor for determination of aflatoxin B1 (AFB1) based on polydiacetylene (PDA) liposomes and exonuclease III (EXO III)-assisted recycling amplification was developed. The AFB1 aptamer partially hybridizes with complementary DNA (cDNA), which is released upon recognition of AFB1 by the aptamer. Subsequently, the cDNA hybridizes with hairpin H to form double-stranded DNA that undergoes digestion by EXO III, resulting in the cyclic release of cDNA and generation of capture DNA for further reaction. The capture DNA then hybridizes with probe modified on PDA liposomes, leading to aggregation of liposomes and subsequent fluorescence production. This strategy exhibited a limit of detection of 0.18 ng/mL within the linear range 1-100 ng/mL with a determination coefficient > 0.99. The recovery ranged from 92.81 to 106.45%, with relative standard deviations (RSD) between 1.73 and 4.26%, for corn, brown rice, peanut butter, and wheat samples. The stability, accuracy, and specificity of the method demonstrated the applicability for real sample analysis.
Collapse
Affiliation(s)
- Chunxu Tao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Junyan Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Ying Zhu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Chao Ding
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Zhuoyue Shen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Danni Sun
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Shanshan Cao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
| | - Xinrong Jiang
- The Quality Monitoring Center for Food and Strategic Reserves of Zhenjiang City, Zhenjiang, 212009, Jiangsu, China
| | - Yaqi Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qi Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Shijie Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Xinyan Zhang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China
| | - Qiaoqiao Shi
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu, China.
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang, 212003, Jiangsu, China.
| |
Collapse
|
3
|
Sivagnanam S, Das K, Pan I, Stewart A, Barik A, Maity B, Das P. Engineered triphenylphosphonium-based, mitochondrial-targeted liposomal drug delivery system facilitates cancer cell killing actions of chemotherapeutics. RSC Chem Biol 2024; 5:236-248. [PMID: 38456034 PMCID: PMC10915973 DOI: 10.1039/d3cb00219e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 03/09/2024] Open
Abstract
In addition to their classical role in ATP generation, mitochondria also contribute to Ca2+ buffering, free radical production, and initiation of programmed cell death. Mitochondrial dysfunction has been linked to several leading causes of morbidity and mortality worldwide including neurodegenerative, metabolic, and cardiovascular diseases as well as several cancer subtypes. Thus, there is growing interest in developing drug-delivery vehicles capable of shuttling therapeutics directly to the mitochondria. Here, we functionalized the conventional 10,12-pentacosadiynoic acid/1,2-dimyristoyl-sn-glycero-3-phosphocholine (PCDA/DMPC)-based liposome with a mitochondria-targeting triphenylphosphonium (TPP) cationic group. A fluorescent dansyl dye (DAN) group was also included for tracking mitochondrial drug uptake. The resultant PCDA-TPP and PCDA-DAN conjugates were incorporated into a 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-based lipid bilayer, and these modified liposomes (Lip-DT) were studied for their cellular toxicity, mitochondrial targeting ability, and efficacy in delivering the drug Doxorubicin (Dox) to human colorectal carcinoma (HCT116) and human breast (MCF7) cancer cells in vitro. This Lip-DT-Dox exhibited the ability to shuttle the encapsulated drug to the mitochondria of cancer cells and triggered oxidative stress, mitochondrial dysfunction, and apoptosis. The ability of Lip-DT-Dox to trigger cellular toxicity in both HCT116 and MCF7 cancer cells was comparable to the known cell-killing actions of the unencapsulated drug (Dox). The findings in this study reveal a promising approach where conventional liposome-based drug delivery systems can be rendered mitochondria-specific by incorporating well-known mitochondriotropic moieties onto the surface of the liposome.
Collapse
Affiliation(s)
- Subramaniyam Sivagnanam
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri Kattankulathur Tamil Nadu-603203 India
| | - Kiran Das
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Ieshita Pan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai 602105 Tamil Nadu India
| | - Adele Stewart
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University Jupiter FL 33458 USA
| | - Atanu Barik
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre, Trombay Mumbai 400085 Maharashtra India
| | - Biswanath Maity
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGI) campus Raebareli Road Lucknow Uttar Pradesh 226014 India
| | - Priyadip Das
- Department of Chemistry, SRM Institute of Science and Technology SRM Nagar, Potheri Kattankulathur Tamil Nadu-603203 India
| |
Collapse
|
4
|
Taguchi S, Hamanishi S, Satone H, Yamamoto T. Concentration of Diynoic Acids in Bicellar Mixtures Derived from Those Phase Separation. J Oleo Sci 2024; 73:887-894. [PMID: 38825541 DOI: 10.5650/jos.ess24006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024] Open
Abstract
Bicellar mixtures containing diacetylene molecules, such as diynoic acids, can be used as parent materials for functional membranes. A bicellar mixture consisting of a diynoic acid-10,12-tricosadiynoic acid (TCDA)-, a phospholipid-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)-, and a detergent-3-[(3-cholamidopropyl) dimethylammonio]-2-hydroxypropanesulfonate (CHAPSO)-was evaluated for its morphology and packing of TCDA molecules in its bicellar mixture. A TCDA/DMPC vesicle was prepared at different molar ratios, TCDA/DMPC = 2/8, 5/5, and 8/2; a TCDA/DMPC/CHAPSO bicellar mixture was prepared by mixing a CHAPSO solution with a TCDA/DMPC vesicle solution as a detergent at different composition ratios, x TCDA/DMPC = [TCDA/DMPC]/([TCDA/DMPC]+[CHAPSO]), of 1.0, 0.70, 0.50, and 0.30. A DMPC molecule formed a bilayer membrane structure and was used to suppress its precipitation. The packing density of the TCDA/DMPC/CHAPSO bicellar mixtures was increased by mixing a CHAPSO molecule in x TCDA/DMPC = 1.0 to 0.70 or 0.50. A TEM image of a TCDA/DMPC/CHAPSO bicellar mixture showed many discoidal assemblies at x TCDA/DMPC = 0.5 of TCDA/DMPC = 5/5. Polymerization of the TCDA molecules in the bicellar mixture by UV light suggested an ordered arrangement of TCDA. Polymerization at x TCDA/DMPC = 0.70 and 0.50 correlated with improved packing density.
