1
|
Redolfi-Bristol D, Yamamoto K, Marin E, Zhu W, Mazda O, Riello P, Pezzotti G. Exploring the cellular antioxidant mechanism against cytotoxic silver nanoparticles: a Raman spectroscopic analysis. NANOSCALE 2024; 16:9985-9997. [PMID: 38695726 DOI: 10.1039/d4nr00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Silver nanoparticles (AgNPs) hold great promise for several different applications, from colorimetric sensors to antimicrobial agents. Despite their widespread incorporation in consumer products, limited understanding of the detrimental effects and cellular antioxidant responses associated with AgNPs at sublethal concentrations persists, raising concerns for human and ecological well-being. To address this gap, we synthesized AgNPs of varying sizes and evaluated their cytotoxicity against human dermal fibroblasts (HDF). Our study revealed that toxicity of AgNPs is a time- and size-dependent process, even at low exposure levels. AgNPs exhibited low short-term cytotoxicity but high long-term impact, particularly for the smallest NPs tested. Raman microspectroscopy was employed for in-time investigations of intracellular molecular variations during the first 24 h of exposure to AgNPs of 35 nm. Subtle protein and lipid degradations were detected, but no discernible damage to the DNA was observed. Signals associated with antioxidant proteins, such as superoxide dismutase (SOD), catalase (CAT) and metallothioneins (MTs), increased over time, reflecting the heightened production of these defense agents. Fluorescence microscopy further confirmed the efficacy of overexpressed antioxidant proteins in mitigating ROS formation during short-term exposure to AgNPs. This work provides valuable insights into the molecular changes and remedial strategies within the cellular environment, utilizing Raman microspectroscopy as an advanced analytical technique. These findings offer a novel perspective on the cytotoxicity mechanism of AgNPs, contributing to the development of safer materials and advice on regulatory guidelines for their biomedical applications.
Collapse
Affiliation(s)
- Davide Redolfi-Bristol
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Kenta Yamamoto
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department Polytechnic of Engineering and Architecture, University of Udine, 33100, Udine, Italy
- Biomedical Research Center, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Pietro Riello
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| | - Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, 606-8585, Kyoto, Japan.
- Department of Molecular Genetics, Institute of Biomedical Science, Kansai Medical University, 2-5-1 Shinmachi, Hiraka-ta, Osaka 573-1010, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, 160-0023 Tokyo, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy
| |
Collapse
|
2
|
Stolte Bezerra Lisboa Oliveira L, Ristroph KD. Critical Review: Uptake and Translocation of Organic Nanodelivery Vehicles in Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5646-5669. [PMID: 38517744 DOI: 10.1021/acs.est.3c09757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Nanodelivery vehicles (NDVs) are engineered nanomaterials (ENMs) that, within the agricultural sector, have been investigated for their ability to improve uptake and translocation of agrochemicals, control release, or target specific tissues or subcellular compartments. Both inorganic and organic NDVs have been studied for agrochemical delivery in the literature, but research on the latter has been slower to develop than the literature on the former. Since the two classes of nanomaterials exhibit significant differences in surface chemistry, physical deformability, and even colloidal stability, trends that apply to inorganic NDVs may not hold for organic NDVs, and vice versa. We here review the current literature on the uptake, translocation, biotransformation, and cellular and subcellular internalization of organic NDVs in plants following foliar or root administration. A background on nanomaterials and plant physiology is provided as a leveling ground for researchers in the field. Trends in uptake and translocation are examined as a function of NDV properties and compared to those reported for inorganic nanomaterials. Methods for assessing fate and transport of organic NDVs in plants (a major bottleneck in the field) are discussed. We end by identifying knowledge gaps in the literature that must be understood in order to rationally design organic NDVs for precision agrochemical nanodelivery.
Collapse
Affiliation(s)
- Luiza Stolte Bezerra Lisboa Oliveira
- Agricultural and Biological Engineering Department, Purdue University, 225 South University Street, West Lafayette, Indiana 47907, United States
| | - Kurt D Ristroph
- Agricultural and Biological Engineering Department, Purdue University, 225 South University Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Lane MKM, Garedew M, Deary EC, Coleman CN, Ahrens-Víquez MM, Erythropel HC, Zimmerman JB, Anastas PT. What to Expect When Expecting in Lab: A Review of Unique Risks and Resources for Pregnant Researchers in the Chemical Laboratory. Chem Res Toxicol 2022; 35:163-198. [PMID: 35130693 PMCID: PMC8864617 DOI: 10.1021/acs.chemrestox.1c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Pregnancy presents a unique risk
to chemical researchers due to
their occupational exposures to chemical, equipment, and physical
hazards in chemical research laboratories across science, engineering,
and technology disciplines. Understanding “risk” as
a function of hazard, exposure, and vulnerability, this review aims
to critically examine the state of the science for the risks and associated
recommendations (or lack thereof) for pregnant researchers in chemical
laboratories (labs). Commonly encountered hazards for pregnant lab
workers include chemical hazards (organic solvents, heavy metals,
engineered nanomaterials, and endocrine disruptors), radiation hazards
(ionizing radiation producing equipment and materials and nonionizing
radiation producing equipment), and other hazards related to the lab
environment (excessive noise, excessive heat, psychosocial stress,
strenuous physical work, and/or abnormal working hours). Lab relevant
doses and routes of exposure in the chemical lab environment along
with literature and governmental recommendations or resources for
exposure mitigation are critically assessed. The specific windows
of vulnerability based on stage of pregnancy are described for each
hazard, if available. Finally, policy gaps for further scientific
research are detailed to enhance future guidance to protect pregnant
lab workers.
