1
|
Luo X, Zhang M, Hu Y, Xu Y, Zhou H, Xu Z, Hao Y, Chen S, Chen S, Luo Y, Lin Y, Zhao J. Wrinkled metal-organic framework thin films with tunable Turing patterns for pliable integration. Science 2024; 385:647-651. [PMID: 39116246 DOI: 10.1126/science.adn8168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Flexible integration spurs diverse applications in metal-organic frameworks (MOFs). However, current configurations suffer from the trade-off between MOF loadings and mechanical compliance. We report a wrinkled configuration of MOF thin films. We established an interfacial synthesis confined and controlled by a polymer topcoat and achieved multiple Turing motifs in the wrinkled thin films. These films have complete MOF surface coverage and exhibit strain tolerance up to 53.2%. The enhanced mechanical properties allow film transfer onto various substrates. We obtained membranes with large H2/CO2 selectivity (41.2) and high H2 permeance (8.46 × 103 gas permeation units), showcasing negligible defects after transfer. We also achieved soft humidity sensors on delicate electrodes by avoiding exposure to harsh MOF synthesis conditions. These results highlight the potential of wrinkled MOF thin films for plug-and-play integration.
Collapse
Affiliation(s)
- Xinyu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Ming Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yubin Hu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| | - Yan Xu
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haofei Zhou
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Zijian Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinxuan Hao
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Sheng Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengfu Chen
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yingwu Luo
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Junjie Zhao
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou, Zhejiang 324000, China
| |
Collapse
|
2
|
Lu W, Zhang E, Qian J, Weeraratna C, Jackson MN, Zhu C, Long JR, Ahmed M. Probing growth of metal-organic frameworks with X-ray scattering and vibrational spectroscopy. Phys Chem Chem Phys 2022; 24:26102-26110. [PMID: 36274571 DOI: 10.1039/d2cp04375k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nucleation and crystallization arising from liquid to solid phase are involved in a multitude of processes in fields ranging from materials science to biology. Controlling the thermodynamics and kinetics of growth is advantageous to help tune the formation of complex morphologies. Here, we harness wide-angle X-ray scattering and vibrational spectroscopy to elucidate the mechanism for crystallization and growth of the metal-organic framework Co-MOF-74 within microscopic volumes enclosed in a capillary and an attenuated total reflection microchip reactor. The experiments reveal molecular and structural details of the growth processes, while the results of plane wave density functional calculations allow identification of lattice and linker modes in the formed crystals. Synthesis of the metal-organic framework with microscopic volumes leads to monodisperse and micron-sized crystals, in contrast to those typically observed under bulk reaction conditions. Reduction in the volume of reagents within the microchip reactor was found to accelerate the reaction rate. The coupling of spectroscopy with scattering to probe reactions in microscopic volumes promises to be a useful tool in the synthetic chemist's kit to understand chemical bonding and has potential in designing complex materials.
Collapse
Affiliation(s)
- Wenchao Lu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Emily Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jin Qian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Chaya Weeraratna
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Megan N Jackson
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, USA
| | - Musahid Ahmed
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
3
|
Abstract
Many of the proposed applications of metal-organic framework (MOF) materials may fail to materialize if the community does not fully address the difficult fundamental work needed to map out the 'time gap' in the literature - that is, the lack of investigation into the time-dependent behaviours of MOFs as opposed to equilibrium or steady-state properties. Although there are a range of excellent investigations into MOF dynamics and time-dependent phenomena, these works represent only a tiny fraction of the vast number of MOF studies. This Review provides an overview of current research into the temporal evolution of MOF structures and properties by analysing the time-resolved experimental techniques that can be used to monitor such behaviours. We focus on innovative techniques, while also discussing older methods often used in other chemical systems. Four areas are examined: MOF formation, guest motion, electron motion and framework motion. In each area, we highlight the disparity between the relatively small amount of (published) research on key time-dependent phenomena and the enormous scope for acquiring the wider and deeper understanding that is essential for the future of the field.
