1
|
Remoto PIJG, Bērziņš K, Fraser-Miller SJ, Korter TM, Rades T, Rantanen J, Gordon KC. Exploring the Solid-State Landscape of Carbamazepine during Dehydration: A Low Frequency Raman Spectroscopy Perspective. Pharmaceutics 2023; 15:pharmaceutics15051526. [PMID: 37242768 DOI: 10.3390/pharmaceutics15051526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The solid-state landscape of carbamazepine during its dehydration was explored using Raman spectroscopy in the low- (-300 to -15, 15 to 300) and mid- (300 to 1800 cm-1) frequency spectral regions. Carbamazepine dihydrate and forms I, III, and IV were also characterized using density functional theory with periodic boundary conditions and showed good agreement with experimental Raman spectra with mean average deviations less than 10 cm-1. The dehydration of carbamazepine dihydrate was examined under different temperatures (40, 45, 50, 55, and 60 °C). Principal component analysis and multivariate curve resolution were used to explore the transformation pathways of different solid-state forms during the dehydration of carbamazepine dihydrate. The low-frequency Raman domain was able to detect the rapid growth and subsequent decline of carbamazepine form IV, which was not as effectively observed by mid-frequency Raman spectroscopy. These results showcased the potential benefits of low-frequency Raman spectroscopy for pharmaceutical process monitoring and control.
Collapse
Affiliation(s)
- Peter Iii J G Remoto
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Kārlis Bērziņš
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Sara J Fraser-Miller
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| | - Timothy M Korter
- Department of Chemistry, Center for Science and Technology, Syracuse University, Syracuse, NY 13244, USA
| | - Thomas Rades
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jukka Rantanen
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Keith C Gordon
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
2
|
A data-driven and topological mapping approach for the a priori prediction of stable molecular crystalline hydrates. Proc Natl Acad Sci U S A 2022; 119:e2204414119. [PMID: 36252020 DOI: 10.1073/pnas.2204414119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Predictions of the structures of stoichiometric, fractional, or nonstoichiometric hydrates of organic molecular crystals are immensely challenging due to the extensive search space of different water contents, host molecular placements throughout the crystal, and internal molecular conformations. However, the dry frameworks of these hydrates, especially for nonstoichiometric or isostructural dehydrates, can often be predicted from a standard anhydrous crystal structure prediction (CSP) protocol. Inspired by developments in the field of drug binding, we introduce an efficient data-driven and topologically aware approach for predicting organic molecular crystal hydrate structures through a mapping of water positions within the crystal structure. The method does not require a priori specification of water content and can, therefore, predict stoichiometric, fractional, and nonstoichiometric hydrate structures. This approach, which we term a mapping approach for crystal hydrates (MACH), establishes a set of rules for systematic determination of favorable positions for water insertion within predicted or experimental crystal structures based on considerations of the chemical features of local environments and void regions. The proposed approach is tested on hydrates of three pharmaceutically relevant compounds that exhibit diverse crystal packing motifs and void environments characteristic of hydrate structures. Overall, we show that our mapping approach introduces an advance in the efficient performance of hydrate CSP through generation of stable hydrate stoichiometries at low cost and should be considered an integral component for CSP workflows.
