1
|
Guo X, Halacoglu S, Chen Y, Wang H. Recent Progress on Dominant Sulfide-Type Solid-State Na Superionic Conductors for Solid-State Sodium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311195. [PMID: 38775620 DOI: 10.1002/smll.202311195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/09/2024] [Indexed: 08/17/2024]
Abstract
Over the past decade, solid-state batteries have garnered significant attentions due to their potentials to deliver high energy density and excellent safety. Considering the abundant sodium (Na) resources in contrast to lithium (Li), the development of sodium-based batteries has become increasingly appealing. Sulfide-based superionic conductors are widely considered as promising solid eletcrolytes (SEs) in solid-state Na batteries due to the features of high ionic conductivity and cold-press densification. In recent years, tremendous efforts have been made to investigate sulfide-based Na-ion conductors on their synthesis, compositions, conductivity, and the feasibility in batteries. However, there are still several challenges to overcome for their practical applications in high performance solid-state Na batteries. This article provides a comprehensive update on the synthesis, structure, and properties of three dominant sulfide-based Na-ion conductors (Na3PS4, Na3SbS4, and Na11Sn2PS12), and their families that have a variety of anion and cation doping. Additionally, the interface stability of these sulfide electrolytes toward the anode is reviewed, as well as the electrochemical performance of solid-state Na batteries based on different types of cathode materials (metal sulfides, oxides, and organics). Finally, the perspective and outlook for the development and practical utilization of sulfide-based SE in solid-state batteries are discussed.
Collapse
Affiliation(s)
- Xiaolin Guo
- Mechanical Engineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Selim Halacoglu
- Mechanical Engineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Yan Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Hui Wang
- Mechanical Engineering Department, University of Louisville, Louisville, KY, 40292, USA
| |
Collapse
|
2
|
Li Y, Lee DKJ, Cai P, Zhang Z, Gorai P, Canepa P. A database of computed Raman spectra of inorganic compounds with accurate hybrid functionals. Sci Data 2024; 11:105. [PMID: 38253529 PMCID: PMC10803741 DOI: 10.1038/s41597-024-02924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Raman spectroscopy is widely applied in identifying local structures in materials, but the interpretation of Raman spectra is non-trivial. An accurate computational database of reference spectra calculated with a consistent level of theory can significantly aid in interpreting measured Raman spectra. Here, we present a database of Raman spectra of inorganic compounds calculated with accurate hybrid functionals in density functional theory. Raman spectra were obtained by calculating dynamical matrices and polarizability tensors for structures from the Inorganic Crystal Structure Database. The calculated Raman spectra and other phonon properties (e.g., infrared spectra) are stored in a MongoDB database publicly shared through a web application. We assess the accuracy of our Raman calculations by statistically comparing ~80 calculated spectra with an existing experimental Raman database. To date, the database contains 161 compounds and is continuously growing as we add more materials computed with our automated workflow.
Collapse
Affiliation(s)
- Yuheng Li
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore
| | - Damien K J Lee
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore
| | - Pengfei Cai
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore
| | - Ziyi Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore
| | - Prashun Gorai
- Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, Colorado, 80401, USA
| | - Pieremanuele Canepa
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575, Singapore, Singapore.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, 77204, USA.
| |
Collapse
|
3
|
Wen F, Xie G, Chen N, Wu Q, Chaudhary M, You X, Michaelis VK, Mar A, Sang L. Mechanochemistry in Sodium Thioantimonate Solid Electrolytes: Effects on Structure, Morphology, and Electrochemical Performance. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40070-40079. [PMID: 37555778 DOI: 10.1021/acsami.3c07746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Sodium thioantimonate (Na3SbS4) and its W-substituted analogue Na2.88Sb0.88W0.12S4 have been identified as potential electrolyte materials for all-solid-state sodium batteries due to their high Na+ conductivity. Ball milling mechanochemistry is a frequently employed synthetic approach to produce such Na+-conductive solid solutions; however, changes in the structure and morphology introduced in these systems via the mechanochemistry process are poorly understood. Herein, we combined X-ray absorption fine structure spectroscopy, Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy characterization techniques to provide an in-depth analysis of these solid electrolytes. We report unique changes seen in the structure and morphology of Na3SbS4 and Na2.88Sb0.88W0.12S4 resulting from ball milling, inducing changes in the electrochemical performance of the solid-state batteries. Specifically, we observed a tetragonal-to-cubic crystal phase transition within Na3SbS4 following the ball mill, resulting in an increase in Na+ conductivity. In contrast, the Na+ conductivity was reduced in mechanochemically treated Na2.88Sb0.88W0.12S4 due to the formation and accumulation of a WS2 phase. In addition, mechanochemical treatment alters the surface morphology of densified Na2.88Sb0.88W0.12S4 pellets, providing intimate contact at the solid electrolyte/Na interface. This phenomenon was not observed in Na3SbS4. This work reveals the structural and morphological origin of the changes seen in these materials' electrochemical performance and how mechanochemical synthesis can introduce them.