Collapse
Affiliation(s)
- Mary Kate M Lane
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Mahlet Garedew
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Emma C Deary
- Department of Anthropology, Wellesley College, Wellesley, Massachusetts 02481, United States
| | - Cherish N Coleman
- Department of Biology, University of Detroit Mercy, Detroit, Michigan 48221, United States
| | - Melissa M Ahrens-Víquez
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Hanno C Erythropel
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Julie B Zimmerman
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States.,Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States
| | - Paul T Anastas
- Center for Green Chemistry and Green Engineering, Yale University, New Haven, Connecticut 06511, United States.,School of the Environment, Yale University, New Haven, Connecticut 06511, United States.,School of Public Health, Yale University, New Haven, Connecticut 06510, United States
| |
Collapse
|
4
|
Rahman L, Mallach G, Kulka R, Halappanavar S. Microplastics and nanoplastics science: collecting and characterizing airborne microplastics in fine particulate matter. Nanotoxicology 2022; 15:1253-1278. [PMID: 35007468 DOI: 10.1080/17435390.2021.2018065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microplastic (MP) pollution in the environment is increasing, leading to growing concerns about human exposures and the subsequent impact on health. Although marine MP research has received significant attention in recent years, only a few studies have attempted characterization of MP in air and examined the MP uptake and influence via inhalation on human health. Moreover, the methods used for MP characterization in the marine environment require further optimization to be applicable to MP in the air. This paper details method for collecting and characterizing MP < 2.5 μm in air samples for the purposes of toxicological assessment. The first phase of the study evaluated (a) the suitability of various filter types to collect respirable airborne MP <2.5 μm, and; (b) the ability of Raman and enhanced darkfield-hyperspectral spectroscopy methods to identify MP reference standards collected from spiked filters and in cells after exposure to reference MP. In the second phase, these methods were employed to characterize MP <2.5 μm in personal, indoor and outdoor filter air samples and in cells following exposure to filter extracted material. The results showed the presence of a variety of MP in the respirable size fraction (0.1-1 µm aerodynamic diameter). Silver membrane filters were found not suitable for collecting and analyzing MP <2.5 μm. While it was easy to detect reference MP in cells post-exposure, the identity of only two types of air-borne MP was confirmed in cells. The study highlighted possible sources of artifacts and inconsistencies in analyzing airborne MP.
Collapse
Affiliation(s)
- Luna Rahman
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Gary Mallach
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Ryan Kulka
- Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Department of Biology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
5
|
Current and emergent analytical methods for monitoring the behavior of agricultural functional nanoparticles in relevant matrices: a review. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Halappanavar S, Ede JD, Mahapatra I, Krug HF, Kuempel ED, Lynch I, Vandebriel RJ, Shatkin JA. A methodology for developing key events to advance nanomaterial-relevant adverse outcome pathways to inform risk assessment. Nanotoxicology 2020; 15:289-310. [PMID: 33317378 DOI: 10.1080/17435390.2020.1851419] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Significant advances have been made in the development of Adverse Outcome Pathways (AOPs) over the last decade, mainly focused on the toxicity mechanisms of chemicals. These AOPs, although relevant to manufactured nanomaterials (MNs), do not currently capture the reported roles of size-associated properties of MNs on toxicity. Moreover, some AOs of relevance to airborne exposures to MNs such as lung inflammation and fibrosis shown in animal studies may not be targeted in routine regulatory decision making. The primary objective of the present study was to establish an approach to advance the development of AOPs of relevance to MNs using existing, publicly available, nanotoxicology literature. A systematic methodology was created for curating, organizing and applying the available literature for identifying key events (KEs). Using a case study approach, the study applied the available literature to build the biological plausibility for 'tissue injury', a KE of regulatory relevance to MNs. The results of the analysis reveal the various endpoints, assays and specific biological markers used for assessing and reporting tissue injury. The study elaborates on the limitations and opportunities of the current nanotoxicology literature and provides recommendations for the future reporting of nanotoxicology results that will expedite not only the development of AOPs for MNs but also aid in application of existing data for decision making.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | | | - Indrani Mahapatra
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Harald F Krug
- Retired International Research Cooperation Manager, Empa - Swiss Federal Laboratories for Science and Materials Technology, St. Gallen, Switzerland.,NanoCASE GmbH, Engelburg, Switzerland
| | - Eileen D Kuempel
- National Institute for Occupational Safety and Health, Nanotechnology Research Center, Cincinnati, OH, USA
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Rob J Vandebriel
- National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | | |
Collapse
|