1
|
Zhang S, Fang H, Tian H. Recent Advances in Degradable Biomedical Polymers for Prevention, Diagnosis and Treatment of Diseases. Biomacromolecules 2024; 25:7015-7057. [PMID: 39420482 DOI: 10.1021/acs.biomac.4c01193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Biomedical polymers play a key role in preventing, diagnosing, and treating diseases, showcasing a wide range of applications. Their unique advantages, such as rich source, good biocompatibility, and excellent modifiability, make them ideal biomaterials for drug delivery, biomedical imaging, and tissue engineering. However, conventional biomedical polymers suffer from poor degradation in vivo, increasing the risks of bioaccumulation and potential toxicity. To address these issues, degradable biomedical polymers can serve as an alternative strategy in biomedicine. Degradable biomedical polymers can efficiently relieve bioaccumulation in vivo and effectively reduce patient burden in disease management. This review comprehensively introduces the classification and properties of biomedical polymers and the recent research progress of degradable biomedical polymers in various diseases. Through an in-depth analysis of their classification, properties, and applications, we aim to provide strong guidance for promoting basic research and clinical translation of degradable biomedical polymers.
Collapse
Affiliation(s)
- Siting Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
2
|
Cheng J, Bai J, Guo J, Yu X, Fan Z, Guo M, Cheng B. Yarn-Based Degradable Janus PPDO Fabric for Multifunctional Applications. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39360334 DOI: 10.1021/acsami.4c15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The growing high standard of people's wear has put forward requirements for fabrics, and multifunctional fabrics have been developed precisely in response to the requirements of the times. However, the incineration of waste fabrics produces a large amount of pollutants, resulting in a massive waste of resources and environmental pollution. Herein, the degradable nanofiber yarns (NYs) with self-cleaning properties were fabricated by in situ growth of SiO2 nanoparticles on the surface of the electrospun poly(p-dioxanone) (PPDO) NYs using the Stöber method. Then, the PPDO NYs were blended with carbon fibers and the PPDO/SiO2 NYs with themselves to form the Janus PPDO fabrics, respectively. The Janus PPDO fabric offered asymmetric wettability and dual personal thermal management properties. The PPDO/C side of the Janus PPDO fabric provided 65.8 °C at 1.5 V or 58.5 °C under one sunlight intensity for radiative heating. The PPDO/SiO2 side exhibited high solar reflectivity (81.8%) and mid-infrared (MIR) emissivity (99.1%), which reduced the skin temperature by 4.6 °C, resulting in radiative cooling. Moreover, the Janus PPDO fabrics display an excellent electromagnetic interference (EMI) shielding performance (53.3 dB). Therefore, yarn-based degradable Janus fabric has a promising future in multifunctional wearable products.
Collapse
Affiliation(s)
- Jinxue Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Jiulin Bai
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Junyu Guo
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Xiaoliang Yu
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Zhi Fan
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Minjie Guo
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| | - Bowen Cheng
- College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, P. R. China
| |
Collapse
|
3
|
Wang M, Liu HY, Ke NW, Wu G, Chen SC, Wang YZ. Toward regulating biodegradation in stages of polyurethane copolymers with bicontinuous microphase separation. J Mater Chem B 2023; 11:3164-3175. [PMID: 36938684 DOI: 10.1039/d3tb00011g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