Collapse
Affiliation(s)
- Shogo Taguchi
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| | - Soh Hamanishi
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| | - Hiroshi Satone
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| | - Takuji Yamamoto
- Department of Chemical Engineering and Materials Science, Grad. Sch. of Engineering, University of Hyogo
| |
Collapse
|
5
|
Lee Y, Kim KM, Nguyen DL, Jannah F, Seong HJ, Kim JM, Kim YP. Cyclized proteins with tags as permeable and stable cargos for delivery into cells and liposomes. Int J Biol Macromol 2023; 252:126520. [PMID: 37625744 DOI: 10.1016/j.ijbiomac.2023.126520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Despite the therapeutic potential of recombinant proteins, their cell permeabilities and stabilities remain significant challenges. Here we demonstrate that cyclized recombinant proteins can be used as universal cargos for permeable and stable delivery into cells and polydiacetylene liposomes. Utilizing a split intein-mediated process, cyclized model fluorescent proteins containing short tetraarginine (R4) and hexahistidine (H6) tags were generated without compromising their native protein functions. Strikingly, as compared to linear R4/H6-tagged proteins, the cyclized counterparts have substantially increased permeabilities in both cancer cells and synthetic liposomes, as well as higher resistances to enzymatic degradation in cancer cells. These properties are likely a consequence of structural constraints imposed on the proteins in the presence of short functional peptides. Additionally, photodynamic therapy by cyclized photoprotein-loaded liposomes in cancer cells was significantly improved in comparison to that by their non-cyclized counterparts. These findings suggest that our strategy will be universally applicable to intercellular delivery of proteins and therapeutics.
Collapse
Affiliation(s)
- Yeonju Lee
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Kyung-Min Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Duc Long Nguyen
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Fadilatul Jannah
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Jung Seong
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jong-Man Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea.
| | - Young-Pil Kim
- Department of Life Science, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea; Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Department of HY-KIST Bio-Convergence, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
6
|
Liu CW, Tsutsui H. Sample-to-answer sensing technologies for nucleic acid preparation and detection in the field. SLAS Technol 2023; 28:302-323. [PMID: 37302751 DOI: 10.1016/j.slast.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023]
Abstract
Efficient sample preparation and accurate disease diagnosis under field conditions are of great importance for the early intervention of diseases in humans, animals, and plants. However, in-field preparation of high-quality nucleic acids from various specimens for downstream analyses, such as amplification and sequencing, is challenging. Thus, developing and adapting sample lysis and nucleic acid extraction protocols suitable for portable formats have drawn significant attention. Similarly, various nucleic acid amplification techniques and detection methods have also been explored. Combining these functions in an integrated platform has resulted in emergent sample-to-answer sensing systems that allow effective disease detection and analyses outside a laboratory. Such devices have a vast potential to improve healthcare in resource-limited settings, low-cost and distributed surveillance of diseases in food and agriculture industries, environmental monitoring, and defense against biological warfare and terrorism. This paper reviews recent advances in portable sample preparation technologies and facile detection methods that have been / or could be adopted into novel sample-to-answer devices. In addition, recent developments and challenges of commercial kits and devices targeting on-site diagnosis of various plant diseases are discussed.
