1
|
Wang X, Boukhvalov DW, Ahmadi Y, Younis SA, Szulejko JE, Maitlo HA, Kim KH. Reactive adsorption and catalytic oxidation of gaseous hydrogen sulfide using a prototype air purifier built with bismuth-doped titanium dioxide. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135412. [PMID: 39126855 DOI: 10.1016/j.jhazmat.2024.135412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
A prototype air purifier (AP) module has been constructed using bismuth-doped titanium dioxide (Bix-P25: x(%) as Bi/Ti molar ratios of 1.1, 2.1, 3.3, 5.3, and 8.7). The reactive adsorption property of Bix-P25 materials is evaluated against H2S gas at a recirculation rate of 160 L min-1 in a 17 L closed chamber. The AP (Bi5.3-P25) exhibits superior performance against 10 ppm H2S in dry air under dark conditions (i.e., without light irradiation), with a removal efficiency (XH2S)= 99% in 5 mins, reaction kinetic rate (r (at X = 10%))= 7.3 mmol h-1g-1, and partition coefficient= 0.18 mol kg-1 Pa-1. As such, its superiority is evident over the reference AP (P25) filter with XH2S < 10%. The clean air delivery rate (CADR) of AP (Bi5.3-P25) increases noticeably from 9.9 to 17.8 L min-1 with increasing relative humidity (RH) from 0 to 80%, respectively. In contrast, the CADR decreases from 9.9 to 5.8 L min-1 as the H2S increases from 10 to 20 ppm. According to density functional theory (DFT), the presence of H2O vapor enhances the hydroxylation of Bix-P25 surface to promote H2S mineralization through the formation of TiS3 (i.e., thermodynamic reaction of S atom with the catalytic surface). Complete removal of H2S on the Bi5.3-P25 surface is also confirmed consistently through gas chromatography-mass spectrometry (GC-MS), in-situ diffuse reflection infrared spectroscopy (in-situ DRIFTS), and elemental analysis (EA). This work represents the first utilization of Bix-P25 materials fabricated on an AP platform toward the desulfurization of H2S at room temperature (RT). The practical utility of Bix-P25 is overall validated by its eminent role in reactive adsorption and catalytic oxidation (RACO) of H2S from the air.
Collapse
Affiliation(s)
- Xinzhi Wang
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Sherif A Younis
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea; Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, Cairo 11727, Egypt
| | - Jan E Szulejko
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Hubdar Ali Maitlo
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Feng D, Zhu J, Li L, Yan Y, Liu L, Huang L, Jia S, Zhao C, Zhang J, Li X, Zhou Q, Li F. Pressure-modulated lattice structural evolution in TiS 2. Phys Chem Chem Phys 2023; 25:26145-26151. [PMID: 37740334 DOI: 10.1039/d3cp03247g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Titanium disulfide (TiS2) has drawn considerable attention in materials, physics, and chemistry thanks to its potential applications in batteries, supercapatteries and thermoelectric devices. However, the simplified and controlled synthesis of high-quality TiS2 remains a great challenge. In this study, a straightforward widely accessible approach to the one-step chemical vapor transport (CVT) process is presented. Meanwhile, combining high-pressure (HP) Raman spectroscopy measurements and first-principles calculations, the pressure-induced phase transition of TiS2 from P3̄m1 phase (phase I) to C2/m phase (phase II) at 16.0 GPa and then to P6̄2m phase (phase III) at 32.4 GPa was disclosed. The discovery of HP being within the Weyl semi-metallic phase represents a significant advancement towards understanding the electronic topological states, discovering new physical phenomena, developing new electronic devices, and gaining insight into the properties of elementary particles.
Collapse
Affiliation(s)
- Dengman Feng
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Jian Zhu
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Liang Li
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Yalan Yan
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Jilin Engineering Normal University, Changchun 130052, People's Republic of China
| | - Linlin Liu
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Litong Huang
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Shufan Jia
- Research Centre for Sensing Materials and Devices, Zhejiang Laboratory, Hangzhou 311100, P. R. China
| | - Chenxiao Zhao
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Jiacheng Zhang
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Xinyang Li
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Qiang Zhou
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| | - Fangfei Li
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, China.