For typical biodegradable polymers, their overall performance almost declines exponentially to the degradation degree, which inevitably leads to a dilemma between the requirements of service life and retention time in the environment (both in vitro and in vivo). It is a great challenge to develop a biodegradable polymeric device with relatively stable performance in service while rapidly degrading out of service. Herein, we demonstrate an effective strategy to control degradation of biodegradable polymers in stages by constructing separated bicontinuous microphases with very different microphase degradation rates. First, polyurethane copolymers (PCL-b-CrP-U) containing two blocks, i.e., semicrystalline poly(ε-caprolactone) (PCL) blocks and amorphous random copolymer blocks (CrP) based on ε-CL and p-dioxanone (PDO), were synthesized. The microscopic morphology of PCL-b-CrP-U is investigated by an alkali-accelerated degradation experiment, which also demonstrates that the chain cleavage-induced crystallization during degradation resulted in a self-reinforcement by forming degradation residues with a scaffold-like morphology. The tensile test shows that PCL-b-CrP-U has excellent mechanical properties (1500% of elongation at break, a tensile strength of about 7.5 MPa, and an elastic modulus of 40.0 MPa). The degradation experiments with artificial pancreatic juice as a working medium reveal that PCL-b-CrP-U samples containing relatively high PDO units exhibit a three-stage degradation, i.e. an induction stage, a steady degradation stage and an accelerated degradation stage. The CrP phase preferentially hydrolyzes to form some microchannels due to its amorphous nature and relatively high hydrophilicity, effectively accelerating the entry of water and enzymes into the inner parts of the sample. Meanwhile, at this stage, those originally amorphous PCL segments gradually crystalize owing to their enhanced chain mobility induced by the chain cleavage, forming a "scaffold"-like structure, which effectively reinforces the sample to resist the damage from external force and therefore guarantees a relatively stable mechanical performance of PCL-b-CrP-U during service. With the further depletion of the CrP phase, the intermediate "scaffold"-like structure is also very beneficial to accelerate the degradation of residues owing to its large specific surface area, which is expected to be beneficial for preventing long-term retention of the implantation devices.
Collapse
Affiliation(s)
- Man Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
| | - Hong-Ying Liu
- Department of Pancreatic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, China.
| | - Neng-Wen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, China.
| | - Gang Wu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
| | - Si-Chong Chen
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
4
|
Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Radha Sachan
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G. Warkar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
5
|
Hu S, Liu L, Li H, Pahovnik D, Hadjichristidis N, Zhou X, Zhao J. Tuning the Properties of Ester-Based Degradable Polymers by Inserting Epoxides into Poly(ϵ-caprolactone). Chem Asian J 2023; 18:e202201097. [PMID: 36424185 DOI: 10.1002/asia.202201097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/08/2022] [Indexed: 11/26/2022]
Abstract
A series of ester-ether copolymers were obtained via the reaction between α,ω-dihydroxyl poly(ϵ-caprolactone) (PCL) and ethylene oxide (EO) or monosubstituted epoxides catalyzed by strong phosphazene bases. The two types of monomeric units were distributed in highly random manners due to the concurrence of epoxide ring-opening and fast transesterification reactions. The substituent of epoxide showed an interesting bidirectional effect on the enzymatic degradability of the copolymer. Compared with PCL, copolymers derived from EO exhibited enhanced hydrophilicity and decreased crystallinity which then resulted in higher degradability. For the copolymers derived from propylene oxide and 1,2-butylene oxide, the hydrophobic alkyl pendant groups also allowed lower crystallinity of the copolymers thus higher degradation rates. However, further enlarging the pendant groups by using styrene oxide or 2-ethylhexyl glycidyl ether caused a decrease in the degradation rate, which might be ascribed to the higher bulkiness hindering the contact of ester groups with lipase.