Collapse
|
3
|
Su Y, Shi D, Xiong B, Xu Y, Hu Q, Huang H, Yang J, Yu C. Solid-State Forms of Koumine Hydrochloride: Phase Transformations and the Crystal Structure and Properties of the Stable Form. ACS OMEGA 2022; 7:29692-29701. [PMID: 36061709 PMCID: PMC9434794 DOI: 10.1021/acsomega.2c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
To investigate the solid-state forms of koumine hydrochloride (KMY), solid form screening was performed, and one amorphous form and five crystalline forms (forms A, B, C, D, and E) were identified by powder X-ray diffraction. Form A was the dominant crystal product, and its crystal structure and packing pattern were determined by single-crystal X-ray diffraction. The crystals displayed an orthorhombic crystal system and symmetry of space group P212121 with Z' = 1. The amorphous form transformed to form A at 105-120 °C or 75% RH, while forms B, C, D, and E could only be intermediate phases and readily transformed to form A at room temperature. Therefore, the phase transformations of KMY solid-state forms were established. The properties of the amorphous form and form A were further elucidated by applying vibrational spectroscopy, moisture sorption analysis, and thermal analysis. Accordingly, form A, the KMY anhydrate, was found to be the thermodynamically stable form with low hygroscopicity under ambient conditions. These characteristics are crucial in the manufacture and storage of active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Yanping Su
- School
of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, People’s Republic of China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350122, Fujian, People’s Republic of
China
| | - Dongmei Shi
- School
of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, People’s Republic of China
| | - Bojun Xiong
- School
of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, People’s Republic of China
| | - Ying Xu
- School
of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, People’s Republic of China
| | - Qing Hu
- School
of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, People’s Republic of China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350122, Fujian, People’s Republic of
China
| | - Huihui Huang
- School
of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, People’s Republic of China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350122, Fujian, People’s Republic of
China
| | - Jian Yang
- School
of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, People’s Republic of China
| | - Changxi Yu
- School
of Pharmacy, Fujian Medical University, Fuzhou 350122, Fujian, People’s Republic of China
- Fujian
Key Laboratory of Drug Target Discovery and Structural and Functional
Research, School of Pharmacy, Fujian Medical
University, Fuzhou 350122, Fujian, People’s Republic of
China
| |
Collapse
|
4
|
Li Y, Yin Q, Zhang M, Bao Y, Hou B, Wang J, Huang J, Zhou L. Characterization and structure analysis of the heterosolvate of erythromycin thiocyanate. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Abramov YA, Sun G, Zeng Q. Emerging Landscape of Computational Modeling in Pharmaceutical Development. J Chem Inf Model 2022; 62:1160-1171. [PMID: 35226809 DOI: 10.1021/acs.jcim.1c01580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Computational chemistry applications have become an integral part of the drug discovery workflow over the past 35 years. However, computational modeling in support of drug development has remained a relatively uncharted territory for a significant part of both academic and industrial communities. This review considers the computational modeling workflows for three key components of drug preclinical and clinical development, namely, process chemistry, analytical research and development, as well as drug product and formulation development. An overview of the computational support for each step of the respective workflows is presented. Additionally, in context of solid form design, special consideration is given to modern physics-based virtual screening methods. This covers rational approaches to polymorph, coformer, counterion, and solvent virtual screening in support of solid form selection and design.
Collapse
Affiliation(s)
- Yuriy A Abramov
- XtalPi, Inc., 245 Main St., Cambridge, Massachusetts 02142, United States.,Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Guangxu Sun
- XtalPi, Inc., Shenzhen Jingtai Technology Co., Ltd., Floor 3, Sf Industrial Plant, No. 2 Hongliu road, Fubao Community, Fubao Street, Futian District, Shenzhen 518100, China
| | - Qun Zeng
- XtalPi, Inc., Shenzhen Jingtai Technology Co., Ltd., Floor 3, Sf Industrial Plant, No. 2 Hongliu road, Fubao Community, Fubao Street, Futian District, Shenzhen 518100, China
| |
Collapse
|
6
|
