1
|
Olawumi MA, Oladapo BI, Olugbade TO, Omigbodun FT, Olawade DB. AI-Driven Data Analysis of Quantifying Environmental Impact and Efficiency of Shape Memory Polymers. Biomimetics (Basel) 2024; 9:490. [PMID: 39194469 DOI: 10.3390/biomimetics9080490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
This research investigates the environmental sustainability and biomedical applications of shape memory polymers (SMPs), focusing on their integration into 4D printing technologies. The objectives include comparing the carbon footprint, embodied energy, and water consumption of SMPs with traditional materials such as metals and conventional polymers and evaluating their potential in medical implants, drug delivery systems, and tissue engineering. The methodology involves a comprehensive literature review and AI-driven data analysis to provide robust, scalable insights into the environmental and functional performance of SMPs. Thermomechanical modeling, phase transformation kinetics, and heat transfer analyses are employed to understand the behavior of SMPs under various conditions. Significant findings reveal that SMPs exhibit considerably lower environmental impacts than traditional materials, reducing greenhouse gas emissions by approximately 40%, water consumption by 30%, and embodied energy by 25%. These polymers also demonstrate superior functionality and adaptability in biomedical applications due to their ability to change shape in response to external stimuli. The study concludes that SMPs are promising sustainable alternatives for biomedical applications, offering enhanced patient outcomes and reduced environmental footprints. Integrating SMPs into 4D printing technologies is poised to revolutionize healthcare manufacturing processes and product life cycles, promoting sustainable and efficient medical practices.
Collapse
Affiliation(s)
- Mattew A Olawumi
- Computing, Engineering and Media, De Montfort University, Leicester LE1 9BH, UK
| | - Bankole I Oladapo
- School of Science and Engineering, University of Dundee, Dundee DD1 4HN, UK
| | | | - Francis T Omigbodun
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, UK
| | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London E16 2RD, UK
- Department of Research and Innovation, Medway NHS Foundation Trust, Gillingham ME7 5NY, UK
| |
Collapse
|
2
|
Ban S, Lee H, Chen J, Kim HS, Hu Y, Cho SJ, Yeo WH. Recent advances in implantable sensors and electronics using printable materials for advanced healthcare. Biosens Bioelectron 2024; 257:116302. [PMID: 38648705 DOI: 10.1016/j.bios.2024.116302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024]
Abstract
This review article focuses on the recent printing technological progress in healthcare, underscoring the significant potential of implantable devices across diverse applications. Printing technologies have widespread use in developing health monitoring devices, diagnostic systems, and surgical devices. Recent years have witnessed remarkable progress in fabricating low-profile implantable devices, driven by advancements in printing technologies and nanomaterials. The importance of implantable biosensors and bioelectronics is highlighted, specifically exploring printing tools using bio-printable inks for practical applications, including a detailed examination of fabrication processes and essential parameters. This review also justifies the need for mechanical and electrical compatibility between bioelectronics and biological tissues. In addition to technological aspects, this article delves into the importance of appropriate packaging methods to enhance implantable devices' performance, compatibility, and longevity, which are made possible by integrating cutting-edge printing technology. Collectively, we aim to shed light on the holistic landscape of implantable biosensors and bioelectronics, showcasing their evolving role in advancing healthcare through innovative printing technologies.
Collapse
Affiliation(s)
- Seunghyeb Ban
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Haran Lee
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea
| | - Jiehao Chen
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA
| | - Hee-Seok Kim
- School of Engineering and Technology, University of Washington Tacoma, Tacoma, WA, 98195, USA
| | - Yuhang Hu
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seong J Cho
- Department of Mechanical Engineering, Chungnam National University, 99 Daehak-Ro, Yuseong-Gu, Daejeon, 34134, Republic of Korea.
| | - Woon-Hong Yeo
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30024, USA; IEN Center for Wearable Intelligent Systems and Healthcare at the Institute for Electronics and Nanotechnology, Georgia Institute of Technology, Atlanta, GA, 30332, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Santos N, Fuentes-Lemus E, Ahumada M. Use of photosensitive molecules in the crosslinking of biopolymers: applications and considerations in biomaterials development. J Mater Chem B 2024; 12:6550-6562. [PMID: 38913025 DOI: 10.1039/d4tb00299g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The development of diverse types of biomaterials has significantly contributed to bringing new biomedical strategies to treat clinical conditions. Applications of these biomaterials can range from mechanical support and protection of injured tissues to joint replacement, tissue implants, and drug delivery systems. Among the strategies commonly used to prepare biomaterials, the use of electromagnetic radiation to initiate crosslinking stands out. The predominance of photo-induced polymerization methods relies on a fast, efficient, and straightforward process that can be easily adjusted to clinical needs. This strategy consists of irradiating the components that form the material with photons in the near ultraviolet-visible wavelength range (i.e., ∼310 to 750 nm) in the presence of a photoactive molecule. Upon photon absorption, photosensitive molecules can generate excited species that initiate photopolymerization through different reaction mechanisms. However, this process could promote undesired side reactions depending on the target zone or treatment type (e.g., oxidative stress and modification of biomolecules such as proteins and lipids). This review explores the basic concepts behind the photopolymerization process of ex situ and in situ biomaterials. Particular emphasis was put on the photosensitization initiated by the most employed photosensitizers and the photoreactions that they mediate in aqueous media. Finally, the undesired oxidation reactions at the bio-interface and potential solutions are presented.
Collapse
Affiliation(s)
- Nicolas Santos
- Institut Químic de Sarrià, Universitat Ramon Llull, Barcelona 08017, Spain
| | - Eduardo Fuentes-Lemus
- Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Blegdamsvej 3, Copenhagen, 2200, Denmark.
| | - Manuel Ahumada
- Centro de Nanotecnología Aplicada, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile.
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| |
Collapse
|
4
|
Chiaradia V, Pensa E, Machado TO, Dove AP. Improving the Performance of Photoactive Terpene-Based Resin Formulations for Light-Based Additive Manufacturing. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:6904-6912. [PMID: 38725455 PMCID: PMC11077580 DOI: 10.1021/acssuschemeng.3c08191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/12/2024]
Abstract
Photocurable liquid formulations have been a key research focus for the preparation of mechanically robust and thermally stable networks. However, the development of renewable resins to replace petroleum-based commodities presents a great challenge in the field. From this perspective, we disclose the design of photoactive resins based on terpenes and itaconic acid, both potentially naturally sourced, to prepare photosets with adjustable thermomechanical properties. Biobased perillyl itaconate (PerIt) was synthesized from renewable perillyl alcohol and itaconic anhydride via a scalable solvent-free method. Photoirradiation of PerIt in the presence of a multiarm thiol and photoinitiator led to the formation of networks over a range of compositions. Addition of nonmodified terpenes (perillyl alcohol, linalool, or limonene) as reactive diluents allowed for more facile preparation of photocured networks. Photosets within a wide range of properties were accessed, and these could be adjusted by varying diluent type and thiol stoichiometry. The resins showed rapid photocuring kinetics and the ability to form either brittle or elastic materials, with Young's modulus and strain at break ranging from 3.6 to 358 MPa and 15 to 367%, respectively, depending on the chemical composition of the resin. Glass transition temperatures (Tg) were influenced by thioether content, with temperatures ranging from 5 to 43 °C, and all photosets displayed good thermal resistance with Td,5% > 190 °C. Selected formulations containing PerIt and limonene demonstrated suitability for additive manufacturing technologies and high-resolution objects were printed via digital light processing (DLP). Overall, this work presents a simple and straightforward route to prepare renewable resins for rapid prototyping applications.