Collapse
Affiliation(s)
- Chia-Wei Liu
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA
| | - Hideaki Tsutsui
- Department of Mechanical Engineering, University of California, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
7
|
Stimuli-Responsive and Antibacterial Cellulose-Chitosan Hydrogels Containing Polydiacetylene Nanosheets. Polymers (Basel) 2023; 15:polym15051062. [PMID: 36904304 PMCID: PMC10005511 DOI: 10.3390/polym15051062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Herein, we report a stimuli-responsive hydrogel with inhibitory activity against Escherichia coli prepared by chemical crosslinking of carboxymethyl chitosan (CMCs) and hydroxyethyl cellulose (HEC). The hydrogels were prepared by esterification of chitosan (Cs) with monochloroacetic acid to produce CMCs which were then chemically crosslinked to HEC using citric acid as the crosslinking agent. To impart a stimuli responsiveness property to the hydrogels, polydiacetylene-zinc oxide (PDA-ZnO) nanosheets were synthesized in situ during the crosslinking reaction followed by photopolymerization of the resultant composite. To achieve this, ZnO was anchored on carboxylic groups in 10,12-pentacosadiynoic acid (PCDA) layers to restrict the movement of the alkyl portion of PCDA during crosslinking CMCs and HEC hydrogels. This was followed by irradiating the composite with UV radiation to photopolymerize the PCDA to PDA within the hydrogel matrix so as to impart thermal and pH responsiveness to the hydrogel. From the results obtained, the prepared hydrogel had a pH-dependent swelling capacity as it absorbed more water in acidic media as compared to basic media. The incorporation of PDA-ZnO resulted in a thermochromic composite responsive to pH evidenced by a visible colour transition from pale purple to pale pink. Upon swelling, PDA-ZnO-CMCs-HEC hydrogels had significant inhibitory activity against E. coli attributed to the slow release of the ZnO nanoparticles as compared to CMCs-HEC hydrogels. In conclusion, the developed hydrogel was found to have stimuli-responsive properties and inhibitory activity against E. coli attributed to zinc nanoparticles.
Collapse
|
8
|
Suthar J, Taub M, Carney RP, Williams GR, Guldin S. Recent developments in biosensing methods for extracellular vesicle protein characterization. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1839. [PMID: 35999185 PMCID: PMC10078591 DOI: 10.1002/wnan.1839] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/27/2022] [Accepted: 07/13/2022] [Indexed: 01/31/2023]
Abstract
Research into extracellular vesicles (EVs) has grown significantly over the last few decades with EVs being widely regarded as a source of biomarkers for human health and disease with massive clinical potential. Secreted by every cell type in the body, EVs report on the internal cellular conditions across all tissue types. Their presence in readily accessible biofluids makes the potential of EV biosensing highly attractive as a noninvasive diagnostic platform via liquid biopsies. However, their small size (50-250 nm), inherent heterogeneity, and the complexity of the native biofluids introduce challenges for effective characterization, thus, limiting their clinical utility. This has led to a surge in the development of various novel EV biosensing techniques, with capabilities beyond those of conventional methods that have been directly transferred from cell biology. In this review, key detection principles used for EV biosensing are summarized, with a focus on some of the most recent and fundamental developments in the field over the last 5 years. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > In Vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Jugal Suthar
- Department of Chemical Engineering, University College London, London, UK.,UCL School of Pharmacy, University College London, London, UK
| | - Marissa Taub
- UCL School of Pharmacy, University College London, London, UK
| | - Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | | | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, UK
| |
Collapse
|
9
|
Nasrollahpour H, Khalilzadeh B, Hasanzadeh M, Rahbarghazi R, Estrela P, Naseri A, Tasoglu S, Sillanpää M. Nanotechnology‐based electrochemical biosensors for monitoring breast cancer biomarkers. Med Res Rev 2022; 43:464-569. [PMID: 36464910 DOI: 10.1002/med.21931] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 10/01/2022] [Accepted: 11/04/2022] [Indexed: 12/07/2022]
Abstract
Breast cancer is categorized as the most widespread cancer type among women globally. On-time diagnosis can decrease the mortality rate by making the right decision in the therapy procedure. These features lead to a reduction in medication time and socioeconomic burden. The current review article provides a comprehensive assessment for breast cancer diagnosis using nanomaterials and related technologies. Growing use of the nano/biotechnology domain in terms of electrochemical nanobiosensor designing was discussed in detail. In this regard, recent advances in nanomaterial applied for amplified biosensing methodologies were assessed for breast cancer diagnosis by focusing on the advantages and disadvantages of these approaches. We also monitored designing methods, advantages, and the necessity of suitable (nano) materials from a statistical standpoint. The main objective of this review is to classify the applicable biosensors based on breast cancer biomarkers. With numerous nano-sized platforms published for breast cancer diagnosis, this review tried to collect the most suitable methodologies for detecting biomarkers and certain breast cancer cell types.
