1
|
Sola A, Rosa R, Ferrari AM. Environmental Impact of Fused Filament Fabrication: What Is Known from Life Cycle Assessment? Polymers (Basel) 2024; 16:1986. [PMID: 39065302 PMCID: PMC11281121 DOI: 10.3390/polym16141986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
This systematic review interrogates the literature to understand what is known about the environmental sustainability of fused filament fabrication, FFF (also known as fused deposition modeling, FDM), based on life cycle assessment (LCA) results. Since substantial energy demand is systematically addressed as one of the main reasons for ecological damage in FFF, mitigation strategies are often based on reducing the printing time (for example, adopting thicker layers) or the embodied energy per part (e.g., by nesting, which means by printing multiple parts in the same job). A key parameter is the infill degree, which can be adjusted to the application requirements while saving printing time/energy and feedstock material. The adoption of electricity from renewable resources is also expected to boost the sustainability of distributed manufacturing through FFF. Meanwhile, bio-based and recycled materials are being investigated as less impactful alternatives to conventional fossil fuel-based thermoplastic filaments.
Collapse
Affiliation(s)
- Antonella Sola
- Department of Sciences and Methods for Engineering (DISMI), University of Modena and Reggio Emilia, Via G. Amendola 2, 42122 Reggio Emilia, Italy; (R.R.); (A.M.F.)
| | | | | |
Collapse
|
2
|
Tripathi DP, Nema AK. Assessment of metals and metalloids agglutinated to airborne suspended particulate matter in selected plant species during the pre-and post-monsoon in the urban area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124300. [PMID: 38848956 DOI: 10.1016/j.envpol.2024.124300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024]
Abstract
The elemental accumulation has emerged as a major environmental concern due to various anthropogenic sources such as vehicles, road dust, and industrial activities, contributing to the agglutination of elements to airborne Suspended Particulate Matter (SPM). SPM-bound elements accumulate on plant surfaces impact air quality and human health due to their noxiousness. Therefore, plants' ability to capture and mitigate air pollutants plays a crucial role in urban areas. This study aimed to investigate the levels and distribution of twenty-six elements, comprised of heavy metals (Cd, Pb, Cr, Cu Zn, Co, Ni, Fe, Mn, Ag, Mo, V, Ga, and Bi), light metals (B, As, Te, and Se), and metalloids (Al, Li, Sr, K, Mg, Na, Ca, and Ba) accumulated on the surface and inside the leaves of dominant plant species during the pre-and post-monsoon at six categorized (commercial, traffic-prone, residential, educational, greenbelt and industrial areas) locations in Delhi, India. In addition, the Metal Accumulation Index (MAI) was determined, and the statistical analysis was conducted using two-way ANOVA, Principal Component Analysis (PCA), and Hierarchical Cluster Analysis (HCA). In the pre-and post-monsoon, two-way ANOVA revealed significant differences (P < 0.05) in metal concentrations. During the pre-monsoon plants exhibited the highest metal accumulation (∼21%) at the Anand Vihar (commercial) in Delhi, with the maximum average concentrations of Cr (118.25 mg/kg), Cu (204.38 mg/kg), Zn (293.27 mg/kg), and Fe (2721.17 mg/kg). Ficus benghalensis L exhibited the maximum 213.73 MAI at the Anand Vihar in the pre-monsoon. Ni and Cr indicated the highest correlation (P < 0.05, r = 0.82) in the PCA test. HCA test revealed similarity (∼87.7%) at ITO (traffic-prone) and Okhla Phase-2 (industrial) in F. religiosa regarding metal concentration patterns. Findings highlighted seasonal elemental pollutants uptake dynamics of plant species and explored species-specific metal accumulation, revealing potential implications of metal-tolerant plants for urban greenbelt.
Collapse
Affiliation(s)
- Durga Prasad Tripathi
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India, 110016
| | - Arvind Kumar Nema
- Department of Civil Engineering, Indian Institute of Technology Delhi, Delhi, India, 110016.
| |
Collapse
|
3
|
He X, Barnett LM, Jeon J, Zhang Q, Alqahtani S, Black M, Shannahan J, Wright C. Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells. TOXICS 2024; 12:67. [PMID: 38251022 PMCID: PMC10818734 DOI: 10.3390/toxics12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air-liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1β, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes.