Collapse
Affiliation(s)
- Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Elena Pensa
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Thiago O. Machado
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
5
|
Dedeloudi A, Martinez-Marcos L, Quinten T, Andersen S, Lamprou DA. Biopolymeric 3D printed implantable scaffolds as a potential adjuvant treatment for acute post-operative pain management. Expert Opin Drug Deliv 2024:1-13. [PMID: 38555481 DOI: 10.1080/17425247.2024.2336492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Pain is characterized as a major symptom induced by tissue damage occurring from surgical procedures, whose potency is being experienced subjectively, while current pain relief strategies are not always efficient in providing individualized treatment. 3D printed implantable devices hold the potential to offer a precise and customized medicinal approach, targeting both tissue engineering and drug delivery. RESEARCH DESIGN AND METHODS Polycaprolactone (PCL) and PCL - chitosan (CS) composite scaffolds loaded with procaine (PRC) were fabricated by bioprinting. Geometrical features including dimensions, pattern, and infill of the scaffolds were mathematically optimized and digitally determined, aiming at developing structurally uniform 3D printed models. Printability studies based on thermal imaging of the bioprinting system were performed, and physicochemical, surface, and mechanical attributes of the extruded scaffolds were evaluated. The release rate of PRC was examined at different time intervals up to 1 week. RESULTS Physicochemical stability and mechanical integrity of the scaffolds were studied, while in vitro drug release studies revealed that CS contributes to the sustained release dynamic of PRC. CONCLUSIONS The printing extrusion process was capable of developing implantable devices for a local and sustained delivery of PRC as a 7-day adjuvant regimen in post-operative pain management.
Collapse
Affiliation(s)
| | - Laura Martinez-Marcos
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | - Thomas Quinten
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | - Sune Andersen
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | | |
Collapse
|
6
|
King O, Pérez-Madrigal MM, Murphy ER, Hmayed AAR, Dove AP, Weems AC. 4D Printable Salicylic Acid Photopolymers for Sustained Drug Releasing, Shape Memory, Soft Tissue Scaffolds. Biomacromolecules 2023; 24:4680-4694. [PMID: 37747816 DOI: 10.1021/acs.biomac.3c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
3D printing of pharmaceuticals offers a unique opportunity for long-term, sustained drug release profiles for an array of treatment options. Unfortunately, this approach is often limited by physical compounding or processing limitations. Modification of the active drug into a prodrug compound allows for seamless incorporation with advanced manufacturing methods that open the door to production of complex tissue scaffold drug depots. Here we demonstrate this concept using salicylic acids with varied prodrug structures for control of physical and chemical properties. The role of different salicylic acid derivatives (salicylic acid, bromosalicylic allyl ester, iodosalicylic allyl ester) and linker species (allyl salicylate, allyl 2-(allyloxy)benzoate, allyl 2-(((allyloxy)carbonyl)oxy)benzoate) were investigated using thiol-ene cross-linking in digital light processing (DLP) 3D printing to produce porous prodrug tissue scaffolds containing more than 50% salicylic acid by mass. Salicylic acid photopolymer resins were all found to be highly reactive (solidification within 5 s of irradiation at λ = 405 nm), while the cross-linked solids display tunable thermomechanical behaviors with low glass transition temperatures (Tgs) and elastomeric behaviors, with the carbonate species displaying an elastic modulus matching that of adipose tissue (approximately 65 kPa). Drug release profiles were found to be zero order, sustained release based upon hydrolytic degradation of multilayered scaffolds incorporating fluorescent modeling compounds, with release rates tuned through selection of the linker species. Cytocompatibility in 2D and 3D was further demonstrated for all species compared to polycarbonate controls, as well as salicylic acid-containing composites (physical incorporation), over a 2-week period using murine fibroblasts. The use of drugs as the matrix material for solid prodrug tissue scaffolds opens the door to novel therapeutic strategies, longer sustained release profiles, and even reduced complications for advanced medicine.
Collapse
Affiliation(s)
- Olivia King
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Maria M Pérez-Madrigal
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
- Departament d'Enginyeria Química, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, 08019, Barcelona, Spain
| | - Erin R Murphy
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, Ohio 45701, United States
| | | | - Andrew P Dove
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
| | - Andrew C Weems
- Biomedical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K
- Molecular and Cellular Biology Program, Ohio University, Athens, Ohio 45701, United States
- Mechanical Engineering, Russ College of Engineering, Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
7
|
Laubach M, Hildebrand F, Suresh S, Wagels M, Kobbe P, Gilbert F, Kneser U, Holzapfel BM, Hutmacher DW. The Concept of Scaffold-Guided Bone Regeneration for the Treatment of Long Bone Defects: Current Clinical Application and Future Perspective. J Funct Biomater 2023; 14:341. [PMID: 37504836 PMCID: PMC10381286 DOI: 10.3390/jfb14070341] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/31/2023] [Accepted: 06/21/2023] [Indexed: 07/29/2023] Open
Abstract
The treatment of bone defects remains a challenging clinical problem with high reintervention rates, morbidity, and resulting significant healthcare costs. Surgical techniques are constantly evolving, but outcomes can be influenced by several parameters, including the patient's age, comorbidities, systemic disorders, the anatomical location of the defect, and the surgeon's preference and experience. The most used therapeutic modalities for the regeneration of long bone defects include distraction osteogenesis (bone transport), free vascularized fibular grafts, the Masquelet technique, allograft, and (arthroplasty with) mega-prostheses. Over the past 25 years, three-dimensional (3D) printing, a breakthrough layer-by-layer manufacturing technology that produces final parts directly from 3D model data, has taken off and transformed the treatment of bone defects by enabling personalized therapies with highly porous 3D-printed implants tailored to the patient. Therefore, to reduce the morbidities and complications associated with current treatment regimens, efforts have been made in translational research toward 3D-printed scaffolds to facilitate bone regeneration. Three-dimensional printed scaffolds should not only provide osteoconductive surfaces for cell attachment and subsequent bone formation but also provide physical support and containment of bone graft material during the regeneration process, enhancing bone ingrowth, while simultaneously, orthopaedic implants supply mechanical strength with rigid, stable external and/or internal fixation. In this perspective review, we focus on elaborating on the history of bone defect treatment methods and assessing current treatment approaches as well as recent developments, including existing evidence on the advantages and disadvantages of 3D-printed scaffolds for bone defect regeneration. Furthermore, it is evident that the regulatory framework and organization and financing of evidence-based clinical trials remains very complex, and new challenges for non-biodegradable and biodegradable 3D-printed scaffolds for bone regeneration are emerging that have not yet been sufficiently addressed, such as guideline development for specific surgical indications, clinically feasible design concepts for needed multicentre international preclinical and clinical trials, the current medico-legal status, and reimbursement. These challenges underscore the need for intensive exchange and open and honest debate among leaders in the field. This goal can be addressed in a well-planned and focused stakeholder workshop on the topic of patient-specific 3D-printed scaffolds for long bone defect regeneration, as proposed in this perspective review.