Collapse
Affiliation(s)
- Hassan Nasrollahpour
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Balal Khalilzadeh
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center Tabriz University of Medical Sciences Tabriz Iran
- Department of Applied Cellular Sciences, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences Tabriz Iran
| | - Pedro Estrela
- Centre for Biosensors, Bioelectronics and Biodevices (C3Bio) and Department of Electronic and Electrical Engineering University of Bath Bath UK
| | - Abdolhossein Naseri
- Department of Analytical Chemistry, Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Savas Tasoglu
- Koç University Translational Medicine Research Center (KUTTAM) Rumeli Feneri, Sarıyer Istanbul Turkey
| | - Mika Sillanpää
- Environmental Engineering and Management Research Group Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Environment and Labour Safety Ton Duc Thang University Ho Chi Minh City Vietnam
| |
Collapse
|
10
|
Fang X, Wang Y, Wang S, Liu B. Nanomaterials assisted exosomes isolation and analysis towards liquid biopsy. Mater Today Bio 2022; 16:100371. [PMID: 35937576 PMCID: PMC9352971 DOI: 10.1016/j.mtbio.2022.100371] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/13/2022] [Accepted: 07/17/2022] [Indexed: 11/18/2022] Open
Abstract
Exosomes has attracted tremendous research interests as they are emerging as a new paradigm of liquid biopsy. Although the concentration of exosomes in blood is relatively abundant, there still exists various vesicle-like nanoparticles, such as microvesicles, apoptotic bodies. It's an urgent need to isolate and enrich exosomes from the complex contaminants in biofluid samples. Moreover, the expressing level of exosomal biomarkers varies a lot, which make the sensitive molecular detection of exosomes in high demand. Unfortunately, the efficient isolation and sensitive molecular quantification of exosomes is still a major obstacle hindering the further development and clinical application of exosome-based liquid biopsy. Nanomaterials, with unique physiochemical properties, have been widely used in biosensing and analysis aspects, thus they are thought as powerful tools for effective purification and molecular analysis of exosomes. In this review, we summarized the most recent progresses in nanomaterials assisted exosome isolation and analysis towards liquid biopsy. On the one hand, nanomaterials can be used as capture substrates to afford large binding area and specific affinity to exosomes. Meanwhile, nanomaterials can also be served as promising signal transducers and amplifiers for molecular detection of exosomes. Furthermore, we also pointed out several potential and promising research directions in nanomaterials assisted exosome analysis. It's envisioned that this review will give the audience a complete outline of nanomaterials in exosome study, and further promote the intersection of nanotechnology and bio-analysis.
Collapse
Affiliation(s)
- Xiaoni Fang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yuqing Wang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Shurong Wang
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Baohong Liu
- School of Pharmacy, Shanghai Stomatological Hospital, Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
11
|
Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Wang L, Zhang J, Shen W, Zeng X, Lee HK, Tang S. Can Direct-Immersion Aqueous–Aqueous Microextraction Be Achieved When Using a Single-Drop System? Anal Chem 2022; 94:12538-12545. [DOI: 10.1021/acs.analchem.2c03017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lina Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Jinghui Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Xuemin Zeng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu Province, PR China
| |
Collapse
|
13
|
Xu Y, Zhu H, Ding Z, Zhao X, Yin J, Graff B, Gao J, Lalevée J. Distinctive Colorimetric Response of Benzaldehyde Substituted Polydiacetylene Vesicle to Temperature, pH and Organic Amines. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yangyang Xu
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu Anhui Province 241002 P. R. China
| | - Haibin Zhu
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu Anhui Province 241002 P. R. China
| | - Zhaofu Ding
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu Anhui Province 241002 P. R. China
| | - Xianjun Zhao
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu Anhui Province 241002 P. R. China
| | - Jiansong Yin
- College of Chemistry and Materials Science Anhui Normal University South Jiuhua Road 189 Wuhu Anhui Province 241002 P. R. China
| | - Bernadette Graff
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| | - Jiangang Gao
- School of Chemical and Environmental Engineering Anhui Polytechnic University 8th Beijing Middle Road Wuhu 241000 P. R. China
| | - Jacques Lalevée
- CNRS Université de Haute‐Alsace IS2M UMR 7361 Mulhouse F‐68100 France
| |
Collapse
|
14
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Tan J, Wen Y, Li M. Emerging biosensing platforms for quantitative detection of exosomes as diagnostic biomarkers. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214111] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Development of Polydiacetylene-Based Testosterone Detection as a Model Sensing Platform for Water-Insoluble Hormone Analytes. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9070176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We have developed a polydiacetylene (PDA)-based sensing platform to detect testosterone (T) as a potential biomarker of preterm birth. The insolubility of the steroid hormone in water, where PDA assemblies are dispersed, poses a major issue, since they can hardly interact with each other. To overcome this challenge, acetonitrile was used as a suitable solvent. In addition, to minimize false signals of PDA assemblies caused by the solvent, a mixture of acetonitrile and distilled water was selected. To prove a concept of PDA-based sensing platform for targeting T hormone, we conjugated anti-T antibodies to surface of PDA assemblies to induce selective binding between T and anti-T antibodies. The fluorescence sensory signaling of the PDA-anti-T antibody conjugate was selectively generated for T, over 3.4 times higher sensitivity of the signaling compared to that from other sex steroid hormones studied (β-estradiol and progesterone).
Collapse
|
17
|
Structures and strategies for enhanced sensitivity of polydiacetylene(PDA) based biosensor platforms. Biosens Bioelectron 2021; 181:113120. [PMID: 33714858 DOI: 10.1016/j.bios.2021.113120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/20/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Polydiacetylene (PDA) is a versatile polymer that has been studied in numerous fields because of its unique optical properties derived from alternating multiple bonds in the polymer backbone. The conjugated structure in the polymer backbone enables PDA to possess the ability of blue-red colorimetric transition when π-π interactions in the PDA backbone chain are disturbed by the external environment. The chromatic property of PDA disturbed by external stimuli can also emit fluorescence in the red region. Owing to the unique characteristics of PDA, it has been widely studied in facile and label-free sensing applications based on colorimetric or fluorescence signals for several decades. Among the various PDA structures, membrane structures assembled by amphiphilic molecules are widely used as a versatile platform because facile modification of the synthetic membrane provides extensive applications, such as receptor-ligand interactions, resulting in potent biosensors. To use PDA as a sensory material, several methods have been studied to endow the specificity to PDA molecules and to amplify the signal from PDA supramolecules. This is because selective and sensitive detection of target materials is required at an appropriate level corresponding to each material for applicable sensor applications. This review focuses on factors that affect the sensitivity of PDA composites and several strategies to enhance the sensitivity of the PDA sensor to various structures. Owing to these strategies, the PDA sensor system has achieved a higher level of sensitivity and selectivity, enabling it to detect multiple target materials for a full field of application.
