1
|
Di Battista V, Ribalta C, Vilsmeier K, Singh D, Demokritou P, Günther E, Jensen KA, Dekkers S, Adam V, Wohlleben W. A Screening Approach to the Safe-and-Sustainable-by-Design Development of Advanced Insulation Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311155. [PMID: 38516961 DOI: 10.1002/smll.202311155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Indexed: 03/23/2024]
Abstract
Herein, a Safe-and-Sustainable-by-Design (SSbD) screening strategy on four different inorganic aerogel mats and two conventional mineral wools for ranking purposes is demonstrated. Given that they do not consist of particles, the release is first simulated, addressing three occupational exposure scenarios, realistic for their intended use as building insulators. No exposure to consumers nor to the environment is foreseen in the use phase, however, aerosols may be released during mat installation, posing an inhalation risk for workers. All four aerogel mats release more respirable dust than the benchmark materials and 60% thereof deposits in the alveolar region according to modelling tools. The collected aerogel dust allows for subsequent screening of hazard implications via two abiotic assays: 1) surface reactivity in human blood serum; 2) biodissolution kinetics in lung simulant fluids. Both aerogels and conventional insulators show similar surface reactivity. Differences in biodissolution are influenced by the specifically designed organic and inorganic structural modifications. Aerogel mats are better-performing insulators (2-fold lower thermal conductivity than the benchmark) However, this work demonstrates how investment decisions can be balanced with safety and sustainability aspects. Concepts of analogy and similarity thus support easily accessible methods to companies for safe and economically viable innovation with advanced materials.
Collapse
Affiliation(s)
- Veronica Di Battista
- Department of Analytical and Material Science and Department of Experimental Toxicology and Ecology, BASF SE, 67063, Ludwigshafen, Germany
- DTU, Department of Environmental and Resource Engineering, Kgs. Lyngby, Denmark
| | - Carla Ribalta
- National Research Centre for the Working Environment, Lerso Parkallé 105, Copenhagen, 2100, Denmark
| | - Klaus Vilsmeier
- Department of Analytical and Material Science and Department of Experimental Toxicology and Ecology, BASF SE, 67063, Ludwigshafen, Germany
| | - Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA, 02115, USA
| | | | - Eva Günther
- BASF Construction Additives GmbH, Dr.-Albert-Frank-Str. 32, 83033, Trostberg, Germany
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment, Lerso Parkallé 105, Copenhagen, 2100, Denmark
| | - Susan Dekkers
- TNO, Unit Health Living & Work, Risk Analysis for Products in Development, Princetonlaan 6, Utrecht, 3584 CB, The Netherlands
| | - Veronique Adam
- TEMAS Solutions GmbH, Lätterweg 5, Hausen, 5212, Switzerland
| | - Wendel Wohlleben
- Department of Analytical and Material Science and Department of Experimental Toxicology and Ecology, BASF SE, 67063, Ludwigshafen, Germany
| |
Collapse
|
2
|
Chen KH, Nguyen N, Huang TY, Lin YJ, Yu YT, Song HL, Wang JT, Nguyen VK, Chen HL, Chu LA, Chiang HHK, Sung HW. Macrophage-Hitchhiked Orally Administered β-Glucans-Functionalized Nanoparticles as "Precision-Guided Stealth Missiles" for Targeted Pancreatic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304735. [PMID: 37363886 DOI: 10.1002/adma.202304735] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Indexed: 06/28/2023]
Abstract
The prognosis in cases of pancreatic ductal adenocarcinoma (PDAC) with current treatment modalities is poor owing to the highly desmoplastic tumor microenvironment (TME). Herein, a β-glucans-functionalized zinc-doxorubicin nanoparticle system (βGlus-ZnD NPs) that can be orally administered, is developed for targeted PDAC therapy. Following oral administration in PDAC-bearing mice, βGlus-ZnD NPs actively target/transpass microfold cells, overcome the intestinal epithelial barrier, and then undergo subsequent phagocytosis by endogenous macrophages (βGlus-ZnD@Mϕ). As hitchhiking cellular vehicles, βGlus-ZnD@Mϕ transits through the intestinal lymphatic system and enters systemic circulation, ultimately accumulating in the tumor tissue as a result of the tumor-homing and "stealth" properties that are conferred by endogenous Mϕ. Meanwhile, the Mϕ that hitchhikes βGlus-ZnD NPs is activated to produce matrix metalloproteinases, destroying the desmoplastic stromal barrier, and differentiates toward the M1 -like phenotype, modulating the TME and recruiting effector T cells, ultimately inducing apoptosis of the tumor cells. The combination of βGlus-ZnD@Mϕ and immune checkpoint blockade effectively inhibits the growth of the primary tumor and suppresses the development of metastasis. It thus represents an appealing approach to targeted PDAC therapy.