Collapse
Affiliation(s)
- Shuangyan Hu
- Institute of Microscale Optoelectronics, Shenzhen University, 518060, Shenzhen, P. R. China.,Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China.,College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Lijun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - Heng Li
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| | - David Pahovnik
- Department of Polymer Chemistry and Technology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, P. R. China
| | - Junpeng Zhao
- Faculty of Materials Science and Engineering, South China University of Technology, 510640, Guangzhou, P. R. China
| |
Collapse
|
6
|
Hirschmann M, Andriani F, Fuoco T. Functional and Degradable Copolyesters by Ring-Opening Copolymerization of Epoxides and Anhydrides. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Abedi F, Moghaddam SV, Ghandforoushan P, Aghazadeh M, Ebadi H, Davaran S. Synthesis and characterization of growth factor free nanoengineered bioactive scaffolds for bone tissue engineering. J Biol Eng 2022; 16:28. [PMID: 36253790 PMCID: PMC9578226 DOI: 10.1186/s13036-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To address the obstacles that come with orthopedic surgery for biological graft tissues, including immune rejections, bacterial infections, and weak osseointegration, bioactive nanocomposites have been used as an alternative for bone grafting since they can mimic the biological and mechanical properties of the native bone. Among them, PCL-PEG-PCL (PCEC) copolymer has gained much attention for bone tissue engineering as a result of its biocompatibility and ability for osteogenesis. METHODS Here, we designed a growth factor-free nanoengineered scaffold based on the incorporation of Fe3O4 and hydroxyapatite (HA) nanoparticles into the PCL-PEG-PCL/Gelatin (PCEC/Gel) nanocomposite. We characterized different formulations of nanocomposite scaffolds in terms of physicochemical properties. Also, the mechanical property and specific surface area of the prepared scaffolds, as well as their feasibility for human dental pulp stem cells (hDPSCs) adhesion were assessed. RESULTS The results of in vitro cell culture study revealed that the PCEC/Gel Fe3O4&HA scaffold could promote osteogenesis in comparison with the bare scaffold, which confirmed the positive effect of the Fe3O4 and HA nanoparticles in the osteogenic differentiation of hDPSCs. CONCLUSION The incorporation of Fe3O4 and HA with PCEC/gelatin could enhance osteogenic differentiation of hDPSCs for possible substitution of bone grafting tissue.
Collapse
Affiliation(s)
- Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Ghandforoushan
- Department of Medicinal chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hafez Ebadi
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
8
|
Andriani F, Fuoco T. Statistical enchainment of ester/ether and carbonate cleavable bonds to control copolymers’ erosion rate and trigger environment-specific degradation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
9
|
Ponjavic M, Jevtic S, Nikolic MS. Multiblock copolymers containing poly(butylene succinate) and poly(ε-caprolactone) blocks: Effect of block ratio and length on physical properties and biodegradability. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03144-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Terzopoulou Z, Zamboulis A, Koumentakou I, Michailidou G, Noordam MJ, Bikiaris DN. Biocompatible Synthetic Polymers for Tissue Engineering Purposes. Biomacromolecules 2022; 23:1841-1863. [PMID: 35438479 DOI: 10.1021/acs.biomac.2c00047] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Synthetic polymers have been an integral part of modern society since the early 1960s. Besides their most well-known applications to the public, such as packaging, construction, textiles and electronics, synthetic polymers have also revolutionized the field of medicine. Starting with the first plastic syringe developed in 1955 to the complex polymeric materials used in the regeneration of tissues, their contributions have never been more prominent. Decades of research on polymeric materials, stem cells, and three-dimensional printing contributed to the rapid progress of tissue engineering and regenerative medicine that envisages the potential future of organ transplantations. This perspective discusses the role of synthetic polymers in tissue engineering, their design and properties in relation to each type of application. Additionally, selected recent achievements of tissue engineering using synthetic polymers are outlined to provide insight into how they will contribute to the advancement of the field in the near future. In this way, we aim to provide a guide that will help scientists with synthetic polymer design and selection for different tissue engineering applications.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Alexandra Zamboulis
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Georgia Michailidou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Miyake R, Maehara A, Chanthaset N, Ajiro H. Thermal Property Control by Copolymerization of Trimethylene Carbonate and Its Derivative Bearing Triphenylmethyl Group. ChemistrySelect 2022. [DOI: 10.1002/slct.202104326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Rikyu Miyake
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Akari Maehara
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Nalinthip Chanthaset