Collapse
Affiliation(s)
- Markus Laubach
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Frank Hildebrand
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Sinduja Suresh
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Michael Wagels
- Department of Plastic Surgery, Princess Alexandra Hospital, Woolloongabba, QLD 4102, Australia;
- The Herston Biofabrication Institute, The University of Queensland, Herston, QLD 4006, Australia
- Southside Clinical Division, School of Medicine, University of Queensland, Woolloongabba, QLD 4102, Australia
- Department of Plastic and Reconstructive Surgery, Queensland Children’s Hospital, South Brisbane, QLD 4101, Australia
- The Australian Centre for Complex Integrated Surgical Solutions, Woolloongabba, QLD 4102, Australia
| | - Philipp Kobbe
- Department of Orthopaedics, Trauma and Reconstructive Surgery, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Fabian Gilbert
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Ulrich Kneser
- Department of Hand, Plastic and Reconstructive Surgery, Microsurgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Boris M. Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, Marchioninistraße 15, 81377 Munich, Germany
| | - Dietmar W. Hutmacher
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies (CTET), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
8
|
Al-Shalawi FD, Mohamed Ariff AH, Jung DW, Mohd Ariffin MKA, Seng Kim CL, Brabazon D, Al-Osaimi MO. Biomaterials as Implants in the Orthopedic Field for Regenerative Medicine: Metal versus Synthetic Polymers. Polymers (Basel) 2023; 15:2601. [PMID: 37376247 PMCID: PMC10303232 DOI: 10.3390/polym15122601] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Patients suffering bone fractures in different parts of the body require implants that will enable similar function to that of the natural bone that they are replacing. Joint diseases (rheumatoid arthritis and osteoarthritis) also require surgical intervention with implants such as hip and knee joint replacement. Biomaterial implants are utilized to fix fractures or replace parts of the body. For the majority of these implant cases, either metal or polymer biomaterials are chosen in order to have a similar functional capacity to the original bone material. The biomaterials that are employed most often for implants of bone fracture are metals such as stainless steel and titanium, and polymers such as polyethene and polyetheretherketone (PEEK). This review compared metallic and synthetic polymer implant biomaterials that can be employed to secure load-bearing bone fractures due to their ability to withstand the mechanical stresses and strains of the body, with a focus on their classification, properties, and application.
Collapse
Affiliation(s)
- Faisal Dakhelallah Al-Shalawi
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Azmah Hanim Mohamed Ariff
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
- Research Center Advanced Engineering Materials and Composites (AEMC), Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Dong-Won Jung
- Faculty of Applied Energy System, Major of Mechanical Engineering, Jeju National University, 102 Jejudaehak-ro, Jeju-si 63243, Republic of Korea
| | - Mohd Khairol Anuar Mohd Ariffin
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (F.D.A.-S.); (M.K.A.M.A.)
| | - Collin Looi Seng Kim
- Department of Orthopaedic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Dermot Brabazon
- Advanced Manufacturing Research Centre, and Advanced Processing Technology Research Centre, School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, D09 V209 Dublin 9, Ireland;
| | - Maha Obaid Al-Osaimi
- Department of Microbiology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
9
|
Impact of In-Process Crystallinity of Biodegradable Scaffolds Fabricated by Material Extrusion on the Micro- and Nanosurface Topography, Viability, Proliferation, and Differentiation of Human Mesenchymal Stromal Cells. Polymers (Basel) 2023; 15:polym15061468. [PMID: 36987248 PMCID: PMC10052033 DOI: 10.3390/polym15061468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Due to affordability, and the ability to parametrically control the vital processing parameters, material extrusion is a widely accepted technology in tissue engineering. Material extrusion offers sufficient control over pore size, geometry, and spatial distribution, and can also yield different levels of in-process crystallinity in the resulting matrix. In this study, an empirical model based on four process parameters—extruder temperature, extrusion speed, layer thickness, and build plate temperature—was used to control the level of in-process crystallinity of polylactic acid (PLA) scaffolds. Two sets of scaffolds were fabricated, with low- and high-crystallinity content, and subsequently seeded with human mesenchymal stromal cells (hMSC). The biochemical activity of hMSC cells was tested by examining the DNA content, lactate dehydrogenase (LDH) activity, and alkaline phosphatase (ALP) tests. The results of this 21-day in vitro experiment showed that high level crystallinity scaffolds performed significantly better in terms of cell response. Follow-up tests revealed that the two types of scaffolds were equivalent in terms of hydrophobicity, and module of elasticity. However, detailed examination of their micro- and nanosurface topographic features revealed that the higher crystallinity scaffolds featured pronounced nonuniformity and a larger number of summits per sampling area, which was the main contributor to a significantly better cell response.
Collapse
|
10
|
Pattnaik A, Sanket AS, Pradhan S, Sahoo R, Das S, Pany S, Douglas TEL, Dandela R, Liu Q, Rajadas J, Pati S, De Smedt SC, Braeckmans K, Samal SK. Designing of gradient scaffolds and their applications in tissue regeneration. Biomaterials 2023; 296:122078. [PMID: 36921442 DOI: 10.1016/j.biomaterials.2023.122078] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Gradient scaffolds are isotropic/anisotropic three-dimensional structures with gradual transitions in geometry, density, porosity, stiffness, etc., that mimic the biological extracellular matrix. The gradient structures in biological tissues play a major role in various functional and metabolic activities in the body. The designing of gradients in the scaffold can overcome the current challenges in the clinic compared to conventional scaffolds by exhibiting excellent penetration capacity for nutrients & cells, increased cellular adhesion, cell viability & differentiation, improved mechanical stability, and biocompatibility. In this review, the recent advancements in designing gradient scaffolds with desired biomimetic properties, and their implication in tissue regeneration applications have been briefly explained. Furthermore, the gradients in native tissues such as bone, cartilage, neuron, cardiovascular, skin and their specific utility in tissue regeneration have been discussed in detail. The insights from such advances using gradient-based scaffolds can widen the horizon for using gradient biomaterials in tissue regeneration applications.