Collapse
Affiliation(s)
- Kuan-Hung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Nhien Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Tun-Yu Huang
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Yu-Jung Lin
- Research Center for Applied Sciences, 11529, Academia Sinica, Taipei, Taiwan
| | - Yu-Tzu Yu
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Hsiang-Lin Song
- Department of Pathology, National Taiwan University Hospital, 300, Hsinchu Branch, Hsinchu, Taiwan
| | - Jui-To Wang
- Neurological Institute, Department of Neurosurgery, Taipei Veterans General Hospital, 11217, Taipei, Taiwan
- Institute of Brain Science, National Yang-Ming Chiao Tung University, 11221, Taipei, Taiwan
| | - Van Khanh Nguyen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Hsin-Lung Chen
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Li-An Chu
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013, Hsinchu, Taiwan
| | - Hui-Hua Kenny Chiang
- Institute of Biomedical Engineering, National Yang-Ming Chiao Tung University, 11221, Taipei, Taiwan
| | - Hsing-Wen Sung
- Department of Chemical Engineering and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, 30013, Hsinchu, Taiwan
| |
Collapse
|
3
|
Okhrimenko DV, Ceccato M, Tougaard S, Foss M, Pezennec E, Solvang M. Comment on "Which fraction of stone wool fibre surface remains uncoated by binder? A detailed analysis by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy" by Hirth et al., 2021, RSC Adv., 11, 39545, DOI: 10.1039/d1ra06251d. RSC Adv 2023; 13:16688-16692. [PMID: 37274392 PMCID: PMC10236533 DOI: 10.1039/d2ra07959c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/25/2023] [Indexed: 06/06/2023] Open
Abstract
The article mentioned in the title of this comment paper reports on an investigation of the organic binder presence and distribution on stone wool fibres with surface sensitive techniques (X-ray photoelectron spectroscopy (XPS), QUASES XPS modelling, time-of-flight secondary ion mass spectrometry (ToF-SIMS) mapping) and attempts to correlate the results with fibre performance in in vitro acellular biosolubility tests. However, the study has assumptions, hypothesis and results that do not take into account the recognised science and regulations on biopersistence of stone wool fibres, limitations of the utilized surface sensitive techniques and modelling approach and it contains a contradiction with biosolubility experiments. In this comment article, we discuss these points, propose improved QUASES XPS modelling and present recent ToF-SIMS mapping results that reflect biosolubility behaviour of the stone wool fibres.
Collapse
Affiliation(s)
| | - Marcel Ceccato
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Denmark
| | | | - Morten Foss
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University Denmark
| | | | | |
Collapse
|
4
|
Mbanga O, Cukrowska E, Gulumian M. A Comparative Study of the Biodurability and Persistence of Gold, Silver and Titanium Dioxide Nanoparticles Using the Continuous Flow through System. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101653. [PMID: 37242069 DOI: 10.3390/nano13101653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023]
Abstract
The potential for nanoparticles to cause harm to human health and the environment is correlated with their biodurability in the human body and persistence in the environment. Dissolution testing serves to predict biodurability and nanoparticle environmental persistence. In this study, dissolution testing using the continuous flow through system was used to investigate the biodurability and persistence of gold nanoparticles (AuNPs), silver nanoparticles (AgNPs) and titanium dioxide nanoparticles (TiO2 NPs) in five different simulated biological fluids and two synthetic environmental media to predict their behaviour in real life situations. This study examined the physicochemical properties and agglomeration state of gold, silver and titanium dioxide nanoparticles before and after dissolution tests using three different techniques (UV-vis, XRD and TEM). The UV-vis spectra revealed that all three nanoparticles shifted to higher wavelengths after being exposed to simulated fluids. The titanium powder was found to be mixed with both rutile and anatase, according to XRD examination. The average diameter of gold nanoparticles was 14 nm, silver nanoparticles were 10 nm and titanium dioxide nanoparticles were 25 nm, according to TEM images. The gold and silver nanoparticles were observed to be spherical, but the titanium dioxide nanoparticles were irregular in shape, with some being spherical. The level of dissolved nanoparticles in simulated acidic media was higher in magnitude compared to that dissolved in simulated alkaline media. The results obtained via the continuous flow through dissolution system also displayed very significant dissolution rates. For TiO2 NPs the calculated half-times were in the range of 13-14 days, followed by AuNPs ranging between 4-12 days, significantly longer if compared to the half-times of AgNPs ranging between 2-7 days. AuNPs and TiO2 NPs were characterized by low dissolution rates therefore are expected to be (bio)durable in physiological surroundings and persistent in the environment thus, they might impose long-term effects on humans and the environment. In contrast, AgNPs have high dissolution rates and not (bio)durable and hence may cause short-term effects. The results suggest a hierarchy of biodurability and persistence of TiO2 NPs > AuNPs > AgNPs. It is recommended that nanoparticle product developers should follow the test guidelines stipulated by the OECD to ensure product safety for use before it is taken to the market.