Collapse
Affiliation(s)
- Xiaojia He
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Lillie Marie Barnett
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jennifer Jeon
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Saeed Alqahtani
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
- Advanced Diagnostic and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Marilyn Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
| | - Christa Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| |
Collapse
|
4
|
Sola A, Trinchi A. Recycling as a Key Enabler for Sustainable Additive Manufacturing of Polymer Composites: A Critical Perspective on Fused Filament Fabrication. Polymers (Basel) 2023; 15:4219. [PMID: 37959900 PMCID: PMC10649055 DOI: 10.3390/polym15214219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Additive manufacturing (AM, aka 3D printing) is generally acknowledged as a "green" technology. However, its wider uptake in industry largely relies on the development of composite feedstock for imparting superior mechanical properties and bespoke functionality. Composite materials are especially needed in polymer AM, given the otherwise poor performance of most polymer parts in load-bearing applications. As a drawback, the shift from mono-material to composite feedstock may worsen the environmental footprint of polymer AM. This perspective aims to discuss this chasm between the advantage of embedding advanced functionality, and the disadvantage of causing harm to the environment. Fused filament fabrication (FFF, aka fused deposition modelling, FDM) is analysed here as a case study on account of its unparalleled popularity. FFF, which belongs to the material extrusion (MEX) family, is presently the most widespread polymer AM technique for industrial, educational, and recreational applications. On the one hand, the FFF of composite materials has already transitioned "from lab to fab" and finally to community, with far-reaching implications for its sustainability. On the other hand, feedstock materials for FFF are thermoplastic-based, and hence highly amenable to recycling. The literature shows that recycled thermoplastic materials such as poly(lactic acid) (PLA), acrylonitrile-butadiene-styrene (ABS), and polyethylene terephthalate (PET, or its glycol-modified form PETG) can be used for printing by FFF, and FFF printed objects can be recycled when they are at the end of life. Reinforcements/fillers can also be obtained from recycled materials, which may help valorise waste materials and by-products from a wide range of industries (for example, paper, food, furniture) and from agriculture. Increasing attention is being paid to the recovery of carbon fibres (for example, from aviation), and to the reuse of glass fibre-reinforced polymers (for example, from end-of-life wind turbines). Although technical challenges and economical constraints remain, the adoption of recycling strategies appears to be essential for limiting the environmental impact of composite feedstock in FFF by reducing the depletion of natural resources, cutting down the volume of waste materials, and mitigating the dependency on petrochemicals.
Collapse
Affiliation(s)
- Antonella Sola
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| | - Adrian Trinchi
- Advanced Materials and Processing, Manufacturing Business Unit, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Melbourne, VIC 3169, Australia
| |
Collapse
|
5
|
Zhang Q, Weber RJ, Luxton TP, Peloquin DM, Baumann EJ, Black MS. Metal compositions of particle emissions from material extrusion 3D printing: Emission sources and indoor exposure modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160512. [PMID: 36442638 PMCID: PMC10259682 DOI: 10.1016/j.scitotenv.2022.160512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 06/14/2023]
Abstract
Material extrusion 3D printing has been widely used in industrial, educational and residential environments, while its exposure health impacts have not been well understood. High levels of ultrafine particles are found being emitted from 3D printing and could pose a hazard when inhaled. However, metals that potentially transfer from filament additives to emitted particles could also add to the exposure hazard, which have not been well characterized for their emissions. This study analyzed metal (and metalloid) compositions of raw filaments and in the emitted particles during printing; studied filaments included pure polymer filaments with metal additives and composite filaments with and without metal powder. Our chamber study found that crustal metals tended to have higher partitioning factors from filaments to emitted particles; silicon was the most abundant element in emitted particles and had the highest yield per filament mass. However, bronze and stainless-steel powder added in composite filaments were less likely to transfer from filament to particle. For some cases, boron, arsenic, manganese, and lead were only detected in particles, which indicated external sources, such as the printers themselves. Heavy metals with health concerns were also detected in emitted particles, while their estimated exposure concentrations in indoor air were below air quality standards and occupational regulations. However, total particle exposure concentrations estimated for indoor environments could exceed ambient air fine particulate standards.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA.