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroharu Ajiro
- Division of Materials Science Graduate School of Science and Technology Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
- Data Science Center Nara Institute of Science and Technology, 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
12
|
Fuoco T, Chen M, Jain S, Wang XV, Wang L, Finne-Wistrand A. Hydrogel Polyester Scaffolds via Direct-Ink-Writing of Ad Hoc Designed Photocurable Macromonomer. Polymers (Basel) 2022; 14:711. [PMID: 35215623 PMCID: PMC8876641 DOI: 10.3390/polym14040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic, degradable macromonomers have been developed to serve as ink for 3D printing technologies based on direct-ink-writing. The macromonomers are purposely designed to be cross-linkable under the radical mechanism, to impart hydrophilicity to the final material, and to have rheological properties matching the printer's requirements. The suitable viscosity enables the ink to be printed at room temperature, in absence of organic solvents, and to be cross-linked to manufacture soft 3D scaffolds that show no indirect cytotoxicity and have a hydration capacity of up to 100% their mass and a compressive modulus in the range of 0.4-2 MPa.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| | - Mo Chen
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Shubham Jain
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| | - Xi Vincent Wang
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Lihui Wang
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| |
Collapse
|
13
|
Li B, Zhang Y, Zhu X, Li Z, Li Z, Qiu H, Wu G. Poly(ether ester) and related block copolymers via organocatalytic ring‐opening polymerization. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Bo Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Zhejiang Hangzhou China
| | - Yong‐Lu Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Zhejiang Hangzhou China
| | - Xiao‐Feng Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| | - Zhuo‐Qun Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Zhejiang Hangzhou China
| | - Zi‐Hui Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Zhejiang Hangzhou China
| | - Hua‐Yu Qiu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education Hangzhou Normal University Zhejiang Hangzhou China
| | - Guang‐Peng Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering Zhejiang University Hangzhou China
| |
Collapse
|
14
|
KAYSER F, Fleury G, thongkham S, Navarro C, Martin-Vaca B, Bourissou D. Reducing the crystallinity of PCL chains by copolymerization with substituted δ/ε-lactones and its impact on the phase separation of PCL-based block copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various substituted δ/ε-lactones have been copolymerized with ε-caprolactone (ε-CL) with the aim to inhibit the crystallization of polycaprolactone (PCL). Among the studied co-monomers, the best results were obtained with the...
Collapse
|
15
|
Liu H, Jain S, Ahlinder A, Fuoco T, Gasser TC, Finne-Wistrand A. Pliable, Scalable, and Degradable Scaffolds with Varying Spatial Stiffness and Tunable Compressive Modulus Produced by Adopting a Modular Design Strategy at the Macrolevel. ACS POLYMERS AU 2021; 1:107-122. [PMID: 36855428 PMCID: PMC9954393 DOI: 10.1021/acspolymersau.1c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Clinical results obtained when degradable polymer-based medical devices are used in breast reconstruction following mastectomy are promising. However, it remains challenging to develop a large scaffold structure capable of providing both sufficient external mechanical support and an internal cell-like environment to support breast tissue regeneration. We propose an internal-bra-like prototype to solve both challenges. The design combines a 3D-printed scaffold with knitted meshes and electrospun nanofibers and has properties suitable for both breast tissue regeneration and support of a silicone implant. Finite element analysis (FEA) was used to predict the macroscopic and microscopic stiffnesses of the proposed structure. The simulations show that introduction of the mesh leads to a macroscopic scaffold stiffness similar to the stiffness of breast tissue, and mechanical testing confirms that the introduction of more layers of mesh in the modular design results in a lower elastic modulus. The compressive modulus of the scaffold can be tailored within a range from hundreds of kPa to tens of kPa. Biaxial tensile testing reveals stiffening with increasing strain and indicates that rapid strain-induced softening occurs only within the first loading cycle. In addition, the microscopic local stiffness obtained from FEA simulations indicates that cells experience significant heterogeneous mechanical stimuli at different places in the scaffold and that the local mechanical stimulus generated by the strand surface is controlled by the elastic modulus of the polymer, rather than by the scaffold architecture. From in vitro experiments, it was observed that the addition of knitted mesh and an electrospun nanofiber layer to the scaffold significantly increased cell seeding efficiency, cell attachment, and proliferation compared to the 3D-printed scaffold alone. In summary, our results suggest that the proposed design strategy is promising for soft tissue engineering of scaffolds to assist breast reconstruction and regeneration.