Collapse
|
4
|
Zheng Q, Liu X, Zheng Y, Yeung KWK, Cui Z, Liang Y, Li Z, Zhu S, Wang X, Wu S. The recent progress on metal-organic frameworks for phototherapy. Chem Soc Rev 2021; 50:5086-5125. [PMID: 33634817 DOI: 10.1039/d1cs00056j] [Citation(s) in RCA: 201] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Some infectious or malignant diseases such as cancers are seriously threatening the health of human beings all over the world. The commonly used antibiotic therapy cannot effectively treat these diseases within a short time, and also bring about adverse effects such as drug resistance and immune system damage during long-term systemic treatment. Phototherapy is an emerging antibiotic-free strategy to treat these diseases. Upon light irradiation, phototherapeutic agents can generate cytotoxic reactive oxygen species (ROS) or induce a temperature increase, which leads to the death of targeted cells. These two kinds of killing strategies are referred to as photodynamic therapy (PDT) and photothermal therapy (PTT), respectively. So far, many photo-responsive agents have been developed. Among them, the metal-organic framework (MOF) is becoming one of the most promising photo-responsive materials because its structure and chemical compositions can be easily modulated to achieve specific functions. MOFs can have intrinsic photodynamic or photothermal ability under the rational design of MOF construction, or serve as the carrier of therapeutic agents, owing to its tunable porosity. MOFs also provide feasibility for various combined therapies and targeting methods, which improves the efficiency of phototherapy. In this review, we firstly investigated the principles of phototherapy, and comprehensively summarized recent advances of MOF in PDT, PTT and synergistic therapy, from construction to modification. We expect that our demonstration will shed light on the future development of this field, and bring it one step closer to clinical trials.
Collapse
Affiliation(s)
- Qiyao Zheng
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Xiangmei Liu
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Yufeng Zheng
- State Key Laboratory for Turbulence and Complex System and Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Kelvin W K Yeung
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhenduo Cui
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Yanqin Liang
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Zhaoyang Li
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Shengli Zhu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| | - Xianbao Wang
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, China.
| | - Shuilin Wu
- School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Sabale S, Barpaga D, Yao J, Kovarik L, Zhu Z, Chatterjee S, McGrail BP, Motkuri RK, Yu XY. Understanding Time Dependence on Zinc Metal-Organic Framework Growth Using in Situ Liquid Secondary Ion Mass Spectrometry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:5090-5098. [PMID: 31891475 DOI: 10.1021/acsami.9b19991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The abundance of novel metal-organic framework (MOF) materials continues to increase as more applications are discovered for these highly porous, well-ordered crystalline structures. The simplicity of constituents allows for the design of new MOFs with virtue of functionality and pore topology toward target adsorbates. However, the fundamental understanding of how these frameworks evolve during nucleation and growth is mostly limited to speculation from simulation studies. In this effort, we utilize a unique vacuum compatible system for analysis at the liquid vacuum interface (SALVI) microfluidic interface to analyze the formation and evolution of the benchmark MOF-74 framework using time-of-flight secondary ion mass spectrometry (ToF-SIMS). Principal component analysis of the SIMS mass spectra, together with ex situ electron microscopy, powder X-ray diffractometry, and porosimetry, provides new insights into the structural growth, metal-oxide cluster formation, and aging process of Zn-MOF-74. Samples collected over a range of synthesis times and analyzed closely with in situ ToF-SIMS, transmission electron microscopy, and gas adsorption studies verify the developing pore structure during the aging process.