Collapse
Affiliation(s)
- Ananya Pattnaik
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - A Swaroop Sanket
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Sanghamitra Pradhan
- Department of Chemistry, Institute of Technical Education and Research, Siksha 'O' Anusandhan University, Bhubaneswar, 751030, Odisha, India
| | - Rajashree Sahoo
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Sudiptee Das
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Swarnaprbha Pany
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Timothy E L Douglas
- Engineering Department, Lancaster University, Lancaster, United Kingdom; Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Indian Oil Odisha Campus, Bhubaneswar, Odisha, India
| | - Qiang Liu
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford University School of Medicine, Department of Medicine, Stanford University, California, 94304, USA
| | - Jaykumar Rajadas
- Advanced Drug Delivery and Regenerative Biomaterials Laboratory, Cardiovascular Institute, Stanford University School of Medicine, Department of Medicine, Stanford University, California, 94304, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francusco (UCSF) School of Parmacy, California, USA
| | - Sanghamitra Pati
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium.
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, University of Ghent, Ghent, 9000, Belgium
| | - Sangram Keshari Samal
- Laboratory of Biomaterials and Regenerative Medicine for Advanced Therapies, ICMR-Regional Medical Research Centre, Bhubaneswar, 751023, Odisha, India.
| |
Collapse
|
11
|
Rodríguez-deLeón E, Bah M, Báez JE, Hernández-Sierra MT, Moreno KJ, Nuñez-Vilchis A, Bonilla-Cruz J, Shea KJ. Sustainable xanthophylls-containing poly(ε-caprolactone)s: synthesis, characterization, and use in green lubricants. RSC Adv 2022; 12:30851-30859. [PMID: 36349044 PMCID: PMC9609694 DOI: 10.1039/d2ra04502h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022] Open
Abstract
Three xanthophylls [(3R,3'R,6'R)-lutein (1), (3R,3'S)-zeaxanthin (2), and (3R,3'S)-astaxanthin (3)] were used for the first time as initiators in the ring-opening polymerization (ROP) of ε-caprolactone (CL) catalyzed by tin(ii) 2-ethylhexanoate [Sn(Oct)2] for the synthesis of novel sustainable xanthophyll-containing poly(ε-caprolactone)s (xanthophylls-PCL). The obtained polyesters were characterized by 1H and 13C NMR, FT-IR, DSC, SEC, and MALDI-TOF MS, and their use as additives in green lubricants was evaluated using a sliding friction test under boundary conditions. Xanthophylls-PCL were obtained with good conversions and with molecular weights determined by SEC to be between 2500 and 10 500 Da. The thermal properties of xanthophyll-polyesters showed a crystalline domain, detected by DSC. Lastly, the green lubricant activity of these polymers was evaluated and the results showed that xanthophylls-PCL could be employed as additives for biodegradable lubricant applications since they have better tribological behavior than current additives, which demonstrates their potential as future commercial materials with interesting eco-friendly properties for diverse applications.
Collapse
Affiliation(s)
- Eloy Rodríguez-deLeón
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - Moustapha Bah
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - José E Báez
- Department of Chemistry, Division of Natural and Exact Sciences, University of Guanajuato (UG), Campus Guanajuato Noria Alta S/N Guanajuato 36050 Mexico
| | - María T Hernández-Sierra
- Department of Mechanical Engineering, National Technology Institute of Mexico at Celaya Celaya 38010 Guanajuato Mexico
| | - Karla J Moreno
- Department of Mechanical Engineering, National Technology Institute of Mexico at Celaya Celaya 38010 Guanajuato Mexico
| | - Alejandro Nuñez-Vilchis
- Posgrado en Ciencias Químico Biológicas, Faculty of Chemistry, Autonomous University of Queretaro (UAQ) Cerro de Las Campanas Querétaro 76010 Mexico
| | - José Bonilla-Cruz
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV-Monterrey) Av. Alianza Norte 202, PIIT, Autopista Monterrey-Aeropuerto Km 10 Apodaca 66628 N.L. Mexico
| | - Kenneth J Shea
- Deparment of Chemistry, University of California, Irvine, (UCI) Irvine 92697-2025 California USA
| |
Collapse
|
12
|
Kirillova A, Yeazel TR, Gall K, Becker ML. Thiol-Based Three-Dimensional Printing of Fully Degradable Poly(propylene fumarate) Star Polymers. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38436-38447. [PMID: 35977091 DOI: 10.1021/acsami.2c06553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Poly(propylene fumarate) star polymers photochemically 3D printed with degradable thiol cross-linkers yielded highly tunable biodegradable polymeric materials. Tailoring the alkene:thiol ratio (5:1, 10:1, 20:1 and 30:1) and thus the cross-link density within the PPF star systems yielded a wide variation of both the mechanical and degradation properties of the printed materials. Fundamental trends were established between the polymer network cross-link density, glass transition temperature, and tensile and thermomechanical properties of the materials. The tensile properties of the PPF star-based systems were compared to commercial state-of-the-art non-degradable polymer resins. The thiolene-cross-linked materials are fully degradable and possess properties over a wide range of mechanical properties relevant to regenerative medicine applications.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
13
|
Choi JW, Kim GJ, Hong S, An JH, Kim BJ, Ha CW. Sequential process optimization for a digital light processing system to minimize trial and error. Sci Rep 2022; 12:13553. [PMID: 35941282 PMCID: PMC9360010 DOI: 10.1038/s41598-022-17841-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/02/2022] [Indexed: 11/09/2022] Open
Abstract
In additive manufacturing, logical and efficient workflow optimization enables successful production and reduces cost and time. These attempts are essential for preventing fabrication problems from various causes. However, quantitative analysis and integrated management studies of fabrication issues using a digital light processing (DLP) system are insufficient. Therefore, an efficient optimization method is required to apply several materials and extend the application of the DLP system. This study proposes a sequential process optimization (SPO) to manage the initial adhesion, recoating, and exposure energy. The photopolymerization characteristics and viscosity of the photocurable resin were quantitatively analyzed through process conditions such as build plate speed, layer thickness, and exposure time. The ability of the proposed SPO was confirmed by fabricating an evaluation model using a biocompatible resin. Furthermore, the biocompatibility of the developed resin was verified through experiments. The existing DLP process requires several trials and errors in process optimization. Therefore, the fabrication results are different depending on the operator's know-how. The use of the proposed SPO enables a systematic approach for optimizing the process conditions of a DLP system. As a result, the DLP system is expected to be more utilized.