Collapse
Affiliation(s)
- Hailong Liu
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden,Department
of Engineering Mechanics, KTH Royal Institute
of Technology, 100 44, Stockholm, Sweden
| | - Shubham Jain
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - Astrid Ahlinder
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - Tiziana Fuoco
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden
| | - T. Christian Gasser
- Solid
Mechanics, Department of Engineering Mechanics, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden,Faculty
of Health Sciences, University of Southern
Denmark, 5230, Odense, Denmark,
| | - Anna Finne-Wistrand
- Department
of Fibre and Polymer Technology, KTH Royal
Institute of Technology, 100 44, Stockholm, Sweden,
| |
Collapse
|
16
|
Fuoco T. Degradation in Order: Simple and Versatile One‐Pot Combination of Two Macromolecular Concepts to Encode Diverse and Spatially Regulated Degradability Functions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology School of Engineering Sciences in Chemistry, Biotechnology and Health KTH Royal Institute of Technology Teknikringen, 56–58 100-44 Stockholm Sweden
| |
Collapse
|
17
|
Fuoco T. Degradation in Order: Simple and Versatile One-Pot Combination of Two Macromolecular Concepts to Encode Diverse and Spatially Regulated Degradability Functions. Angew Chem Int Ed Engl 2021; 60:15482-15489. [PMID: 33951273 PMCID: PMC8361945 DOI: 10.1002/anie.202103143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/20/2023]
Abstract
The clever one-pot combination of two macromolecular concepts, ring-opening polymerization (ROP) and step-growth polymerization (SGP), is demonstrated to be a simple, yet powerful tool to design a library of sequence-controlled polymers with diverse and spatially regulated degradability functions. ROP and SGP occur sequentially at room temperature when the organocatalytic conditions are switched from basic to acidic, and each allows the encoding of specific degradable bonds. ROP controls the sequence length and position of the degradability functions, while SGP between the complementary vinyl ether and hydroxyl chain-ends enables the formation of acetal bonds and high-molar-mass copolymers. The result is the rational combination of cleavable bonds prone to either bulk or surface erosion within the same macromolecule. The strategy is versatile and offers higher chemical diversity and level of control over the primary structure than current aliphatic polyesters or polycarbonates, while being simple, effective, and atom-economical and having potential for scalability.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer TechnologySchool of Engineering Sciences in Chemistry, Biotechnology and HealthKTH Royal Institute of TechnologyTeknikringen, 56–58100-44StockholmSweden
| |
Collapse
|
18
|
Fuoco T, Cuartero M, Parrilla M, García-Guzmán JJ, Crespo GA, Finne-Wistrand A. Capturing the Real-Time Hydrolytic Degradation of a Library of Biomedical Polymers by Combining Traditional Assessment and Electrochemical Sensors. Biomacromolecules 2021; 22:949-960. [PMID: 33502851 PMCID: PMC7875459 DOI: 10.1021/acs.biomac.0c01621] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have developed an innovative methodology to overcome the lack of techniques for real-time assessment of degradable biomedical polymers at physiological conditions. The methodology was established by combining polymer characterization techniques with electrochemical sensors. The in vitro hydrolytic degradation of a series of aliphatic polyesters was evaluated by following the molar mass decrease and the mass loss at different incubation times while tracing pH and l-lactate released into the incubation media with customized miniaturized electrochemical sensors. The combination of different analytical approaches provided new insights into the mechanistic and kinetics aspects of the degradation of these biomedical materials. Although molar mass had to reach threshold values for soluble oligomers to be formed and specimens' resorption to occur, the pH variation and l-lactate concentration were direct evidence of the resorption of the polymers and indicative of the extent of chain scission. Linear models were found for pH and released l-lactate as a function of mass loss for the l-lactide-based copolymers. The methodology should enable the sequential screening of degradable polymers at physiological conditions and has potential to be used for preclinical material's evaluation aiming at reducing animal tests.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE 100-44 Stockholm, Sweden
| | - Maria Cuartero
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Marc Parrilla
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Juan José García-Guzmán
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Gaston A Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44 Stockholm, Sweden
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, SE 100-44 Stockholm, Sweden
| |
Collapse
|
19
|
Fuoco T, Nguyen TT, Kivijärvi T, Finne-Wistrand A. Organocatalytic strategy to telechelic oligo(ε-caprolactone-co-p-dioxanone): Photocurable macromonomers for polyester networks. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Venkateshaiah A, Padil VV, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS. Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers (Basel) 2020; 12:E512. [PMID: 32120773 PMCID: PMC7182842 DOI: 10.3390/polym12030512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.