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd P Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Derek M Peloquin
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric J Baumann
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Marilyn S Black
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA
| |
Collapse
|
6
|
du Plessis J, du Preez S, Stefaniak AB. Identification of effective control technologies for additive manufacturing. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:211-249. [PMID: 35758103 PMCID: PMC9420827 DOI: 10.1080/10937404.2022.2092569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Additive manufacturing (AM) refers to several types of processes that join materials to build objects, often layer-by-layer, from a computer-aided design file. Many AM processes release potentially hazardous particles and gases during printing and associated tasks. There is limited understanding of the efficacy of controls including elimination, substitution, administrative, and personal protective technologies to reduce or remove emissions, which is an impediment to implementation of risk mitigation strategies. The Medline, Embase, Environmental Science Collection, CINAHL, Scopus, and Web of Science databases and other resources were used to identify 42 articles that met the inclusion criteria for this review. Key findings were as follows: 1) engineering controls for material extrusion-type fused filament fabrication (FFF) 3-D printers and material jetting printers that included local exhaust ventilation generally exhibited higher efficacy to decrease particle and gas levels compared with isolation alone, and 2) engineering controls for particle emissions from FFF 3-D printers displayed higher efficacy for ultrafine particles compared with fine particles and in test chambers compared with real-world settings. Critical knowledge gaps identified included a need for data: 1) on efficacy of controls for all AM process types, 2) better understanding approaches to control particles over a range of sizes and gas-phase emissions, 3) obtained using a standardized collection approach to facilitate inter-comparison of study results, 4) approaches that go beyond the inhalation exposure pathway to include controls to minimize dermal exposures, and 5) to evaluate not just the engineering tier, but also the prevention-through-design and other tiers of the hierarchy of controls.
Collapse
Affiliation(s)
- Johan du Plessis
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Sonette du Preez
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Aleksandr B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
7
|
Stefaniak AB, Bowers LN, Cottrell G, Erdem E, Knepp AK, Martin SB, Pretty J, Duling MG, Arnold ED, Wilson Z, Krider B, Fortner AR, LeBouf RF, Virji MA, Sirinterlikci A. Towards sustainable additive manufacturing: The need for awareness of particle and vapor releases during polymer recycling, making filament, and fused filament fabrication 3-D printing. RESOURCES, CONSERVATION, AND RECYCLING 2022; 176:10.1016/j.resconrec.2021.105911. [PMID: 35982992 PMCID: PMC9380603 DOI: 10.1016/j.resconrec.2021.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fused filament fabrication three-dimensional (FFF 3-D) printing is thought to be environmentally sustainable; however, significant amounts of waste can be generated from this technology. One way to improve its sustainability is via distributed recycling of plastics in homes, schools, and libraries to create feedstock filament for printing. Risks from exposures incurred during recycling and reuse of plastics has not been incorporated into life cycle assessments. This study characterized contaminant releases from virgin (unextruded) and recycled plastics from filament production through FFF 3-D printing. Waste polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) plastics were recycled to create filament; virgin PLA, ABS, high and low density polyethylenes, high impact polystyrene, and polypropylene pellets were also extruded into filament. The release of particles and chemicals into school classrooms was evaluated using standard industrial hygiene methodologies. All tasks released particles that contained hazardous metals (e.g., manganese) and with size capable of depositing in the gas exchange region of the lung, i.e., granulation of waste PLA and ABS (667 to 714 nm) and filament making (608 to 711 nm) and FFF 3-D printing (616 to 731 nm) with waste and virgin plastics. All tasks released vapors, including respiratory irritants and potential carcinogens (benzene and formaldehyde), mucus membrane irritants (acetone, xylenes, ethylbenzene, and methyl methacrylate), and asthmagens (styrene, multiple carbonyl compounds). These data are useful for incorporating risks of exposure to hazardous contaminants in future life cycle evaluations to demonstrate the sustainability and circular economy potential of FFF 3-D printing in distributed spaces.
Collapse
Affiliation(s)
- Aleksandr B. Stefaniak
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Lauren N. Bowers
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Gabe Cottrell
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| | - Ergin Erdem
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| | - Alycia K. Knepp
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Stephen B. Martin
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Jack Pretty
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Cincinnati, OH, 45213, United States
| | - Matthew G. Duling
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Elizabeth D. Arnold
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Zachary Wilson
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| | - Benjamin Krider
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| | - Alyson R. Fortner
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Ryan F. LeBouf
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - M. Abbas Virji
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Arif Sirinterlikci
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| |
Collapse
|