Collapse
Affiliation(s)
- Jae Won Choi
- Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology, 113-58, Seohaean-ro, Siheung-si, 15014, Republic of Korea
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Gyeong-Ji Kim
- Department of Food and Nutrition, KC University, 47, 24-Gil, Kkachisan-ro, Seoul, 07661, Republic of Korea
| | - Sukjoon Hong
- Department of Mechanical Engineering, BK21 FOUR ERICA-ACE Center, Hanyang University, 55 Hanyangdaehak-ro, Ansan, 15588, Republic of Korea
| | - Jeung Hee An
- Department of Food and Nutrition, KC University, 47, 24-Gil, Kkachisan-ro, Seoul, 07661, Republic of Korea
| | - Baek-Jin Kim
- Green Chemistry and Materials Group, Korea Institute of Industrial Technology, Daejeon, Chungcheongnam-do, 31056, Republic of Korea
- Department of Green Process and System Engineering, Korea University of Science and Technology (UST), Daejeon, Chungcheongnam-do, 31056, Republic of Korea
| | - Cheol Woo Ha
- Advanced Joining and Additive Manufacturing R&D Department, Korea Institute of Industrial Technology, 113-58, Seohaean-ro, Siheung-si, 15014, Republic of Korea.
| |
Collapse
|
14
|
Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci Rep 2022; 12:12359. [PMID: 35859093 PMCID: PMC9300684 DOI: 10.1038/s41598-022-15602-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Bone tissue engineering uses various methods and materials to find suitable scaffolds that regenerate lost bone due to disease or injury. Poly(ε-caprolactone) (PCL) can be used in 3D printing for producing biodegradable scaffolds by fused deposition modeling (FDM). However, the hydrophobic surfaces of PCL and its non-osteogenic nature reduces adhesion and cell bioactivity at the time of implantation. This work aims to enhance bone formation, osteogenic differentiation, and in vitro biocompatibility via PCL scaffolds modification with Hydroxyapatite (HA) and Collagen type I (COL). This study evaluated the osteosupportive capacity, biological behavior, and physicochemical properties of 3D-printed PCL, PCL/HA, PCL/COL, and PCL/HA/COL scaffolds. Biocompatibility and cells proliferation were investigated by seeding human adipose tissue-derived mesenchymal stem cells (hADSCs) onto the scaffolds, which were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and 6-diamidino-2-phenylindole (DAPI) staining. In addition, the bone differentiation potential of the hADSCs was assessed using calcium deposition, alkaline phosphatase (ALP) activity, and bone-related protein and genes. Although all constructed scaffolds support hADSCs proliferation and differentiation, the results showed that scaffold coating with HA and COL can boost these capacities in a synergistic manner. According to the findings, the tricomponent 3D-printed scaffold can be considered as a promising choice for bone tissue regeneration and rebuilding.
Collapse
|
15
|
Shaukat U, Rossegger E, Schlögl S. A Review of Multi-Material 3D Printing of Functional Materials via Vat Photopolymerization. Polymers (Basel) 2022; 14:polym14122449. [PMID: 35746024 PMCID: PMC9227803 DOI: 10.3390/polym14122449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023] Open
Abstract
Additive manufacturing or 3D printing of materials is a prominent process technology which involves the fabrication of materials layer-by-layer or point-by-point in a subsequent manner. With recent advancements in additive manufacturing, the technology has excited a great potential for extension of simple designs to complex multi-material geometries. Vat photopolymerization is a subdivision of additive manufacturing which possesses many attractive features, including excellent printing resolution, high dimensional accuracy, low-cost manufacturing, and the ability to spatially control the material properties. However, the technology is currently limited by design strategies, material chemistries, and equipment limitations. This review aims to provide readers with a comprehensive comparison of different additive manufacturing technologies along with detailed knowledge on advances in multi-material vat photopolymerization technologies. Furthermore, we describe popular material chemistries both from the past and more recently, along with future prospects to address the material-related limitations of vat photopolymerization. Examples of the impressive multi-material capabilities inspired by nature which are applicable today in multiple areas of life are briefly presented in the applications section. Finally, we describe our point of view on the future prospects of 3D printed multi-material structures as well as on the way forward towards promising further advancements in vat photopolymerization.
Collapse
|
16
|
Shin Y, Becker ML. Gradient versus End-Capped Degradable Polymer Sequence Variations Result in Stiff to Elastic Photochemically 3D-Printed Substrates. Biomacromolecules 2022; 23:2106-2115. [PMID: 35471033 DOI: 10.1021/acs.biomac.2c00103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Additive manufacturing affords the construction of complex scaffolds for tissue engineering, yet the limitation in material choice remains a barrier to clinical translation. Herein, a series of poly(propylene fumarate-co-propylene succinate) were synthesized using both one-pot and sequential ring-opening copolymerization reactions. Continuous liquid interface production-based photochemical 3D printing utilizing thiol-ene chemistry was used to fabricate precise structures with improved build time over the traditional poly(propylene fumarate)/diethyl fumarate 3D printing processes. Significantly, the materials do not exhibit a yield point under tension and Young's modulus of the 3D printed products can be tuned by more than 2 orders of magnitude (0.6-110 MPa) using polymer composition and the degree of polymerization. Printed constructs degrade fully under hydrolytic conditions and degradation rates can be tailored using polymer composition, polymer sequence, and resin formulation.
Collapse
Affiliation(s)
- Yongjun Shin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Thomas Lord Department of Mechanical Engineering & Materials Science, Department of Biomedical Engineering, Department of Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Wu Y, Simpson MC, Jin J. 3D Printing of Thiol‐Yne Photoresins through Visible Light Photoredox Catalysis. ChemistrySelect 2022. [DOI: 10.1002/slct.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yimei Wu
- School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
| | - M. Cather Simpson
- School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand
- Department of Physics The University of Auckland Auckland 1010 New Zealand
- Photon Factory The University of Auckland Auckland 1010 New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
- The MacDiarmid Institute of Advanced Materials and Nanotechnology Wellington 6012 New Zealand
| | - Jianyong Jin
- School of Chemical Sciences The University of Auckland Auckland 1010 New Zealand
- Dodd-Walls Centre for Quantum and Photonic Technologies Dunedin New Zealand
| |
Collapse
|
18
|
Fuoco T, Chen M, Jain S, Wang XV, Wang L, Finne-Wistrand A. Hydrogel Polyester Scaffolds via Direct-Ink-Writing of Ad Hoc Designed Photocurable Macromonomer. Polymers (Basel) 2022; 14:711. [PMID: 35215623 PMCID: PMC8876641 DOI: 10.3390/polym14040711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/10/2022] [Indexed: 11/17/2022] Open
Abstract
Synthetic, degradable macromonomers have been developed to serve as ink for 3D printing technologies based on direct-ink-writing. The macromonomers are purposely designed to be cross-linkable under the radical mechanism, to impart hydrophilicity to the final material, and to have rheological properties matching the printer's requirements. The suitable viscosity enables the ink to be printed at room temperature, in absence of organic solvents, and to be cross-linked to manufacture soft 3D scaffolds that show no indirect cytotoxicity and have a hydration capacity of up to 100% their mass and a compressive modulus in the range of 0.4-2 MPa.