| |
Collapse
|
3
|
Mahlouji R, Kessels WMME, Sagade AA, Bol AA. ALD-grown two-dimensional TiS x metal contacts for MoS 2 field-effect transistors. NANOSCALE ADVANCES 2023; 5:4718-4727. [PMID: 37705798 PMCID: PMC10496909 DOI: 10.1039/d3na00387f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/13/2023] [Indexed: 09/15/2023]
Abstract
Metal contacts to MoS2 field-effect transistors (FETs) play a determinant role in the device electrical characteristics and need to be chosen carefully. Because of the Schottky barrier (SB) and the Fermi level pinning (FLP) effects that occur at the contact/MoS2 interface, MoS2 FETs often suffer from high contact resistance (Rc). One way to overcome this issue is to replace the conventional 3D bulk metal contacts with 2D counterparts. Herein, we investigate 2D metallic TiSx (x ∼ 1.8) as top contacts for MoS2 FETs. We employ atomic layer deposition (ALD) for the synthesis of both the MoS2 channels as well as the TiSx contacts and assess the electrical performance of the fabricated devices. Various thicknesses of TiSx are grown on MoS2, and the resultant devices are electrically compared to the ones with the conventional Ti metal contacts. Our findings show that the replacement of 5 nm Ti bulk contacts with only ∼1.2 nm of 2D TiSx is beneficial in improving the overall device metrics. With such ultrathin TiSx contacts, the ON-state current (ION) triples and increases to ∼35 μA μm-1. Rc also reduces by a factor of four and reaches ∼5 MΩ μm. Such performance enhancements were observed despite the SB formed at the TiSx/MoS2 interface is believed to be higher than the SB formed at the Ti/MoS2 interface. These device metric improvements could therefore be mainly associated with an increased level of electrostatic doping in MoS2, as a result of using 2D TiSx for contacting the 2D MoS2. Our findings are also well supported by TCAD device simulations.
Collapse
Affiliation(s)
- Reyhaneh Mahlouji
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Wilhelmus M M Erwin Kessels
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Abhay A Sagade
- Department of Physics and Nanotechnology, Laboratory for Advanced Nanoelectronic Devices, SRM Institute of Science and Technology SRM Nagar, Kattankulathur 603 203 Tamil Nadu India
| | - Ageeth A Bol
- Department of Applied Physics, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
4
|
Mattinen M, Schulpen JJPM, Dawley RA, Gity F, Verheijen MA, Kessels WMM, Bol AA. Toolbox of Advanced Atomic Layer Deposition Processes for Tailoring Large-Area MoS 2 Thin Films at 150 °C. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35565-35579. [PMID: 37459249 PMCID: PMC10375433 DOI: 10.1021/acsami.3c02466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Two-dimensional MoS2 is a promising material for applications, including electronics and electrocatalysis. However, scalable methods capable of depositing MoS2 at low temperatures are scarce. Herein, we present a toolbox of advanced plasma-enhanced atomic layer deposition (ALD) processes, producing wafer-scale polycrystalline MoS2 films of accurately controlled thickness. Our ALD processes are based on two individually controlled plasma exposures, one optimized for deposition and the other for modification. In this way, film properties can be tailored toward different applications at a very low deposition temperature of 150 °C. For the modification step, either H2 or Ar plasma can be used to combat excess sulfur incorporation and crystallize the films. Using H2 plasma, a higher degree of crystallinity compared with other reported low-temperature processes is achieved. Applying H2 plasma steps periodically instead of every ALD cycle allows for control of the morphology and enables deposition of smooth, polycrystalline MoS2 films. Using an Ar plasma instead, more disordered MoS2 films are deposited, which show promise for the electrochemical hydrogen evolution reaction. For electronics, our processes enable control of the carrier density from 6 × 1016 to 2 × 1021 cm-3 with Hall mobilities up to 0.3 cm2 V-1 s-1. The process toolbox forms a basis for rational design of low-temperature transition metal dichalcogenide deposition processes compatible with a range of substrates and applications.