Collapse
|
18
|
Tjandra AD, Weston M, Tang J, Kuchel RP, Chandrawati R. Solvent injection for polydiacetylene particle synthesis – Effects of varying solvent, injection rate, monomers and needle size on polydiacetylene properties. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Huang D, Chen J, Hu D, Xie F, Yang T, Li Z, Wang X, Xiao Y, Zhong J, Jiang Y, Zhang X, Zhong T. Advances in Biological Function and Clinical Application of Small Extracellular Vesicle Membrane Proteins. Front Oncol 2021; 11:675940. [PMID: 34094979 PMCID: PMC8172959 DOI: 10.3389/fonc.2021.675940] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022] Open
Abstract
Small extracellular vesicles are membrane-bound vesicles secreted into extracellular spaces by virtually all types of cells. These carry a large number of membrane proteins on their surface that are incorporated during their biogenesis in cells. The composition of the membrane proteins hence bears the signature of the cells from which they originate. Recent studies have suggested that the proteins on these small extracellular vesicles can serve as biomarkers and target proteins for the diagnosis and treatment of diseases. This article classifies small extracellular vesicle membrane proteins and summarizes their pathophysiological functions in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Defa Huang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jie Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Die Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangfang Xie
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tong Yang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhengzhe Li
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoxing Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yongwei Xiao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiaokang Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Department of Preventive Medicine, Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China.,Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China.,Precision Medicine Center, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
20
|
Sun Z, Yang J, Li H, Wang C, Fletcher C, Li J, Zhan Y, Du L, Wang F, Jiang Y. Progress in the research of nanomaterial-based exosome bioanalysis and exosome-based nanomaterials tumor therapy. Biomaterials 2021; 274:120873. [PMID: 33989972 DOI: 10.1016/j.biomaterials.2021.120873] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 04/13/2021] [Accepted: 05/02/2021] [Indexed: 12/18/2022]
Abstract
Exosomes and their internal components have been proven to play critical roles in cell-cell interactions and intrinsic cellular regulations, showing promising prospects in both biomedical and clinical fields. Although conventional methods have so far been utilized to great effect, accurate bioanalysis remains a major challenge. In recent years, the fast-paced development of nanomaterials with unique physiochemical properties has led to a boom in the potential bioapplications of such materials. In particular, the application of nanomaterials in exosome bioanalysis provides a great opportunity to overcome the current challenges and limitations of conventional methods. A timely review of the research progress in this field is thus of great significance to the continued development of new methods. This review outlines the properties and potential uses of exosomes, and discusses the conventional methods currently used for their analysis. We then focus on exploring the current state of the art regarding the use of nanomaterials for the isolation, detection and even the subsequent profiling of exosomes. The main methods are based on principles including fluorescence, surface-enhanced Raman spectroscopy, colorimetry, electrochemistry, and surface plasmon resonance. Additionally, research on exosome-based nanomaterials tumor therapy is also promising from a clinical perspective, so the research progress in this branch is also summarized. Finally, we look at ways in which the field might develop in the future.
Collapse
Affiliation(s)
- Zhiwei Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Jingjing Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China
| | - Chuanxin Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Cameron Fletcher
- School of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Juan Li
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Yao Zhan
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China
| | - Lutao Du
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, China; Tumor Marker Detection Engineering Technology Research Center of Shandong Province, Jinan, China; Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, China; Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, China.
| |
Collapse
|
21
|
Kim YK, Pham TC, Kim J, Bae C, Choi Y, Jo MH, Lee S. Polydiacetylenes Containing 2‐Picolylamide Chemosensor for Colorimetric Detection of Cadmium Ions. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Yong Kyun Kim
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
| | - Thanh Chung Pham
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
| | - Jaewon Kim
- Department of Chemistry Pukyong National University Busan 48513 South Korea
| | - Chaeeon Bae
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
| | - Yeonghwan Choi
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
| | - Min Hee Jo
- Department of Chemistry Pukyong National University Busan 48513 South Korea
| | - Songyi Lee
- Interdisciplinary Program of Biomedical, Mechanical and Electrical Engineering Pukyong National University Busan 48513 South Korea
- Department of Chemistry Pukyong National University Busan 48513 South Korea
| |
Collapse
|
22
|
Huang Q, Wu W, Ai K, Liu J. Highly Sensitive Polydiacetylene Ensembles for Biosensing and Bioimaging. Front Chem 2020; 8:565782. [PMID: 33282824 PMCID: PMC7691385 DOI: 10.3389/fchem.2020.565782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/19/2020] [Indexed: 01/10/2023] Open
Abstract
Polydiacetylenes are prepared from amphiphilic diacetylenes first through self-assembly and then polymerization. Different from common supramolecular assemblies, polydiacetylenes have stable structure and very special optical properties such as absorption, fluorescence, and Raman. The hydrophilic head of PDAs is easy to be chemically modified with functional groups for detection and imaging applications. PDAs will undergo a specific color change from blue to red, fluorescence enhancement and Raman spectrum changes in the presence of receptor ligands. These properties allow PDA-based sensors to have high sensitivity and specificity during analysis. Therefore, the PDAs have been widely used for detection of viruses, bacteria, proteins, antibiotics, hormones, sialic acid, metal ions and as probes for bioimaging in recent years. In this review, the preparation, polymerization, and detection mechanisms of PDAs are discussed, and some representative research advances in the field of bio-detection and bioimaging are highlighted.