Sanii R, Patyk-Kaźmierczak E, Hua C, Darwish S, Pham T, Forrest KA, Space B, Zaworotko MJ. Toward an Understanding of the Propensity for Crystalline Hydrate Formation by Molecular Compounds. Part 2. CRYSTAL GROWTH & DESIGN 2021; 21:4927-4939. [PMID: 34483749 PMCID: PMC8414477 DOI: 10.1021/acs.cgd.1c00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
The propensity of molecular organic compounds to form stoichiometric or nonstoichiometric crystalline hydrates remains a challenging aspect of crystal engineering and is of practical relevance to fields such as pharmaceutical science. In this work, we address the propensity for hydrate formation of a library of eight compounds comprised of 5- and 6-membered N-heterocyclic aromatics classified into three subgroups: linear dipyridyls, substituted Schiff bases, and tripodal molecules. Each molecular compound studied possesses strong hydrogen bond acceptors and is devoid of strong hydrogen bond donors. Four methods were used to screen for hydrate propensity using the anhydrate forms of the molecular compounds in our library: water slurry under ambient conditions, exposure to humidity, aqueous solvent drop grinding (SDG), and dynamic water vapor sorption (DVS). In addition, crystallization from mixed solvents was studied. Water slurry, aqueous SDG, and exposure to humidity were found to be the most effective methods for hydrate screening. Our study also involved a structural analysis using the Cambridge Structural Database, electrostatic potential (ESP) maps, full interaction maps (FIMs), and crystal packing motifs. The hydrate propensity of each compound studied was compared to a compound of the same type known to form a hydrate through a previous study of ours. Out of the eight newly studied compounds (herein numbered 4-11), three Schiff bases were observed to form hydrates. Three crystal structures (two hydrates and one anhydrate) were determined. Compound 6 crystallized as an isolated site hydrate in the monoclinic space group P21/a, while 7 and 10 crystallized in the monoclinic space group P21/c as a channel tetrahydrate and an anhydrate, respectively. Whereas we did not find any direct correlation between the number of H-bond acceptors and either hydrate propensity or the stoichiometry of the resulting hydrates, analysis of FIMs suggested that hydrates tend to form when the corresponding anhydrate structure does not facilitate intermolecular interactions.
Collapse
Affiliation(s)
- Rana Sanii
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Co. Limerick Y94T9PX, Ireland
| | - Ewa Patyk-Kaźmierczak
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Co. Limerick Y94T9PX, Ireland
- Department
of Materials Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Uniwerystetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Carol Hua
- School
of Chemistry, University of Melbourne, Victoria, 3010, Australia
| | - Shaza Darwish
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Co. Limerick Y94T9PX, Ireland
| | - Tony Pham
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Katherine A. Forrest
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Brian Space
- Department
of Chemistry, University of South Florida, 4202 East Fowler Avenue, Tampa, Florida 33620, United States
| | - Michael J. Zaworotko
- Department
of Chemical Sciences and Bernal Institute, University of Limerick, Co. Limerick Y94T9PX, Ireland
| |
Collapse
|
7
|
Garg U, Azim Y. Challenges and opportunities of pharmaceutical cocrystals: a focused review on non-steroidal anti-inflammatory drugs. RSC Med Chem 2021; 12:705-721. [PMID: 34124670 PMCID: PMC8152597 DOI: 10.1039/d0md00400f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/22/2021] [Indexed: 01/14/2023] Open
Abstract
The focus of the review is to discuss the relevant and essential aspects of pharmaceutical cocrystals in both academia and industry with an emphasis on non-steroidal anti-inflammatory drugs (NSAIDs). Although cocrystals have been prepared for a plethora of drugs, NSAID cocrystals are focused due to their humongous application in different fields of medication such as antipyretic, anti-inflammatory, analgesic, antiplatelet, antitumor, and anti-carcinogenic drugs. The highlights of the review are (a) background of cocrystals and other solid forms of an active pharmaceutical ingredient (API) based on the principles of crystal engineering, (b) why cocrystals are an excellent opportunity in the pharma industry, (c) common methods of preparation of cocrystals from the lab scale to bulk quantity, (d) some latest case studies of NSAIDs which have shown better physicochemical properties for example; mechanical properties (tabletability), hydration, solubility, bioavailability, and permeability, and (e) latest guidelines of the US FDA and EMA opening new opportunities and challenges.