Collapse
Affiliation(s)
- Miika Mattinen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Jeff J P M Schulpen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Rebecca A Dawley
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Farzan Gity
- Tyndall National Institute, University College Cork, Lee Maltings, Dyke Parade, Cork T12 R5CP, Ireland
| | - Marcel A Verheijen
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Eurofins Materials Science Netherlands, High Tech Campus 11, Eindhoven 5656 AE, The Netherlands
| | - Wilhelmus M M Kessels
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
| | - Ageeth A Bol
- Department of Applied Physics and Science Education, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
5
|
Zhu X, Wang H, Wang K, Xie L. Progress on the in situ imaging of growth dynamics of two-dimensional materials. NANOSCALE 2023; 15:11746-11758. [PMID: 37366323 DOI: 10.1039/d3nr01475d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
One key issue to promote the industrialization of two-dimensional (2D) materials is to grow high-quality and large-scale 2D materials. Investigations of the growth mechanism and growth dynamics are of fundamental importance for the growth of 2D material, in which in situ imaging is highly needed. By applying different in situ imaging techniques, details for growth process, including nucleation and morphology evolution, can be obtained. This review summarizes the recent progress on the in situ imaging of 2D material growth, in which the growth rate, kink dynamics, domain coalescence, growth across the substrate steps, single-atom catalysis, and intermediates have been revealed.
Collapse
Affiliation(s)
- Xiaokai Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Honggang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Kangkang Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Liming Xie
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
6
|
Giri A, Park G, Jeong U. Layer-Structured Anisotropic Metal Chalcogenides: Recent Advances in Synthesis, Modulation, and Applications. Chem Rev 2023; 123:3329-3442. [PMID: 36719999 PMCID: PMC10103142 DOI: 10.1021/acs.chemrev.2c00455] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 02/01/2023]
Abstract
The unique electronic and catalytic properties emerging from low symmetry anisotropic (1D and 2D) metal chalcogenides (MCs) have generated tremendous interest for use in next generation electronics, optoelectronics, electrochemical energy storage devices, and chemical sensing devices. Despite many proof-of-concept demonstrations so far, the full potential of anisotropic chalcogenides has yet to be investigated. This article provides a comprehensive overview of the recent progress made in the synthesis, mechanistic understanding, property modulation strategies, and applications of the anisotropic chalcogenides. It begins with an introduction to the basic crystal structures, and then the unique physical and chemical properties of 1D and 2D MCs. Controlled synthetic routes for anisotropic MC crystals are summarized with example advances in the solution-phase synthesis, vapor-phase synthesis, and exfoliation. Several important approaches to modulate dimensions, phases, compositions, defects, and heterostructures of anisotropic MCs are discussed. Recent significant advances in applications are highlighted for electronics, optoelectronic devices, catalysts, batteries, supercapacitors, sensing platforms, and thermoelectric devices. The article ends with prospects for future opportunities and challenges to be addressed in the academic research and practical engineering of anisotropic MCs.
Collapse
Affiliation(s)
- Anupam Giri
- Department
of Chemistry, Faculty of Science, University
of Allahabad, Prayagraj, UP-211002, India
| | - Gyeongbae Park
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
- Functional
Materials and Components R&D Group, Korea Institute of Industrial Technology, Gwahakdanji-ro 137-41, Sacheon-myeon, Gangneung, Gangwon-do25440, Republic of Korea
| | - Unyong Jeong
- Department
of Materials Science and Engineering, Pohang
University of Science and Technology, Cheongam-Ro 77, Nam-Gu, Pohang, Gyeongbuk790-784, Korea
| |
Collapse
|
7
|
Xia Q, Zan F, Zhang Q, Liu W, Li Q, He Y, Hua J, Liu J, Xu J, Wang J, Wu C, Xia H. All-Solid-State Thin Film Lithium/Lithium-Ion Microbatteries for Powering the Internet of Things. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2200538. [PMID: 35962983 DOI: 10.1002/adma.202200538] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
As the world steps into the era of Internet of Things (IoT), numerous miniaturized electronic devices requiring autonomous micropower sources will be connected to the internet. All-solid-state thin-film lithium/lithium-ion microbatteries (TFBs) combining solid-state battery architecture and thin-film manufacturing are regarded as ideal on-chip power sources for IoT-enabled microelectronic devices. However, unlike commercialized lithium-ion batteries, TFBs are still in the immature state, and new advances in materials, manufacturing, and structure are required to improve their performance. In this review, the current status and existing challenges of TFBs for practical application in internet-connected devices for the IoT are discussed. Recent progress in thin-film deposition, electrode and electrolyte materials, interface modification, and 3D architecture design is comprehensively summarized and discussed, with emphasis on state-of-the-art strategies to improve the areal capacity and cycling stability of TFBs. Moreover, to be suitable power sources for IoT devices, the design of next-generation TFBs should consider multiple functionalities, including wide working temperature range, good flexibility, high transparency, and integration with energy-harvesting systems. Perspectives on designing practically accessible TFBs are provided, which may guide the future development of reliable power sources for IoT devices.