Collapse
Affiliation(s)
- Fuwei Wen
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Geng Xie
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Ning Chen
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Qichao Wu
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Madhusudan Chaudhary
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Xiang You
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Arthur Mar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Lingzi Sang
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
4
|
Huang J, Wu K, Xu G, Wu M, Dou S, Wu C. Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chem Soc Rev 2023. [PMID: 37365900 DOI: 10.1039/d2cs01029a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Solid-state electrolytes (SEs) have attracted overwhelming attention as a promising alternative to traditional organic liquid electrolytes (OLEs) for high-energy-density sodium-metal batteries (SMBs), owing to their intrinsic incombustibility, wider electrochemical stability window (ESW), and better thermal stability. Among various kinds of SEs, inorganic solid-state electrolytes (ISEs) stand out because of their high ionic conductivity, excellent oxidative stability, and good mechanical strength, rendering potential utilization in safe and dendrite-free SMBs at room temperature. However, the development of Na-ion ISEs still remains challenging, that a perfect solution has yet to be achieved. Herein, we provide a comprehensive and in-depth inspection of the state-of-the-art ISEs, aiming at revealing the underlying Na+ conduction mechanisms at different length scales, and interpreting their compatibility with the Na metal anode from multiple aspects. A thorough material screening will include nearly all ISEs developed to date, i.e., oxides, chalcogenides, halides, antiperovskites, and borohydrides, followed by an overview of the modification strategies for enhancing their ionic conductivity and interfacial compatibility with Na metal, including synthesis, doping and interfacial engineering. By discussing the remaining challenges in ISE research, we propose rational and strategic perspectives that can serve as guidelines for future development of desirable ISEs and practical implementation of high-performance SMBs.
Collapse
Affiliation(s)
- Jiawen Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Kuan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shixue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, NSW 2522, Australia
| | - Chao Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Gao Y, Huang J, Cheng J, Bo SH. Correlate phonon modes with ion transport via isotope substitution. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Kassem M, Bounazef T, Sokolov A, Bokova M, Fontanari D, Hannon AC, Alekseev I, Bychkov E. Deciphering Fast Ion Transport in Glasses: A Case Study of Sodium and Silver Vitreous Sulfides. Inorg Chem 2022; 61:12870-12885. [PMID: 35913056 DOI: 10.1021/acs.inorgchem.2c02142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
High-capacity solid-state batteries are promising future products for large-scale energy storage and conversion. Sodium fast ion conductors including glasses and glass ceramics are unparalleled materials for these applications. Rational design and tuning of advanced sodium sulfide electrolytes need a deep insight into the atomic structure and dynamics in relation with ion-transport properties. Using pulsed neutron diffraction and Raman spectroscopy supported by first-principles simulations, we show that preferential diffusion pathways in vitreous sodium and silver sulfides are related to isolated sulfur Siso, that is, the sulfur species surrounded exclusively by mobile cations with a typical stoichiometry of M/Siso ≈ 2. The Siso/Stot fraction appears to be a reliable descriptor of fast ion transport in glassy sulfide systems over a wide range of ionic conductivities and cation diffusivities. The Siso fraction increases with mobile cation content x, tetrahedral coordination of the network former and, in case of thiogermanate systems, with germanium disulfide metastability and partial disproportionation, GeS2 → GeS + S, leading to the formation of additional sulfur, transforming into Siso. A research strategy enabling to achieve extended and interconnected pathways based on isolated sulfur would lead to glassy electrolytes with superior ionic diffusion.
Collapse
Affiliation(s)
- Mohammad Kassem
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Tinehinane Bounazef
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Anton Sokolov
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Maria Bokova
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Daniele Fontanari
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Alex C Hannon
- ISIS Facility, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Igor Alekseev
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| | - Eugene Bychkov
- Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France
| |
Collapse
|
7
|
Brenner T, Grumet M, Till P, Asher M, Zeier WG, Egger DA, Yaffe O. Anharmonic Lattice Dynamics in Sodium Ion Conductors. J Phys Chem Lett 2022; 13:5938-5945. [PMID: 35731950 PMCID: PMC9251760 DOI: 10.1021/acs.jpclett.2c00904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
We employ terahertz-range temperature-dependent Raman spectroscopy and first-principles lattice dynamical calculations to show that the undoped sodium ion conductors Na3PS4 and isostructural Na3PSe4 both exhibit anharmonic lattice dynamics. The anharmonic effects in the compounds involve coupled host lattice-Na+ ion dynamics that drive the tetragonal-to-cubic phase transition in both cases, but with a qualitative difference in the anharmonic character of the transition. Na3PSe4 shows an almost purely displacive character with the soft modes disappearing in the cubic phase as the change in symmetry shifts these modes to the Raman-inactive Brillouin zone boundary. Na3PS4 instead shows an order-disorder character in the cubic phase, with the soft modes persisting through the phase transition and remaining Raman active in the cubic phase, violating Raman selection rules for that phase. Our findings highlight the important role of coupled host lattice-mobile ion dynamics in vibrational instabilities that are coincident with the exceptional conductivity of these Na+ ion conductors.