Collapse
Affiliation(s)
- Tiziana Fuoco
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| | - Mo Chen
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Shubham Jain
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| | - Xi Vincent Wang
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Lihui Wang
- Department of Production Engineering, School of Industrial Engineering and Management, KTH Royal Institute of Technology, Brinellvägen 68, SE 114-28 Stockholm, Sweden; (X.V.W.); (L.W.)
| | - Anna Finne-Wistrand
- Department of Fibre and Polymer Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen, 56-58, SE 100-44 Stockholm, Sweden; (S.J.); (A.F.-W.)
| |
Collapse
|
19
|
Muralidharan A, McLeod RR, Bryant SJ. Hydrolytically degradable Poly (β-amino ester) resins with tunable degradation for 3D printing by projection micro-stereolithography. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2106509. [PMID: 35813039 PMCID: PMC9268535 DOI: 10.1002/adfm.202106509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Applications of 3D printing that range from temporary medical devices to environmentally responsible manufacturing would benefit from printable resins that yield polymers with controllable material properties and degradation behavior. Towards this goal, poly(β-amino ester) (PBAE)-diacrylate resins were investigated due to the wide range of available chemistries and tunable material properties. PBAE-diacrylate resins were synthesized from hydrophilic and hydrophobic chemistries and with varying electron densities on the ester bond to provide control over degradation. Hydrophilic PBAE-diacrylates led to degradation behaviors characteristic of bulk degradation while hydrophobic PBAE-diacrylates led to degradation behaviors dominated initially by surface degradation and then transitioned to bulk degradation. Depending on chemistry, the crosslinked PBAE-polymers exhibited a range of degradation times under accelerated conditions, from complete mass loss in 90 min to minimal mass loss at 45 days. Patterned features with 55 μm resolution were achieved across all resins, but their fidelity was dependent on PBAE-diacrylate molecular weight, reactivity, and printing parameters. In summary, simple chemical modifications in the PBAE-diacrylate resins coupled with projection microstereolithography enables high resolution 3D printed parts with similar architectures and initial properties, but widely different degradation rates and behaviors.
Collapse
Affiliation(s)
- Archish Muralidharan
- Materials Science and Engineering Program, University of Colorado, Boulder, USA, Boulder, CO 80309, USA
| | - Robert R. McLeod
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, USA, Boulder, CO 80309, USA
| | - Stephanie J. Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Boulder, CO 80309, USA; Materials Science and Engineering Program, University of Colorado, Boulder, USA, Boulder, CO 80309, USA
| |
Collapse
|
20
|
Dos Santos DM, de Annunzio SR, Carmello JC, Pavarina AC, Fontana CR, Correa DS. Combining Coaxial Electrospinning and 3D Printing: Design of Biodegradable Bilayered Membranes with Dual Drug Delivery Capability for Periodontitis Treatment. ACS APPLIED BIO MATERIALS 2022; 5:146-159. [PMID: 35014831 DOI: 10.1021/acsabm.1c01019] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Periodontitis is a chronic inflammatory disease that can lead to significant destruction of tooth-supporting tissues, compromising dental function and patient's health. Although the currently employed treatment approaches can limit the advance of the disease, the development of multifunctional and hierarchically structured materials is still in demand for achieving successful tissue regeneration. Here, we combine coaxial electrospinning and 3D printing techniques to prepare bilayered zein-based membranes as a potential dual drug delivery platform for periodontal tissue regeneration. A layer of core-sheath electrospun nanofibers consisting of poly(ethylene oxide) (PEO)/curcumin (Curc)/tetracycline hydrochloride (TH) as the core and zein/poly(ε-caprolactone)(PCL)/β-glycerolphosphate (β-GP) as the sheath was deposited over a 3D printed honeycomb PLA/zein/Curc platform in order to render a bilayered structure that can mimic the architecture of periodontal tissue. The physicochemical properties of engineered constructs as well as the release profiles of distinct drugs were mainly controlled by varying the concentration of zein (10, 20, 30%, w/w relative to dry PCL) on the sheath layer of nanofibers, which displayed average diameters ranging from 150 to 400 nm. In vitro experiments demonstrated that the bilayered constructs provided sustained release of distinct drugs over 8 days and exhibited biocompatibility toward human oral keratinocytes (Nok-si) (cell viability >80%) as well as antibacterial activity against distinct bacterial strains including those of the red complex such as Porphyromonas gingivalis and Treponema denticola, which are recognized to elicit aggressive and chronic periodontitis. Our study reveals the potential of zein-based bilayered membranes as a dual drug delivery platform for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Sarah R de Annunzio
- UNESP - São Paulo State University, School of Pharmaceutical Sciences - Department of Clinical Analysis, Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara, São Paulo 14801-903, Brazil
| | - Juliana C Carmello
- UNESP - São Paulo State University, School of Dentistry - Department of Dental Materials and Prosthodontics, Rua Humaitá, 1680-Centro, Araraquara, São Paulo 14801-903, Brazil
| | - Ana C Pavarina
- UNESP - São Paulo State University, School of Dentistry - Department of Dental Materials and Prosthodontics, Rua Humaitá, 1680-Centro, Araraquara, São Paulo 14801-903, Brazil
| | - Carla R Fontana
- UNESP - São Paulo State University, School of Pharmaceutical Sciences - Department of Clinical Analysis, Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara, São Paulo 14801-903, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| |
Collapse
|
21
|
KAYSER F, Fleury G, thongkham S, Navarro C, Martin-Vaca B, Bourissou D. Reducing the crystallinity of PCL chains by copolymerization with substituted δ/ε-lactones and its impact on the phase separation of PCL-based block copolymers. Polym Chem 2022. [DOI: 10.1039/d2py00101b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Various substituted δ/ε-lactones have been copolymerized with ε-caprolactone (ε-CL) with the aim to inhibit the crystallization of polycaprolactone (PCL). Among the studied co-monomers, the best results were obtained with the...