Collapse
Affiliation(s)
- Qiuying Xia
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Feng Zan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qianyu Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Wei Liu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Qichanghao Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yan He
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingyi Hua
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiahao Liu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jing Xu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinshi Wang
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chuanzhi Wu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hui Xia
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
8
|
Chen M, Li L, Xu M, Li W, Zheng L, Wang X. Quasi-One-Dimensional van der Waals Transition Metal Trichalcogenides. RESEARCH (WASHINGTON, D.C.) 2023; 6:0066. [PMID: 36930809 PMCID: PMC10013805 DOI: 10.34133/research.0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023]
Abstract
The transition metal trichalcogenides (TMTCs) are quasi-one-dimensional (1D) MX3-type van der Waals layered semiconductors, where M is a transition metal element of groups IV and V, and X indicates chalcogen element. Due to the unique quasi-1D crystalline structures, they possess several novel electrical properties such as variable bandgaps, charge density waves, and superconductivity, and highly anisotropic optical, thermoelectric, and magnetic properties. The study of TMTCs plays an essential role in the 1D quantum materials field, enabling new opportunities in the material research dimension. Currently, tremendous progress in both materials and solid-state devices has been made, demonstrating promising applications in the realization of nanoelectronic devices. This review provides a comprehensive overview to survey the state of the art in materials, devices, and applications based on TMTCs. Firstly, the symbolic structure, current primary synthesis methods, and physical properties of TMTCs have been discussed. Secondly, examples of TMTC applications in various fields are presented, such as photodetectors, energy storage devices, catalysts, and sensors. Finally, we give an overview of the opportunities and future perspectives for the research of TMTCs, as well as the challenges in both basic research and practical applications.
Collapse
Affiliation(s)
- Mengdi Chen
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an710072, China
| | - Lei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an710072, China
| | - Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an710072, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an710072, China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an710072, China.,Key Laboratory of Flexible Electronics of Zhejiang Provience, Ningbo Institute of Northwestern Polytechnical University, 218 Qingyi Road, Ningbo 315103, China
| |
Collapse
|
9
|
Zhang X, Zhang Y, Yu H, Zhao H, Cao Z, Zhang Z, Zhang Y. Van der Waals-Interface-Dominated All-2D Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2207966. [PMID: 36353883 DOI: 10.1002/adma.202207966] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The interface is the device. As the feature size rapidly shrinks, silicon-based electronic devices are facing multiple challenges of material performance decrease and interface quality degradation. Ultrathin 2D materials are considered as potential candidates in future electronics by their atomically flat surfaces and excellent immunity to short-channel effects. Moreover, due to naturally terminated surfaces and weak van der Waals (vdW) interactions between layers, 2D materials can be freely stacked without the lattice matching limit to form high-quality heterostructure interfaces with arbitrary components and twist angles. Controlled interlayer band alignment and optimized interfacial carrier behavior allow all-2D electronics based on 2D vdW interfaces to exhibit more comprehensive functionality and better performance. Especially, achieving the same computing capacity of multiple conventional devices with small footprint all-2D devices is considered to be the key development direction of future electronics. Herein, the unique properties of all-2D vdW interfaces and their construction methods are systematically reviewed and the main performance contributions of different vdW interfaces in 2D electronics are summarized, respectively. Finally, the recent progress and challenges for all-2D vdW electronics are discussed, and how to improve the compatibility of 2D material devices with silicon-based industrial technology is pointed out as a critical challenge.