Collapse
Affiliation(s)
- Utsav Garg
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| | - Yasser Azim
- Department of Applied Chemistry, Zakir Husain College of Engineering & Technology, Faculty of Engineering & Technology, Aligarh Muslim University Aligarh 202002 Uttar Pradesh India
| |
Collapse
|
8
|
Trimdale A, Mishnev A, Bērziņš A. Combined Use of Structure Analysis, Studies of Molecular Association in Solution, and Molecular Modelling to Understand the Different Propensities of Dihydroxybenzoic Acids to Form Solid Phases. Pharmaceutics 2021; 13:734. [PMID: 34065675 PMCID: PMC8156891 DOI: 10.3390/pharmaceutics13050734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The arrangement of hydroxyl groups in the benzene ring has a significant effect on the propensity of dihydroxybenzoic acids (diOHBAs) to form different solid phases when crystallized from solution. All six diOHBAs were categorized into distinctive groups according to the solid phases obtained when crystallized from selected solvents. A combined study using crystal structure and molecule electrostatic potential surface analysis, as well as an exploration of molecular association in solution using spectroscopic methods and molecular dynamics simulations were used to determine the possible mechanism of how the location of the phenolic hydroxyl groups affect the diversity of solid phases formed by the diOHBAs. The crystal structure analysis showed that classical carboxylic acid homodimers and ring-like hydrogen bond motifs consisting of six diOHBA molecules are prominently present in almost all analyzed crystal structures. Both experimental spectroscopic investigations and molecular dynamics simulations indicated that the extent of intramolecular bonding between carboxyl and hydroxyl groups in solution has the most significant impact on the solid phases formed by the diOHBAs. Additionally, the extent of hydrogen bonding with solvent molecules and the mean lifetime of solute-solvent associates formed by diOHBAs and 2-propanol were also investigated.
Collapse
Affiliation(s)
- Aija Trimdale
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles iela 21, LV-1006 Riga, Latvia;
| | - Agris Bērziņš
- Faculty of Chemistry, University of Latvia, Jelgavas iela 1, LV-1004 Riga, Latvia
| |
Collapse
|
9
|
Cui P, Yin Q, Zhang S, Yang W, Jia L, Dai J, Zhou L, Wang Z. Insight into amoxicillin sodium heterosolvates and non-solvated form: crystal structures, phase transformation behaviors, and desolvation mechanism. CrystEngComm 2021. [DOI: 10.1039/d1ce00435b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Methanol and methyl acetate molecules played different roles in the formation of SM–M amoxicillin sodium heterosolvate. A two-step desolvation mechanism of novel heterosolvates was proposed.
Collapse
Affiliation(s)
- Pingping Cui
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- People's Republic of China
| | - Qiuxiang Yin
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| | - Shihao Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- People's Republic of China
| | - Wenchao Yang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- People's Republic of China
| | - Lihong Jia
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- People's Republic of China
| | - Jiayu Dai
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- People's Republic of China
| | - Ling Zhou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- People's Republic of China
| | - Zhao Wang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
| |
Collapse
|
10
|
Jurczak E, Mazurek AH, Szeleszczuk Ł, Pisklak DM, Zielińska-Pisklak M. Pharmaceutical Hydrates Analysis-Overview of Methods and Recent Advances. Pharmaceutics 2020; 12:pharmaceutics12100959. [PMID: 33050621 PMCID: PMC7601571 DOI: 10.3390/pharmaceutics12100959] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/26/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
This review discusses a set of instrumental and computational methods that are used to characterize hydrated forms of APIs (active pharmaceutical ingredients). The focus has been put on highlighting advantages as well as on presenting some limitations of the selected analytical approaches. This has been performed in order to facilitate the choice of an appropriate method depending on the type of the structural feature that is to be analyzed, that is, degree of hydration, crystal structure and dynamics, and (de)hydration kinetics. The presented techniques include X-ray diffraction (single crystal X-ray diffraction (SCXRD), powder X-ray diffraction (PXRD)), spectroscopic (solid state nuclear magnetic resonance spectroscopy (ssNMR), Fourier-transformed infrared spectroscopy (FT-IR), Raman spectroscopy), thermal (differential scanning calorimetry (DSC), thermogravimetric analysis (TGA)), gravimetric (dynamic vapour sorption (DVS)), and computational (molecular mechanics (MM), Quantum Mechanics (QM), molecular dynamics (MD)) methods. Further, the successful applications of the presented methods in the studies of hydrated APIs as well as studies on the excipients' influence on these processes have been described in many examples.