Collapse
Affiliation(s)
- Abhilash Venkateshaiah
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Vinod V.T. Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Malladi Nagalakshmaiah
- IMT Lille Douai, Department of Polymers and Composites Technology and Mechanical Engineering (TPCIM), 941 rue Charles Bourseul, CS10838, F-59508 Douai, France
| | - Stanisław Waclawek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
21
|
Yang K, Du J, Zhang Z, Liu D, Ren T. Facile and eco-friendly preparation of super-amphiphilic porous polycaprolactone. J Colloid Interface Sci 2020; 560:795-801. [DOI: 10.1016/j.jcis.2019.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/16/2019] [Accepted: 11/02/2019] [Indexed: 12/28/2022]
|
22
|
Olsén P, Herrera N, Berglund LA. Toward Biocomposites Recycling: Localized Interphase Degradation in PCL-Cellulose Biocomposites and its Mitigation. Biomacromolecules 2020; 21:1795-1801. [DOI: 10.1021/acs.biomac.9b01704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Peter Olsén
- Wallenberg Wood Science Center, WWSC, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Natalia Herrera
- Wallenberg Wood Science Center, WWSC, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| | - Lars A. Berglund
- Wallenberg Wood Science Center, WWSC, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden
| |
Collapse
|
23
|
Albertsson AC, Percec S. Future of Biomacromolecules at a Crossroads of Polymer Science and Biology. Biomacromolecules 2020; 21:1-6. [DOI: 10.1021/acs.biomac.9b01536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
24
|
Fuoco T, Ahlinder A, Jain S, Mustafa K, Finne-Wistrand A. Poly(ε-caprolactone- co- p-dioxanone): a Degradable and Printable Copolymer for Pliable 3D Scaffolds Fabrication toward Adipose Tissue Regeneration. Biomacromolecules 2019; 21:188-198. [PMID: 31549825 DOI: 10.1021/acs.biomac.9b01126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The advancement of 3D printing technologies in the fabrication of degradable scaffolds for tissue engineering includes, from the standpoint of the polymer chemists, an urgent need to develop new materials that can be used as ink and are suitable for medical applications. Here, we demonstrate that a copolymer of ε-caprolactone (CL) with low amounts of p-dioxanone (DX) (15 mol %) is a degradable and printable material that suits the requirements of melt extrusion 3D printing technologies, including negligible degradation during thermal processing. It is therefore a potential candidate for soft tissue regeneration. The semicrystalline CL/DX copolymer is processed at a lower temperature than a commercial polycaprolactone (PCL), shaped as a filament for melt extrusion 3D printing and as porous and pliable scaffolds with a gradient design. Scaffolds have Young's modulus in the range of 60-80 MPa, values suitable for provision of structural support for damaged soft tissue such as breast tissue. SEM and confocal microscope indicate that the CL/DX copolymer scaffolds support adipose stem cell attachment, spreading, and proliferation.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Astrid Ahlinder
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Shubham Jain
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine , University of Bergen , 5020 Bergen , Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology , KTH Royal Institute of Technology , 100 44 Stockholm , Sweden
| |
Collapse
|
25
|
Jain S, Fuoco T, Yassin MA, Mustafa K, Finne-Wistrand A. Printability and Critical Insight into Polymer Properties during Direct-Extrusion Based 3D Printing of Medical Grade Polylactide and Copolyesters. Biomacromolecules 2019; 21:388-396. [DOI: 10.1021/acs.biomac.9b01112] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shubham Jain
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Tiziana Fuoco
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| | - Mohammed A. Yassin
- Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway, Årstadveien 19, 5009 Bergen, Norway
| | - Kamal Mustafa
- Tissue Engineering Group, Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Norway, Årstadveien 19, 5009 Bergen, Norway
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 10044 Stockholm, Sweden
| |
Collapse
|