Collapse
Affiliation(s)
- Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yanzhe Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Hang Zhao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhihong Cao
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Beijing Key Laboratory for Advanced Energy Materials and Technologies, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
10
|
Mattinen M, Gity F, Coleman E, Vonk JFA, Verheijen MA, Duffy R, Kessels WMM, Bol AA. Atomic Layer Deposition of Large-Area Polycrystalline Transition Metal Dichalcogenides from 100 °C through Control of Plasma Chemistry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:7280-7292. [PMID: 36032554 PMCID: PMC9404538 DOI: 10.1021/acs.chemmater.2c01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Two-dimensional transition metal dichalcogenides, such as MoS2, are intensely studied for applications in electronics. However, the difficulty of depositing large-area films of sufficient quality under application-relevant conditions remains a major challenge. Herein, we demonstrate deposition of polycrystalline, wafer-scale MoS2, TiS2, and WS2 films of controlled thickness at record-low temperatures down to 100 °C using plasma-enhanced atomic layer deposition. We show that preventing excess sulfur incorporation from H2S-based plasma is the key to deposition of crystalline films, which can be achieved by adding H2 to the plasma feed gas. Film composition, crystallinity, growth, morphology, and electrical properties of MoS x films prepared within a broad range of deposition conditions have been systematically characterized. Film characteristics are correlated with results of field-effect transistors based on MoS2 films deposited at 100 °C. The capability to deposit MoS2 on poly(ethylene terephthalate) substrates showcases the potential of our process for flexible devices. Furthermore, the composition control achieved by tailoring plasma chemistry is relevant for all low-temperature plasma-enhanced deposition processes of metal chalcogenides.
Collapse
Affiliation(s)
- Miika Mattinen
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Farzan Gity
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Emma Coleman
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Joris F. A. Vonk
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Marcel A. Verheijen
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Eurofins
Materials Science Netherlands, High Tech Campus 11, 5656 AE Eindhoven, The Netherlands
| | - Ray Duffy
- Tyndall
National Institute, University College Cork, Lee Maltings, Dyke Parade, T12 R5CP Cork, Ireland
| | - Wilhelmus M. M. Kessels
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ageeth A. Bol
- Department
of Applied Physics, Eindhoven University
of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- Department
of Chemistry, University of Michigan, 930 N. University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
11
|
Naikoo GA, Arshad F, Almas M, Hassan IU, Pedram MZ, Aljabali AA, Mishra V, Serrano-Aroca Á, Birkett M, Charbe NB, Goyal R, Negi P, El-Tanani M, Tambuwala MM. 2D materials, synthesis, characterization and toxicity: A critical review. Chem Biol Interact 2022; 365:110081. [PMID: 35948135 DOI: 10.1016/j.cbi.2022.110081] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
|
12
|
Stonemeyer S, Dogan M, Cain JD, Azizi A, Popple DC, Culp A, Song C, Ercius P, Cohen ML, Zettl A. Targeting One- and Two-Dimensional Ta-Te Structures via Nanotube Encapsulation. NANO LETTERS 2022; 22:2285-2292. [PMID: 35271292 DOI: 10.1021/acs.nanolett.1c04615] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fine control over material synthesis on the nanoscale can facilitate the stabilization of competing crystalline structures. Here, we demonstrate how carbon nanotube reaction vessels can be used to selectively create one-dimensional TaTe3 chains or two-dimensional TaTe2 nanoribbons with exquisite control of the chain number or nanoribbon thickness and width. Transmission electron microscopy and scanning transmission electron microscopy reveal the detailed atomic structure of the encapsulated materials. Complex superstructures such as multichain spiraling and apparent multilayer moirés are observed. The rare 2H phase of TaTe2 (1H in monolayer) is found to be abundant as an encapsulated nanoribbon inside carbon nanotubes. The experimental results are complemented by density functional theory calculations for the atomic and electronic structure, which uncovers the prevalence of 2H-TaTe2 due to nanotube-to-nanoribbon charge transfer and size confinement. Calculations also reveal new 1T' type charge density wave phases in TaTe2 that could be observed in experimental studies.
Collapse
Affiliation(s)
- Scott Stonemeyer
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| | - Mehmet Dogan
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jeffrey D Cain
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| | - Amin Azizi
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| | - Derek C Popple
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| | - Austin Culp
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
| | - Chengyu Song
- National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Peter Ercius
- National Center for Electron Microscopy, The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 United States
| | - Marvin L Cohen
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Alex Zettl
- Department of Physics, University of California at Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute at the University of California at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Kim Y, Woo WJ, Kim D, Lee S, Chung SM, Park J, Kim H. Atomic-Layer-Deposition-Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005907. [PMID: 33749055 DOI: 10.1002/adma.202005907] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Transition metal chalcogenides (TMCs) are a large family of 2D materials with different properties, and are promising candidates for a wide range of applications such as nanoelectronics, sensors, energy conversion, and energy storage. In the research of new materials, the development and investigation of industry-compatible synthesis techniques is of key importance. In this respect, it is important to study 2D TMC materials synthesized by the atomic layer deposition (ALD) technique, which is widely applied in industries. In addition to the synthesis of 2D TMCs, ALD is used to modulate the characteristic of 2D TMCs such as their carrier density and morphology. So far, the improvement of thin film uniformity without oxidation and the synthesis of low-dimensional nanomaterials on 2D TMCs have been the research focus. Herein, the synthesis and modulation of 2D TMCs by ALD is described, and the characteristics of ALD-based TMCs used in nanoelectronics, sensors, and energy applications are discussed.