Collapse
Affiliation(s)
- Ewa Jurczak
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Anna Helena Mazurek
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Łukasz Szeleszczuk
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
- Correspondence: ; Tel.: +48-501-255-121
| | - Dariusz Maciej Pisklak
- Department of Physical Chemistry, Chair and Department of Physical Pharmacy and Bioanalysis, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland; (E.J.); (A.H.M.); (D.M.P.)
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1 str., 02-093 Warsaw, Poland;
| |
Collapse
|
11
|
Braun DE. Supramolecular organisation of sulphate salt hydrates exemplified with brucine sulphate. CrystEngComm 2020. [DOI: 10.1039/c9ce01762c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The frequency of hydrate formation among organic sulphate salts is unravelled. Interconversion of the hydrates of brucine sulphate occurs with small changes in the relative humidity.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy
- University of Innsbruck
- 6020 Innsbruck
- Austria
| |
Collapse
|
12
|
Shi ZP, Ren GB, Qi MH, Li Z, Xu XY. Design, screening, and properties of novel solvates of azoxystrobin based on isomorphism. CrystEngComm 2020. [DOI: 10.1039/d0ce00204f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The molecular size of the solvent is important for the formation of isomorphic azoxystrobin solvates.
Collapse
Affiliation(s)
- Zhi-Ping Shi
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- PR China
| | - Guo-Bin Ren
- State Key Laboratory of Bioreactor Engineering
- Engineering Research Centre of Pharmaceutical Process Chemistry
- Ministry of Education
- Laboratory of Pharmaceutical Crystal Engineering & Technology
- School of Pharmacy
| | - Ming-Hui Qi
- State Key Laboratory of Bioreactor Engineering
- Engineering Research Centre of Pharmaceutical Process Chemistry
- Ministry of Education
- Laboratory of Pharmaceutical Crystal Engineering & Technology
- School of Pharmacy
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- PR China
| | - Xiao-Yong Xu
- Shanghai Key Laboratory of Chemical Biology
- School of Pharmacy
- East China University of Science and Technology
- Shanghai
- PR China
| |
Collapse
|
13
|
Braun DE. Experimental and computational approaches to rationalise multicomponent supramolecular assemblies: dapsone monosolvates. Phys Chem Chem Phys 2019; 21:17288-17305. [PMID: 31348477 DOI: 10.1039/c9cp02572c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The monosolvate crystal energy landscapes of dapsone (DDS) including the solvents carbon tetrachloride, acetone, cyclohexanone, dimethyl formamide, tetrahydrofuran, methyl ethyl ketone, 1,2-dichloroethane, 1,4-dioxane, dichloromethane and chloroform were established using experimental and computational approaches. To rationalise and understand solvate formation, solvate stability and desolvation reactions a careful control of the experimental crystallisation and storage conditions, a range of thermoanalytical methods and crystal structure prediction were required. Six of the eight DDS monosolvates are reported and characterised for the first time. Structural similarity and diversity of the at ambient conditions unstable monosolvates were apparent from the computed crystal energy landscapes, which had the experimental packings as lowest energy structures. The computed structures were used as input for Rietveld refinements and isostructurality of four of the monosolvates was confirmed. Packing comparisons of the solvate structures and molecular properties of the solvent molecules indicated that both size/shape of the solvent molecule and the possible DDSsolvent interactions are the important factors for DDS solvate formation. Through the combination of experiment and theory solvate stability and structural features have been rationalised.