Collapse
Affiliation(s)
- Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Wu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China.,Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Jianhua Liu
- Department of Radiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
23
|
Zhang Y, Jiao J, Wei Y, Wang D, Yang C, Xu Z. Plasmonic Colorimetric Biosensor for Sensitive Exosome Detection via Enzyme-Induced Etching of Gold Nanobipyramid@MnO2 Nanosheet Nanostructures. Anal Chem 2020; 92:15244-15252. [DOI: 10.1021/acs.analchem.0c04136] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yingzhi Zhang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Junye Jiao
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Yunyun Wei
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Danni Wang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Chunguang Yang
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| | - Zhangrun Xu
- Research Center for Analytical Sciences, Northeastern University, Shenyang 110819, P. R. China
| |
Collapse
|
24
|
Jiang Z, Liu G, Li J. Recent Progress on the Isolation and Detection Methods of Exosomes. Chem Asian J 2020; 15:3973-3982. [PMID: 33029906 DOI: 10.1002/asia.202000873] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/04/2020] [Indexed: 12/15/2022]
Abstract
Exosomes are known as one of extracellular vesicles, which are found in various body fluids and released by cells. As transport carrier, exosomes participate actively in intercellular communication and reflect their characteristics uniquely to the origin cells. Due to their unique biological physical properties and physiological functions, exosomes are considered to be one of best biomarkers of cancer diagnosis. At the same time, exosomes are potential therapeutic targets and drug delivery carriers. Therefore, the characteristics, functions and analytical methods of exosomes have increasingly attracted wide attention among scientists. In this review, the recent research progress on the basic characteristics and functional applications of exosomes are summarized. Furthermore and importantly, this review focuses on the recent advance in the purification and test methods of exosomes in recent years. Finally, issues pertaining to exosome detection are presented. Based on newly discovered characteristic of exosomes, the opportunities and challenges for future research of the purification and quantitative detection methods are outlined.
Collapse
Affiliation(s)
- Zejun Jiang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Guangyan Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Jianping Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, P. R. China.,College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| |
Collapse
|
25
|
Hu R, Sou K, Takeoka S. A rapid and highly sensitive biomarker detection platform based on a temperature-responsive liposome-linked immunosorbent assay. Sci Rep 2020; 10:18086. [PMID: 33093468 PMCID: PMC7582967 DOI: 10.1038/s41598-020-75011-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/07/2020] [Indexed: 11/30/2022] Open
Abstract
The enzyme-linked immunosorbent assay (ELISA) is widely used in various fields to detect specific biomarkers. However, ELISA tests have limited detection sensitivity (≥ 1 pM), which is insufficiently sensitive for the detection of small amounts of biomarkers in the early stages of disease or infection. Herein, a method for the rapid and highly sensitive detection of specific antigens, using temperature-responsive liposomes (TLip) containing a squaraine dye that exhibits fluorescence at the phase transition temperature of the liposomes, was developed. A proof-of-concept study using biotinylated TLip and a streptavidin-immobilized microwell plate showed that the TLip bound to the plate via specific molecular recognition could be distinguished from unbound TLip within 1 min because of the difference in the heating time required for the fluorescence emission of TLip. This system could be used to detect prostate specific antigen (PSA) based on a sandwich immunosorbent assay using detection and capture antibodies, in which the limit of detection was as low as 27.6 ag/mL in a 100-μL PSA solution, 0.97 aM in terms of molar concentration. The present temperature-responsive liposome-linked immunosorbent assay provides an advanced platform for the rapid and highly sensitive detection of biomarkers for use in diagnosis and biological inspections.
Collapse
Affiliation(s)
- Runkai Hu
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Keitaro Sou
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan.
| | - Shinji Takeoka
- Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, Japan. .,Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan.
| |
Collapse
|
26
|
Sforzi J, Palagi L, Aime S. Liposome-Based Bioassays. BIOLOGY 2020; 9:E202. [PMID: 32752243 PMCID: PMC7466007 DOI: 10.3390/biology9080202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/22/2020] [Accepted: 07/26/2020] [Indexed: 12/12/2022]
Abstract
This review highlights the potential of using liposomes in bioassays. Liposomes consist of nano- or micro-sized, synthetically constructed phospholipid vesicles. Liposomes can be loaded with a number of reporting molecules that allow a dramatic amplification of the detection threshold in bioassays. Liposome-based sensors bind or react with the biological components of targets through the introduction of properly tailored vectors anchored on their external surface. The use of liposome-based formulations allows the set-up of bioassays that are rapid, sensitive, and often suitable for in-field applications. Selected applications in the field of immunoassays, as well as recognition/assessment of corona proteins, nucleic acids, exosomes, bacteria, and viruses are surveyed. The role of magnetoliposomes is also highlighted as an additional tool in the armory of liposome-based systems for bioassays.