Collapse
Affiliation(s)
- Youngjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Whang Je Woo
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Donghyun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sangyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seung-Min Chung
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jusang Park
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Hyungjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
14
|
Seok H, Lee I, Cho J, Sung D, Baek IK, Lee CH, Kim E, Jeon S, Park K, Kim T. Synthesis of vertically aligned wafer-scale tantalum disulfide using high-Ar/H 2S ratio plasma. NANOTECHNOLOGY 2021; 33:025603. [PMID: 34587601 DOI: 10.1088/1361-6528/ac2b6c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Nanostructural modification of two-dimensional (2D) materials has attracted significant attention for enhancing hydrogen evolution reaction (HER) activity. In this study, the nanostructure of TaS2films was controlled by controlling the Ar/H2S gas ratio used in plasma-enhanced chemical vapor deposition (PECVD). At a high Ar/H2S gas ratio, vertically aligned TaS2(V-TaS2) films were formed over a large-area (4 in) at a temperature of 250 °C, which, to the best of our knowledge, is the lowest temperature reported for PECVD. Furthermore, the plasma species formed in the injected gas at various Ar/H2S gas ratios were analyzed using optical emission spectroscopy to determine the synthesis mechanism. In addition, the 4 in wafer-scale V-TaS2was analyzed by x-ray photoelectron spectroscopy, transmission electron microscopy, and atomic force microscopy, and the HER performance of the as-synthesized TaS2fabricated with various Ar/H2S ratios was measured. The results revealed that, depending on the film structure of TaS2, the HER performance can be enhanced owing to its structural advantage. Furthermore, the excellent stability and robustness of V-TaS2was confirmed by conducting 1000 HER cycles and post-HER material characterization. This study provides important insights into the plasma-assisted nanostructural modification of 2D materials for application as enhanced electrocatalysts.
Collapse
Affiliation(s)
- Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inkoo Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dougyong Sung
- Samsung Electronics Co., Ltd, Mechatronics R&D Center, 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448, Republic of Korea
| | - In-Keun Baek
- Samsung Electronics Co., Ltd, Mechatronics R&D Center, 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448, Republic of Korea
| | - Cheol-Hun Lee
- Samsung Electronics Co., Ltd, Mechatronics R&D Center, 1-1 Samsungjeonja-ro, Hwaseong-si, Gyeonggi-do 18448, Republic of Korea
| | - Eungchul Kim
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sanghuck Jeon
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kihong Park
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Taesung Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Li J, Xia Z, Xue Q, Zhang M, Zhang S, Xiao H, Ma Y, Qu Y. Insights into the Interfacial Lewis Acid-Base Pairs in CeO 2 -Loaded CoS 2 Electrocatalysts for Alkaline Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103018. [PMID: 34405538 DOI: 10.1002/smll.202103018] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Despite the known efficacy of CeO2 as a promoter in alkaline hydrogen evolution reaction (HER), the underlying mechanism of this effect remains unclear. CoS2 , a pyrite-type alkaline HER electrocatalyst, suffers from sluggish HER kinetics and severe catalyst leaching due to its weak water dissociation kinetics and oxygen-related corrosion. Herein, it is demonstrated that the interfacial Lewis acid-base Ce∙∙∙S pairs in CeO2 -loaded CoS2 effectively improve the catalytic activity and durability. In CeO2 -loaded CoS2 nanowire array electrodes, these interfacial Lewis acid-base Ce∙∙∙S pairs with unique electronic and structural configurations efficiently activate water adsorptive dissociation and kinetically accelerate hydrogen evolution, delivering a low overpotential of 36 mV at 10 mA cm-2 in alkaline media. Such Ce∙∙∙S pairs also weaken O2 adsorption on CoS2 , leading to undecayed activity over 1000 h. These findings are expected to provide guidance for the design of CeO2 -based electrocatalysts as well as other hybrid electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhaoming Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingyu Xue
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Mingkai Zhang
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sai Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanyuan Ma
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
16
|