Collapse
|
22
|
Tajik S, Yadegari A, Momtaz M, Tabatabaei FS, Tongas N, Rasoulianboroujeni M. Pressure-Assisted Coating of Ceramics on 3D-Printed Polymeric Scaffolds. ACS APPLIED BIO MATERIALS 2021; 4:6462-6472. [DOI: 10.1021/acsabm.1c00608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sanaz Tajik
- Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States
| | - Amir Yadegari
- Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States
| | - Milad Momtaz
- Department of Chemistry and Biochemistry, University of Wisconsin−Milwaukee, Milwaukee 53211, Wisconsin, United States
| | | | - Nikita Tongas
- Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States
| | - Morteza Rasoulianboroujeni
- Marquette University School of Dentistry, Milwaukee, Wisconsin, 53233 United States
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin−Madison, Madison, Wisconsin, 53705 United States
| |
Collapse
|
23
|
Sharma D, Mathur VP, Satapathy BK. Biodegradable and Biocompatible 3D Constructs for Dental Applications: Manufacturing Options and Perspectives. Ann Biomed Eng 2021; 49:2030-2056. [PMID: 34318403 DOI: 10.1007/s10439-021-02839-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Designing 3D constructs with appropriate materials and structural frameworks for complex dental restorative/regenerative procedures has always remained a multi-criteria optimization challenge. In this regard, 3D printing has long been known to be a potent tool for various tissue regenerative applications, however, the preparation of biocompatible, biodegradable, and stable inks is yet to be explored and revolutionized for overall performance improvisation. The review reports the currently employed manufacturing processes for the development of engineered self-supporting, easily processable, and cost-effective 3D constructs with target-specific tuneable mechanics, bioactivity, and degradability aspects in the oral cavity for their potential use in numerous dental applications ranging from soft pulp tissues to hard alveolar bone tissues. A hybrid synergistic approach, comprising of development of multi-layered, structurally stable, composite building blocks with desired physicomechanical performance and bioactivity presents an optimal solution to circumvent the major limitations and develop new-age advanced dental restorations and implants. Further, the review summarizes some manufacturing perspectives which may inspire the readers to design appropriate structures for clinical trials so as to pave the way for their routine applications in dentistry in the near future.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vijay Prakash Mathur
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
24
|
Zhang S, Li Q, Liu P, Lin C, Tang Z, Wang HL. Three-Dimensional Cell Printed Lock-Key Structure for Oral Soft and Hard Tissue Regeneration. Tissue Eng Part A 2021; 28:13-26. [PMID: 33957771 DOI: 10.1089/ten.tea.2021.0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Alveolar ridge absorbs rapidly following tooth extraction. To promote implant rehabilitation, an adequate bone and soft tissue volume are required. Three-dimensional (3D) cell printing technique provides the advantages of precise spatial distribution and personalization. In this study, 3D cell printing was used to establish a soft-hard construct that is composed of alginate/gelatin (AG)/gingival fibroblast cells (GFs) and alginate/gelatin/nano-hydroxyapatite (AGH)/bone marrow-derived mesenchymal stem cells (BMSCs). Physicochemical results showed that nano-hydroxyapatite (nHA) added in the bioink maintained its crystalline phase. In addition, an increase of viscosity, the improvement of compressive modulus (p < 0.01), and slow degradation rate (p < 0.01) were found after adding nHA. SEM showed cell stretched and attached well on the surface of the 3D printed construct. At day 7 after printing, the viability of GFs in AG was 94.80% ± 1.14%, while BMSC viability in AGH was 86.59% ± 0.75%. Polymerase chain reaction results indicated that the expression levels of ALP, RUNX-2, and OCN in BMSCs were higher in AGH than AG bioink (p < 0.01). After 8-week implantation into the dorsum of 6- to 8-week-old male athymic and inbred (BALB/c) nude mice, the cellular printed construct displayed a more integrated structure and better healing of subcutaneous tissue compared with the acellular printed construct. In conclusion, this 3D cell printed soft-hard construct exhibits favorable biocompatibility and has potential for alveolar ridge preservation. Impact statement Alveolar ridge resorption after tooth extraction has posed great difficulty in the subsequent restorative procedure. Clinically, to preserve the dimension of alveolar ridge, covering soft tissue healing and underlying bone formation is necessary after tooth extraction. Three-dimensional (3D) cell printing, which can distribute different biomaterials and cells with spatial control, provides a novel approach to develop a customized plug to put in the fresh socket to minimize bone resorption and improve gingiva growth. In this study, an integrated and heterogeneous soft-hard construct with lock-key structure was successfully developed using 3D cell printing. The physicochemical and biological properties were tested in vitro and in vivo. This 3D cell printed soft-hard construct will be a customized plug in alveolar ridge preservation in the future.
Collapse
Affiliation(s)
- Shihan Zhang
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Qing Li
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China.,Center of Digital Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Peng Liu
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| | - Chunping Lin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
DeRosa CA, Luke AM, Anderson K, Reineke TM, Tolman WB, Bates FS, Hillmyer MA. Regioregular Polymers from Biobased ( R)-1,3-Butylene Carbonate. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00828] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christopher A. DeRosa
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Anna M. Luke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Kendra Anderson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - William B. Tolman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
26
|
Synthesis and Characterization of a New Nanocomposite Film Based on Polyvinyl Alcohol Polymer and Nitro Blue Tetrazolium Dye as a Low Radiation Dosimeter in Medical Diagnostics Application. Polymers (Basel) 2021; 13:polym13111815. [PMID: 34072823 PMCID: PMC8197916 DOI: 10.3390/polym13111815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 02/06/2023] Open
Abstract
Dosimetry is a field of increasing importance in diagnostic radiology. There has been a realization among healthcare professionals that the dose of radiation received by patients via modern medical X-ray examinations could induce acute damage to the skin and eyes. The present study highlights the synthesis of polyvinyl alcohol/nitro blue tetrazolium nanocomposite films (PVA/NBT) for radiation detection depending on chromic, optical, chemical and morphologic changes. First, we synthesized the nanocomposite film-based PVA doped with NBT and the different parameters of the preparation procedure were optimized. Then The films were exposed to different low X-ray doses on the scale of mGy level (0, 2, 4, 10 and 20 mGy). The sensitivity and the performance of the made composite films were evaluated via different characterization methods. Indeed, the response curve based on UV-Vis absorptions revealed a linear increase in absorbance with increased radiation doses (R = 0.998). FTIR analysis showed a clear chemical modification in recorded spectra after irradiation. X-ray diffraction assessment revealed clear structural changes in crystallinity after ionization treatment. SEM analysis showed a clear morphological modification of PVA/NBT films after irradiation. In addition, the prepared PVA/NBT films exhibited excellent pre- and post-irradiation stability in dark and light. Finally, the quantitative colorimetry study confirmed the performance of the prepared films and the different colorimetric coordinates, the total color difference (∆E) and the color strength (K/S) showed a linear increase with increasing X-ray doses. The made nanocomposite PVA/NBT film might offer promising potential for an effective highly sensitive medical dosimeter applied for very low doses in X-ray diagnostic radiology.
Collapse
|
27
|
Kirillova A, Yeazel TR, Asheghali D, Petersen SR, Dort S, Gall K, Becker ML. Fabrication of Biomedical Scaffolds Using Biodegradable Polymers. Chem Rev 2021; 121:11238-11304. [PMID: 33856196 DOI: 10.1021/acs.chemrev.0c01200] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Degradable polymers are used widely in tissue engineering and regenerative medicine. Maturing capabilities in additive manufacturing coupled with advances in orthogonal chemical functionalization methodologies have enabled a rapid evolution of defect-specific form factors and strategies for designing and creating bioactive scaffolds. However, these defect-specific scaffolds, especially when utilizing degradable polymers as the base material, present processing challenges that are distinct and unique from other classes of materials. The goal of this review is to provide a guide for the fabrication of biodegradable polymer-based scaffolds that includes the complete pathway starting from selecting materials, choosing the correct fabrication method, and considering the requirements for tissue specific applications of the scaffold.