Collapse
Affiliation(s)
- Thomas
M. Brenner
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Manuel Grumet
- Department
of Physics, Technical University of Munich, 85748 Garching, Germany
| | - Paul Till
- Institute
for Inorganic and Analytical Chemistry, University of Muenster, 48149 Münster, Germany
| | - Maor Asher
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| | - Wolfgang G. Zeier
- Institute
for Inorganic and Analytical Chemistry, University of Muenster, 48149 Münster, Germany
| | - David A. Egger
- Department
of Physics, Technical University of Munich, 85748 Garching, Germany
| | - Omer Yaffe
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
8
|
Liang H, Gu Z, Zhao X, Guo J, Yang J, Li W, Li B, Liu Z, Li W, Wu X. Ether‐Based Electrolyte Chemistry Towards High‐Voltage and Long‐Life Na‐Ion Full Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hao‐Jie Liang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Zhen‐Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Xin‐Xin Zhao
- Department of Chemistry Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Jin‐Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Jia‐Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Wen‐Hao Li
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 P. R. China
| | - Zhi‐Ming Liu
- Qingdao University of Science and Technology Qingdao Shandong 260061 China
| | - Wen‐Liang Li
- Department of Chemistry Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Xing‐Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology Northeast Normal University Changchun Jilin 130024 P. R. China
- Department of Chemistry Northeast Normal University Changchun Jilin 130024 P. R. China
| |
Collapse
|
9
|
Liang HJ, Gu ZY, Zhao XX, Guo JZ, Yang JL, Li WH, Li B, Liu ZM, Li WL, Wu XL. Ether-Based Electrolyte Chemistry Towards High-Voltage and Long-Life Na-Ion Full Batteries. Angew Chem Int Ed Engl 2021; 60:26837-26846. [PMID: 34636126 DOI: 10.1002/anie.202112550] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/06/2022]
Abstract
Although ether-based electrolytes have been extensively applied in anode evaluation of batteries, anodic instability arising from solvent oxidability is always a tremendous obstacle to matching with high-voltage cathodes. Herein, by rational design for solvation configuration, the fully coordinated ether-based electrolyte with strong resistance against oxidation is reported, which remains anodically stable with high-voltage Na3 V2 (PO4 )2 O2 F (NVPF) cathode under 4.5 V (versus Na+ /Na) protected by an effective interphase. The assembled graphite//NVPF full cells display superior rate performance and unprecedented cycling stability. Beyond that, the constructed full cells coupling the high-voltage NVPF cathode with hard carbon anode exhibit outstanding electrochemical performances in terms of high average output voltage up to 3.72 V, long-term cycle life (such as 95 % capacity retention after 700 cycles) and high energy density (247 Wh kg-1 ). In short, the optimized ether-based electrolyte enriches systematic options, the ability to maintain oxidative stability and compatibility with various anodes, exhibiting attractive prospects for application.
Collapse
Affiliation(s)
- Hao-Jie Liang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Zhen-Yi Gu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xin-Xin Zhao
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jin-Zhi Guo
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Jia-Lin Yang
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Wen-Hao Li
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Zhi-Ming Liu
- Qingdao University of Science and Technology, Qingdao, Shandong, 260061, China
| | - Wen-Liang Li
- Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| | - Xing-Long Wu
- MOE Key Laboratory for UV Light-Emitting Materials and Technology, Northeast Normal University, Changchun, Jilin, 130024, P. R. China.,Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, P. R. China
| |
Collapse
|
10
|
Yang K, Liu D, Qian Z, Jiang D, Wang R. Computational Auxiliary for the Progress of Sodium-Ion Solid-State Electrolytes. ACS NANO 2021; 15:17232-17246. [PMID: 34705436 DOI: 10.1021/acsnano.1c07476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
All-solid-state sodium batteries (ASSBs) have attracted ever-increasing attention due to their enhanced safety, high energy density, and the abundance of raw materials. One of the remaining key issues for the practical ASSB is the lack of good superionic and electrochemical stable solid-state electrolytes (SEs). Design and manufacturing specific functional materials used as high-performance SEs require an in-depth understanding of the transport mechanisms and electrochemical properties of fast sodium-ion conductors on an atomic level. On account of the continuous progress and development of computing and programming techniques, the advanced computational tools provide a powerful and convenient approach to exploit particular functional materials to achieve that aim. Herein, this review primarily focuses on the advanced computational methods and ion migration mechanisms of SEs. Second, we overview the recent progress on state-of-the-art solid sodium-ion conductors, including Na-β-alumina, sulfide-type, NASICON-type, and antiperovskite-type sodium-ion SEs. Finally, we outline the current challenges and future opportunities. Particularly, this review highlights the contributions of the computational studies and their complementarity with experiments in accelerating the study progress of high-performance sodium-ion SEs for ASSBs.
Collapse
Affiliation(s)
- Kaishuai Yang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dayong Liu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhengfang Qian
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dongting Jiang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Renheng Wang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|