Brune V, Grosch M, Weißing R, Hartl F, Frank M, Mishra S, Mathur S. Influence of the choice of precursors on the synthesis of two-dimensional transition metal dichalcogenides. Dalton Trans 2021; 50:12365-12385. [PMID: 34318836 DOI: 10.1039/d1dt01397a] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The interest in transition metal dichalcogenides (TMDCs; MEy/2; M = transition metal; E = chalcogenide, y = valence of the metal) has grown exponentially across various science and engineering disciplines due to their unique structural chemistry manifested in a two-dimensional lattice that results in extraordinary electronic and transport properties desired for applications in sensors, energy storage and optoelectronic devices. Since the properties of TMDCs can be tailored by changing the stacking sequence of 2D monolayers with similar or dis-similar materials, a number of synthetic routes essentially based on the disintegration of bulk (e.g., chemical exfoliation) or the integration of atomic constituents (e.g., vapor phase growth) have been explored. Despite a large body of data available on the chemical synthesis of TMDCs, experimental strategies with high repeatability of control over film thickness, phase and compositional purity remain elusive, which calls for innovative synthetic concepts offering, for instance, self-limited growth in the z-direction and homogeneous lateral topography. This review summarizes the recent conceptual advancements in the growth of layered van der Waals TMDCs from both mixtures of metal and chalcogen sources (multi-source precursors; MSPs) and from molecular compounds containing metals and chalcogens in one starting material (single-source precursor; SSPs). The critical evaluation of the strengths, limitations and opportunities of MSP and SSP approaches is provided as a guideline for the fabrication of TMDCs from commercial and customized molecular precursors. For example, alternative synthetic pathways using tailored molecular precursors circumvent the challenges of differential nucleation and crystal growth kinetics that are invariably associated with conventional gas phase chemical vapor transport (CVT) and chemical vapor deposition (CVD) of a mixture of components. The aspects of achieving high compositional purity and alternatives to minimize competing reactions or side products are discussed in the context of efficient chemical synthesis of TMDCs. Moreover, a critical analysis of the potential opportunities and existing bottlenecks in the synthesis of TMDCs and their intrinsic properties is provided.
Collapse
Affiliation(s)
- Veronika Brune
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - Matthias Grosch
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - René Weißing
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - Fabian Hartl
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - Michael Frank
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| | - Shashank Mishra
- Université Claude Bernard Lyon 1, CNRS, UMR 5256, IRCELYON, 2 avenue Albert Einstein, 69626 Villeurbanne, France.
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstraße 6, D-50939 Cologne, Germany.
| |
Collapse
|
17
|
Basuvalingam SB, Bloodgood MA, Verheijen MA, Kessels WMM, Bol AA. Conformal Growth of Nanometer-Thick Transition Metal Dichalcogenide TiS x -NbS x Heterostructures over 3D Substrates by Atomic Layer Deposition: Implications for Device Fabrication. ACS APPLIED NANO MATERIALS 2021; 4:514-521. [PMID: 33615158 PMCID: PMC7885689 DOI: 10.1021/acsanm.0c02820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
The scalable and conformal synthesis of two-dimensional (2D) transition metal dichalcogenide (TMDC) heterostructures is a persisting challenge for their implementation in next-generation devices. In this work, we report the synthesis of nanometer-thick 2D TMDC heterostructures consisting of TiS x -NbS x on both planar and 3D structures using atomic layer deposition (ALD) at low temperatures (200-300 °C). To this end, a process was developed for the growth of 2D NbS x by thermal ALD using (tert-butylimido)-tris-(diethylamino)-niobium (TBTDEN) and H2S gas. This process complemented the TiS x thermal ALD process for the growth of 2D TiS x -NbS x heterostructures. Precise thickness control of the individual TMDC material layers was demonstrated by fabricating multilayer (5-layer) TiS x -NbS x heterostructures with independently varied layer thicknesses. The heterostructures were successfully deposited on large-area planar substrates as well as over a 3D nanowire array for demonstrating the scalability and conformality of the heterostructure growth process. The current study demonstrates the advantages of ALD for the scalable synthesis of 2D heterostructures conformally over a 3D substrate with precise thickness control of the individual material layers at low temperatures. This makes the application of 2D TMDC heterostructures for nanoelectronics promising in both BEOL and FEOL containing high-aspect-ratio 3D structures.