Collapse
Affiliation(s)
- Alina Kirillova
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Taylor R Yeazel
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Shannon R Petersen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Sophia Dort
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ken Gall
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L Becker
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Orthopaedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
28
|
Merckle D, Constant E, Cartwright Z, Weems AC. Ring Opening Copolymerization of Four-Dimensional Printed Shape Memory Polyester Photopolymers Using Digital Light Processing. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David Merckle
- Translational Biosciences Program, Ohio University, Athens, Ohio 45701, United States
| | - Eric Constant
- Biomedical Engineering Program, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Zachary Cartwright
- Department of Mechanical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
| | - Andrew C Weems
- Translational Biosciences Program, Ohio University, Athens, Ohio 45701, United States
- Biomedical Engineering Program, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- Department of Mechanical Engineering, Russ College of Engineering, Ohio University, Athens, Ohio 45701, United States
- Ohio Musculoskeletal and Neurological Institute, Health College of Medicine, Ohio University, Athens, Ohio 45701, United States
| |
Collapse
|
29
|
Aldana AA, Houben S, Moroni L, Baker MB, Pitet LM. Trends in Double Networks as Bioprintable and Injectable Hydrogel Scaffolds for Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:4077-4101. [DOI: 10.1021/acsbiomaterials.0c01749] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ana A. Aldana
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Sofie Houben
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Matthew B. Baker
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Louis M. Pitet
- Advanced Functional Polymers Group, Department of Chemistry, Institute for Materials Research (IMO), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
30
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
31
|
Chen Y, Li W, Zhang C, Wu Z, Liu J. Recent Developments of Biomaterials for Additive Manufacturing of Bone Scaffolds. Adv Healthc Mater 2020; 9:e2000724. [PMID: 32743960 DOI: 10.1002/adhm.202000724] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/09/2020] [Indexed: 12/11/2022]
Abstract
Recent years have witnessed surging demand for bone repair/regeneration implants due to the increasing number of bone defects caused by trauma, cancer, infection, and arthritis worldwide. In addition to bone autografts and allografts, biomaterial substitutes have been widely used in clinical practice. Personalized implants with precise and personalized control of shape, porosity, composition, surface chemistry, and mechanical properties will greatly facilitate the regeneration of bone tissue and satiate the clinical needs. Additive manufacturing (AM) techniques, also known as 3D printing, are drawing fast growing attention in the fabrication of implants or scaffolding materials due to their capability of manufacturing complex and irregularly shaped scaffolds in repairing bone defects in clinical practice. This review aims to provide a comprehensive overview of recent progress in the development of materials and techniques used in the additive manufacturing of bone scaffolds. In addition, clinical application, pre-clinical trials and future prospects of AM based bone implants are also summarized and discussed.
Collapse
Affiliation(s)
- You Chen
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Weilin Li
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Chao Zhang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Zhaoying Wu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Jie Liu
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| |
Collapse
|
32
|
Bharti N, Singh S. COVID-19: The Use of 3D Printing to Address PPE Shortage during a Pandemic-A Safety Perspective. ACS CHEMICAL HEALTH & SAFETY 2020; 27:335-340. [PMID: 34191964 PMCID: PMC7670820 DOI: 10.1021/acs.chas.0c00089] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Indexed: 01/20/2023]
Abstract
The COVID-19 pandemic created a global health crisis that impacted the supply of personal protective equipment and created a shortage of much-needed face shields and masks for essential workers. During this time, a community of manufacturers, academic institutes, and hobbyists came together and tried to address the supply shortage by providing 3D-printed face shields and masks. Although the Secretary of U.S. Department of Human and Health Services and the Food and Drug Administration relaxed some of the liability and product regulations regarding 3D-printed medical supplies during the pandemic, the safety of 3D-printed face shields and masks is still a concern. In this Review, we have highlighted some of the safety concerns related to printing materials, design consideration, waste generation and disposal, intellectual property and manufacturing regulations, and the sanitization of 3D-printed personal protective equipment.
Collapse
Affiliation(s)
- Neelam Bharti
- University
Libraries, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Shailendra Singh
- Environmental
Health and Safety, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
33
|
Jeong K, Jung KJ, Bae J, Kim J, Seo J, Park CH, Kim S, Song IH. Laser sterilization of hydroxyapatite implants as an alternative to using radioactive facility. OPTIK 2020. [DOI: 10.1016/j.ijleo.2020.165200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Zhu X, Li H, Huang L, Zhang M, Fan W, Cui L. 3D printing promotes the development of drugs. Biomed Pharmacother 2020; 131:110644. [PMID: 32853908 DOI: 10.1016/j.biopha.2020.110644] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/13/2020] [Accepted: 08/16/2020] [Indexed: 12/12/2022] Open
Abstract
3D printing is an emerging field that can be found in medicine, electronics, aviation and other fields. 3D printing, with its personalized and highly customized characteristics, has great potential in the pharmaceutical industry. We were interested in how 3D printing can be used in drug fields. To find out 3D printing's application in drug fields, we collected the literature by combining the keywords "3D printing"/"additive manufacturing" and "drug"/"tablet". We found that 3D printing technology has the following applications in medicine: firstly, it can print pills on demand according to the individual condition of the patient, making the dosage more suitable for each patient's own physical condition; secondly, it can print tablets with specific shape and structure to control the release rate; thirdly, it can precisely control the distribution of cells, extracellular matrix and biomaterials to build organs or organ-on-a-chip for drug testing; finally, it could print loose porous pills to reduce swallowing difficulties, or be used to make transdermal microneedle patches to reduce pain of patients.
Collapse
Affiliation(s)
- Xiao Zhu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang 524023, China
| | - Hongjian Li
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Lianfang Huang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China; The Key Lab of Zhanjiang for R&D Marine Microbial Resources in the Beibu Gulf Rim, Guangdong Medical University, Zhanjiang 524023, China
| | - Ming Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Shandong University, Zibo 255000, China.
| | - Wenguo Fan
- Department of Anesthesiology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Liao Cui
- Guangdong Key Laboratory for Research and Development of Natural Drugs, The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China; The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China.
| |
Collapse
|
35
|
Light Processable Starch Hydrogels. Polymers (Basel) 2020; 12:polym12061359. [PMID: 32560332 PMCID: PMC7362200 DOI: 10.3390/polym12061359] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 01/08/2023] Open
Abstract
Light processable hydrogels were successfully fabricated by utilizing maize starch as raw material. To render light processability, starch was gelatinized and methacrylated by simple reaction with methacrylic anhydride. The methacrylated starch was then evaluated for its photocuring reactivity and 3D printability by digital light processing (DLP). Hydrogels with good mechanical properties and biocompatibility were obtained by direct curing from aqueous solution containing lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) as photo-initiator. The properties of the hydrogels were tunable by simply changing the concentration of starch in water. Photo-rheology showed that the formulations with 10 or 15 wt% starch started curing immediately and reached G' plateau after only 60 s, while it took 90 s for the 5 wt% formulation. The properties of the photocured hydrogels were further characterized by rheology, compressive tests, and swelling experiments. Increasing the starch content from 10 to 15 wt% increased the compressive stiffness from 13 to 20 kPa. This covers the stiffness of different body tissues giving promise for the use of the hydrogels in tissue engineering applications. Good cell viability with human fibroblast cells was confirmed for all three starch hydrogel formulations indicating no negative effects from the methacrylation or photo-crosslinking reaction. Finally, the light processability of methacrylated starch by digital light processing (DLP) 3D printing directly from aqueous solution was successfully demonstrated. Altogether the results are promising for future application of the hydrogels in tissue engineering and as cell carriers.
Collapse
|