Collapse
Affiliation(s)
- Doris E Braun
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria.
| |
Collapse
|
14
|
Dudek MK, Day GM. Explaining crystallization preferences of two polyphenolic diastereoisomers by crystal structure prediction. CrystEngComm 2019. [DOI: 10.1039/c8ce01783b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Crystal structure prediction is used to understand the differences in crystallization of catechin and epicatechin, and to explore the predictability of solvate formation.
Collapse
Affiliation(s)
- Marta K. Dudek
- Computational Systems Chemistry
- School of Chemistry
- University of Southampton
- UK
- Center of Molecular and Macromolecular Studies PAS
| | - Graeme M. Day
- Computational Systems Chemistry
- School of Chemistry
- University of Southampton
- UK
| |
Collapse
|
15
|
Braun DE, Griesser UJ. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone. Front Chem 2018; 6:31. [PMID: 29520359 PMCID: PMC5826966 DOI: 10.3389/fchem.2018.00031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/09/2018] [Indexed: 12/16/2022] Open
Abstract
The observed moisture- and temperature dependent transformations of the dapsone (4,4'-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol-1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy, University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
16
|
Mohamed S, Li L. From serendipity to supramolecular design: assessing the utility of computed crystal form landscapes in inferring the risks of crystal hydration in carboxylic acids. CrystEngComm 2018. [DOI: 10.1039/c8ce00758f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Calculated structural descriptors for predicted anhydrate polymorphs are used to assess the risks of crystal hydration in carboxylic acids.
Collapse
Affiliation(s)
- Sharmarke Mohamed
- Department of Chemistry
- Khalifa University of Science and Technology
- Abu Dhabi
- United Arab Emirates
| | - Liang Li
- Central Technology Platforms
- New York University Abu Dhabi
- Abu Dhabi
- United Arab Emirates
| |
Collapse
|
17
|
Braun DE, Kahlenberg V, Griesser UJ. Experimental and Computational Hydrate Screening: Cytosine, 5-Flucytosine and Their Solid Solution. CRYSTAL GROWTH & DESIGN 2017; 17:4347-4364. [PMID: 30344452 PMCID: PMC6193535 DOI: 10.1021/acs.cgd.7b00664] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The structural, temperature- and moisture dependent stability features of cytosine and 5-flucytosine monohydrates, two pharmaceutically important compounds, were rationalized using complementary experimental and computational approaches. Moisture sorption/desorption, water activity, thermal analysis and calorimetry were applied to determine the stability ranges of hydrate ↔ anhydrate systems, while X-ray diffraction, IR spectroscopy and crystal structure prediction provided the molecular level understanding. At 25 °C, the critical water activity for the cytosine hydrate ↔ anhydrate system is ~0.43 and for 5-flucytosine ~0.41. In 5-flucytosine the water molecules are arranged in open channels, therefore the kinetic desorption data, dehydration < 40% relative humidity (RH), conform with the thermodynamic data, whereas for the cytosine isolated site hydrate dehydration was observed at RH < 15%. Peritectic dissociation temperatures of the hydrates were measured to be 97 °C and 84.2 °C for cytosine and 5-flucytosine, respectively, and the monohydrate to anhydrate transition enthalpies to be around 10 kJ mol-1. Computed crystal energy landscapes not only revealed that the substitution of C5 (H or F) controls the packing and properties of cytosine/5-flucytosine solid forms, but also have enabled the finding of a monohydrate solid solution of the two substances which shows increased thermal- and moisture-dependent stability compared to 5-flucytosine monohydrate.
Collapse
Affiliation(s)
- Doris E. Braun
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Volker Kahlenberg
- Institute of Mineralogy and Petrography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
| | - Ulrich J. Griesser
- Institute of Pharmacy, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|