Collapse
Affiliation(s)
- Saravana Balaji Basuvalingam
- Department
of Applied Physics, Eindhoven University
of Technology, P. O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Matthew A. Bloodgood
- Department
of Applied Physics, Eindhoven University
of Technology, P. O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Marcel A. Verheijen
- Department
of Applied Physics, Eindhoven University
of Technology, P. O. Box 513, Eindhoven 5600 MB, The
Netherlands
- Eurofins
Materials Science, High
Tech Campus 11, Eindhoven 5656 AE, The Netherlands
| | - Wilhelmus M. M. Kessels
- Department
of Applied Physics, Eindhoven University
of Technology, P. O. Box 513, Eindhoven 5600 MB, The
Netherlands
| | - Ageeth A. Bol
- Department
of Applied Physics, Eindhoven University
of Technology, P. O. Box 513, Eindhoven 5600 MB, The
Netherlands
| |
Collapse
|
18
|
Vandalon V, Verheijen MA, Kessels WMM, Bol AA. Atomic Layer Deposition of Al-Doped MoS 2: Synthesizing a p-type 2D Semiconductor with Tunable Carrier Density. ACS APPLIED NANO MATERIALS 2020; 3:10200-10208. [PMID: 33134882 PMCID: PMC7590523 DOI: 10.1021/acsanm.0c02167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 05/29/2023]
Abstract
Extrinsically doped two-dimensional (2D) semiconductors are essential for the fabrication of high-performance nanoelectronics among many other applications. Herein, we present a facile synthesis method for Al-doped MoS2 via plasma-enhanced atomic layer deposition (ALD), resulting in a particularly sought-after p-type 2D material. Precise and accurate control over the carrier concentration was achieved over a wide range (1017 up to 1021 cm-3) while retaining good crystallinity, mobility, and stoichiometry. This ALD-based approach also affords excellent control over the doping profile, as demonstrated by a combined transmission electron microscopy and energy-dispersive X-ray spectroscopy study. Sharp transitions in the Al concentration were realized and both doped and undoped materials had the characteristic 2D-layered nature. The fine control over the doping concentration, combined with the conformality and uniformity, and subnanometer thickness control inherent to ALD should ensure compatibility with large-scale fabrication. This makes Al:MoS2 ALD of interest not only for nanoelectronics but also for photovoltaics and transition-metal dichalcogenide-based catalysts.
Collapse
Affiliation(s)
- Vincent Vandalon
- Applied
Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Marcel A. Verheijen
- Applied
Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Eurofins
Material Science Netherlands BV, 5656AE Eindhoven, The Netherlands
| | | | - Ageeth A. Bol
- Applied
Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
19
|
Shen C, Raza MH, Amsalem P, Schultz T, Koch N, Pinna N. Morphology-controlled MoS 2 by low-temperature atomic layer deposition. NANOSCALE 2020; 12:20404-20412. [PMID: 33026013 DOI: 10.1039/d0nr03863f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) such as MoS2 are materials for multifarious applications such as sensing, catalysis, and energy storage. Due to their peculiar charge-transport properties, it is always desired to control their morphologies from vertical nanostructures to horizontal basal-plane oriented smooth layers. In this work, we established a low-temperature ALD process for MoS2 deposition using bis(t-butylimino)bis(dimethylamino)molybdenum(vi) and H2S precursors. The ALD reaction parameters, including reaction temperature and precursor pulse times, are systematically investigated and optimized. Polycrystalline MoS2 is conformally deposited on carbon nanotubes, Si-wafers, and glass substrates. Moreover, the morphologies of the deposited MoS2 films are tuned from smooth film to vertically grown flakes, and to nano-dots, by controlling the reaction parameters/conditions. It is noticed that our MoS2 nanostructures showed morphology-dependent optical and electrocatalytic properties, allowing us to choose the required morphology for a targeted application.
Collapse
Affiliation(s)
- Chengxu Shen
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Muhammad Hamid Raza
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Patrick Amsalem
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany
| | - Thorsten Schultz
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany and Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Norbert Koch
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 6, 12489 Berlin, Germany and Helmholtz-Zentrum für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|