Collapse
|
27
|
Nguyen LH, Oveissi F, Chandrawati R, Dehghani F, Naficy S. Naked-Eye Detection of Ethylene Using Thiol-Functionalized Polydiacetylene-Based Flexible Sensors. ACS Sens 2020; 5:1921-1928. [PMID: 32551585 DOI: 10.1021/acssensors.0c00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ethylene is a hormone that plays a critical role in many phases of plant growth and fruit ripening. Currently, detection of ethylene heavily relies on sophisticated and time-consuming conventional assays such as chromatography, spectroscopy, and electrochemical methods. Herein, we develop a polydiacetylene-based sensor for the detection of ethylene via color change. The sensors are prepared through the reaction between polydiacetylene and Lawesson's reagent that results in decorating polydiacetylene with terminal thiol groups. Upon exposure to ethylene, the sensor changes color from blue to red which is visible to the naked eye. Our device shows a limit of detection for ethylene at 600 ppm in air and can be applied for monitoring ethylene released during the fruit-ripening process. Such easy-to-use ethylene sensors may find applications in plant biology, agriculture, and food industry.
Collapse
Affiliation(s)
- Long H. Nguyen
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Farshad Oveissi
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rona Chandrawati
- School of Chemical Engineering and Australian Centre for Nanomedicine (ACN), The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sina Naficy
- School of Chemical and Biomolecular Engineering and Centre for Advanced Food Enginomics (CAFE), The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
28
|
Li J, Liu ZP, Xu C, Guo A. TGF-β1-containing exosomes derived from bone marrow mesenchymal stem cells promote proliferation, migration and fibrotic activity in rotator cuff tenocytes. Regen Ther 2020; 15:70-76. [PMID: 33426204 PMCID: PMC7770343 DOI: 10.1016/j.reth.2020.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/24/2020] [Accepted: 07/01/2020] [Indexed: 12/16/2022] Open
Abstract
Objective This study aimed to investigate effects of TGF-β1-containing exosomes derived from bone marrow mesenchymal stem cells (BMSC) on cell function of rotator cuff tenocytes and its implication to rotator cuff tear. Methods The primary BMSC and rotator cuff tenocytes were extracted and cultured. Identification of BMSC were performed by observing cell morphology and measurement of surface biomarkers by flow cytometry. BMSC-derived exosomes were extracted and identified by using electron microscopy, nanoparticle-tracking analysis (NTA) and western blotting. Cell proliferation and cell cycle were measured by CCK-8 assay and flow cytometry assay, respectively. Transwell assay was used for detection of tenocytes migration. The fibrotic activity of tenocytes was determined via qPCR and western blotting assays. Results BMSC and BMSC-derived exosomes were successfully extracted. Treatment of BMSC-derived exosomes or TGF-β1 promoted cell proliferation, migration and increased cell ratio of (S + G2/M) phases in tenocytes, as well as enhanced the expression levels of fibrotic activity associated proteins. However, inhibition of TGF-β1 by transfection of sh-TGF-β1 or treatment of TGFβR I/II inhibitor partially reversed the impact of BMSC-derived exosomes on tenocytes function. Conclusion Taken together, TGF-β1-containing exosomes derived from BMSC promoted proliferation, migration and fibrotic activity in rotator cuff tenocytes, providing a new direction for treatment of rotator cuff tendon healing.
Collapse
Key Words
- BMSC
- BMSC, Bone mesenchymal stem cells
- CCK8, Cell counting kit-8
- Col I, Collagen I
- Col III, Collagen III
- DMEM, Dulbecco's modified Eagle's medium
- Exosomes
- FBS, Fetal bovine serum
- Fibrotic activity
- Migration
- PVDF, Polyvinylidene fluoride
- Proliferation
- Rotator cuff tear
- SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel electrophoresis
- Scx, Scleraxis
- Smad7, Mothers against decapentaplegic homolog 7
- TGF-β1
- TGF-β1, Transforming growth factors β1
- TGF-βR I/II, Transforming growth factors β1 receptor type I/II
- Tnc, Tenascin C
- qPCR, Quantitative reverse-transcription polymerase chain reaction
- α-SMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Jia Li
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China.,Affiliated Hospital of Chengde Medical College, Chengde 067000, PR China
| | - Zheng-Peng Liu
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China.,Affiliated Hospital of Chengde Medical College, Chengde 067000, PR China
| | - Cong Xu
- Affiliated Hospital of Chengde Medical College, Chengde 067000, PR China
| | - Ai Guo
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, PR China
| |
Collapse
|
29
|
Tang Z, Huang J, He H, Ma C, Wang K. Contributing to liquid biopsy: Optical and electrochemical methods in cancer biomarker analysis. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213317] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Kholafazad Kordasht H, Hasanzadeh M. Biomedical analysis of exosomes using biosensing methods: recent progress. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2795-2811. [PMID: 32930202 DOI: 10.1039/d0ay00722f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exosomes are membrane-bound extracellular vesicles (EVs) that are produced in the endosomal compartments of most eukaryotic cells; they play important roles in intercellular communication in diverse cellular processes and transmit different types of biomolecules. Endocytic pathways release exosomes, which have diameters ranging from 50 to 200 nm. The unique functions of exosomes have been introduced as cancer bio-markers due to the cargo (protein, DNA and RNA) of external exosomes (tetraspanin) and internal exosomes (syntenin). The early detection of cancer by exosomes can be an excellent method for the treatment of cancer. Although detection methods based on exosomes are important, they require extensive sample purification, have high false-positive rates, and encounter labeling difficulties due to the small size of exosomes. Here, we have reviewed three major types of biosensors, namely, electrochemical biosensors, optical biosensors and electrochemiluminescence biosensors for the detection of exosomes released from breast, ovarian, pancreatic, lung, and cervical cancer cells. In addition, the importance of nanomaterials and their applications in the biomedical analysis of exosomes are discussed. Although exosomes can be used to identify various types of external and internal biomarkers by conjugating with recognition elements, most designed biosensors are based on CD9 and CD63. Therefore, the development of novel biosensors for the selective and sensitive detection of exosomes is a current challenge. We hope that this review will serve as a beneficial study for improving exosome detection in clinical samples.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Distance-based paper device using polydiacetylene liposome as a chromogenic substance for rapid and in-field analysis of quaternary ammonium compounds. Anal Bioanal Chem 2020; 412:3221-3230. [PMID: 32242258 DOI: 10.1007/s00216-020-02583-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 10/24/2022]
Abstract
This work presents an affordable distance-based microfluidic paper-based device (μPAD), using polydiacetylene (PDA) liposome as a chromogenic substance with a smartphone-based photo editor, for rapid and in-field analysis of quaternary ammonium compounds (QACs) (e.g., didecyldimethylammonium chloride (DDAC), benzyldimethyltetradecyl ammonium chloride (BAC), and cetylpyridinium chloride (CPC)). In-field analysis of these compounds is important to ensure their antimicrobial activity and user safety since they are widely utilized as disinfectants in households and hospitals. The μPAD featured a thermometer-like shape consisting of a sample reservoir and a microchannel as the detection zone, which was pre-deposited with PDA liposome. The color change from blue to red appeared in the presence of QACs and the color bar lengths were proportional to the QAC concentrations. Reactions of QACs with the PDA required a specific pH range (from pH 4.0 to 10.0) and a readout time of 7 min. Analytical performance characteristics of the device were tested with DDAC, BAC, and CPC showing acceptable specificity, accuracy (96.1-109.4%), and precision (%RSDs ≤ 9.3%). Limits of detection and quantitation were in the ranges of 20 to 80 and 70 to 250 μM, respectively. Feasibility of the newly developed device was demonstrated for in-field analysis of QACs in fumigation solution providing comparable results with those obtained from a colorimetric assay (P > 0.05). The proposed device shows potentials for further applications of other analytes since it offers speed, simplicity, and affordability for in-field analysis, especially in remote areas where expertise, resources, and infrastructures are limited. Graphical abstract.
Collapse
|
32
|
Advances in Fabrication of Polydiacetylene Vesicles and Their Applications in Medical Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(19)61213-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Gopalakrishnan D, Sumithaa C, Kumar AM, Bhuvanesh NSP, Ghorai S, Das P, Ganeshpandian M. Encapsulation of a Ru(η6-p-cymene) complex of the antibacterial drug trimethoprim into a polydiacetylene-phospholipid assembly to enhance its in vitro anticancer and antibacterial activities. NEW J CHEM 2020. [DOI: 10.1039/d0nj03664a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The first report of a Ru(arene)–liposome nanoaggregate to enhance the in vitro anticancer activity of a Ru–arene complex in liver cancer cells.
Collapse
Affiliation(s)
| | | | - Arumugam Madan Kumar
- Cancer Biology Lab
- Molecular and Nanomedicine Research Unit
- Sathyabama Institute of Science and Technology
- Chennai
- India
| | | | - Suvankar Ghorai
- Department of Biotechnology
- SRM Institute of Science and Technology
- Kattankulathur 603 203
- India
| | - Priyadip Das
- Department of Chemistry
- SRM Institute of Science and Technology
- India
| | | |
Collapse
|
34
|
Martín-Gracia B, Martín-Barreiro A, Cuestas-Ayllón C, Grazú V, Line A, Llorente A, M. de la Fuente J, Moros M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J Mater Chem B 2020; 8:6710-6738. [DOI: 10.1039/d0tb00861c] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Selecting the appropriate nanoparticle, functionalization chemistry and sensing methodology can speed up the translation of liquid biopsies into the clinic.
Collapse
Affiliation(s)
- Beatriz Martín-Gracia
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Alba Martín-Barreiro
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | | | - Valeria Grazú
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - Aija Line
- Latvian Biomedical Research and Study Centre
- Riga
- Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology
- Institute for Cancer Research
- Oslo University Hospital
- Oslo
- Norway
| | - Jesús M. de la Fuente
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| | - María Moros
- Aragón Materials Science Institute (ICMA)
- CSIC/University of Zaragoza
- Zaragoza
- Spain
- Biomedical Research Networking Center in Bioengineering
| |
Collapse
|