Collapse
Affiliation(s)
- Sandip Sabale
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
- Department of Chemistry , Jaysingpur College, Jaysingpur (Shivaji University) , Jaysingpur , 416101 Maharashtra , India
| | - Dushyant Barpaga
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
| | - Jennifer Yao
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
| | - Libor Kovarik
- Environmental Molecular Science Laboratory (EMSL) , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
| | - Zihua Zhu
- Environmental Molecular Science Laboratory (EMSL) , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
| | - Sayandev Chatterjee
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
| | - B Peter McGrail
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
| | - Radha Kishan Motkuri
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
| | - Xiao-Ying Yu
- Energy and Environment Directorate , Pacific Northwest National Laboratory (PNNL) , Richland , Washington 99354 , United States
| |
Collapse
|
6
|
Duan C, Zhang H, Yang M, Li F, Yu Y, Xiao J, Xi H. Templated fabrication of hierarchically porous metal-organic frameworks and simulation of crystal growth. NANOSCALE ADVANCES 2019; 1:1062-1069. [PMID: 36133207 PMCID: PMC9473183 DOI: 10.1039/c8na00262b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/29/2018] [Indexed: 05/08/2023]
Abstract
Hierarchically porous metal-organic frameworks (MOFs) have recently emerged as a novel crystalline hybrid material with tunable porosity. Many efforts have been made to develop hierarchically porous MOFs, yet their low-energy fabrication remains a challenge and the underlying mechanism is still unknown. In this study, the rapid fabrication of two hierarchically porous MOFs (Cu-BTC and ZIF-8) was carried out at room temperature and ambient pressure for 10 min using a novel surfactant as the template in a (Cu, Zn) hydroxy double salt (HDS) solution, where the (Cu, Zn) HDS accelerated the nucleation of crystals and the anionic surfactants served as templates to fabricate mesopores and macropores. The growth mechanism of hierarchically porous MOFs was analyzed via mesodynamics (MesoDyn) simulation, and then the synthetic mechanism of hierarchically porous MOFs at the molecular level was obtained. The as-synthesized hierarchically porous Cu-BTC showed a high uptake capacity of 646 mg g-1, which is about 25% higher as compared with microporous Cu-BTC (516 mg g-1) for the capture of toluene. This study provides a theoretical basis for the large-scale fabrication of hierarchically porous MOFs and offers a reference for the understanding of their synthetic mechanism.
Collapse
Affiliation(s)
- Chongxiong Duan
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Hang Zhang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Minhui Yang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Feier Li
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Yi Yu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Jing Xiao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou 510006 PR China
| |
Collapse
|
7
|
Xu H, Sommer S, Broge NLN, Gao J, Iversen BB. The Chemistry of Nucleation: In Situ Pair Distribution Function Analysis of Secondary Building Units During UiO-66 MOF Formation. Chemistry 2019; 25:2051-2058. [PMID: 30480850 DOI: 10.1002/chem.201805024] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Indexed: 11/06/2022]
Abstract
The concept of secondary building units (SBUs) is central to all science on metal-organic frameworks (MOFs), and they are widely used to design new MOF materials. However, the presence of SBUs during MOF formation remains controversial, and the formation mechanism of MOFs remains unclear, due to limited information about the evolution of prenucleation cluster structures. Here in situ pair distribution function (PDF) analysis was used to probe UiO-66 formation under solvothermal conditions. The expected SBU-a hexanuclear zirconium cluster-is present in the metal salt precursor solution. Addition of organic ligands results in a disordered structure with correlations up to 23 Å, resembling crystalline UiO-66. Heating leads to fast cluster aggregation, and further growth and ordering results in the crystalline product. Thus, SBUs are present already at room temperature and act as building blocks for MOF formation. The proposed formation steps provide insight for further development of MOF synthesis.
Collapse
Affiliation(s)
- Hui Xu
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark.,College of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, P.R. China
| | - Sanna Sommer
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Nils Lau Nyborg Broge
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| | - Junkuo Gao
- College of Materials and Textiles, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
| | - Bo Brummerstedt Iversen
- Center for Materials Crystallography, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark
| |
Collapse
|
8
|
Björk EM, Mäkie P, Rogström L, Atakan A, Schell N, Odén M. Formation of block-copolymer-templated mesoporous silica. J Colloid Interface Sci 2018; 521:183-189. [DOI: 10.1016/j.jcis.2018.03.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 12/18/2022]
|