Collapse
Affiliation(s)
- Odwa Mbanga
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| | - Ewa Cukrowska
- Molecular Sciences Institute, School of Chemistry, University of Witwatersrand, Private Bag X3, Johannesburg 2050, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, Northwest University, Private Bag X6001, Potchefstroom 2520, South Africa
| |
Collapse
|
5
|
Solvang M, Okhrimenko DV, Koch C. Investigation of the occurrence of binder material on airborne respirable mineral wool fibers. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2023; 20:240-253. [PMID: 37104114 DOI: 10.1080/15459624.2023.2205470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Mineral wool fibers can be released into the air during the production and handling of a mineral wool product where a small fraction of fibers will stay airborne and can potentially be inhaled. The aerodynamic fiber diameter determines how far an airborne fiber can pass through the human airway. Respirable fibers with an aerodynamic diameter < 3 µm can reach the deep part of the lungs (i.e., the alveolar region). Binder material (i.e., organic binder and mineral oil) is used in the production of mineral wool products. However, at the current stage, it is unknown if airborne fibers can contain binder material. We explored binder presence on airborne respirable fiber fractions being released and collected during the installation of two mineral wool products (a stone wool product and a glass wool product). Fiber collection was done by pumping a controlled air volume (2, 13, 22, and 32 l/min) through polycarbonate membrane filters during the installation of the mineral wool products. The morphological and chemical composition of the fibers were studied using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM-EDXS) analysis. The study demonstrates that binder material is found on the surface of the respirable mineral wool fiber mainly as circular or elongated droplets. Our findings suggest that respirable fibers explored in previous epidemiological studies, which have been used for proving a lack of hazardous effects of mineral wool on humans, may have also contained binder materials on the fibers.
Collapse
Affiliation(s)
| | | | - C Koch
- Technical and Environmental Chemistry, Ernst-Abbe-University of Applied Sciences, Jena, Germany
| |
Collapse
|
6
|
Potter RM, Hoffman JW, Hadley JG. Predicting the in vitro dissolution rate constant of mineral wool fibers from fiber composition. Inhal Toxicol 2023; 35:40-47. [PMID: 36648029 DOI: 10.1080/08958378.2023.2166167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVE We developed predictive formulae for the in vitro dissolution rate constant kdis of acid-soluble synthetic vitreous fibers (SVF), paralleling our earlier work with glass wools, which are typically more soluble at neutral pH. Developing simple models for predicting the kdis of a fiber can allow prediction of in vivo behavior, aid fiber developers, and potentially reduce in vivo testing. METHODS The kdis of several acid-soluble SVF were determined using high simulant fluid flow/fiber surface area (F/A) conditions via a single-fiber measurement system. Four fluids were employed, varying in base composition and citrate levels. Equations predicting the kdis were derived from fiber chemistry and dissolution measurements for two of the fluids. RESULTS Testing of several fibers showed a ∼10× increase in the kdis when citrate was included in the simulant solution. Data from tests with Stefaniak's citrate-free Phagoloysosmal Simulant Fluid (PSF) yielded kdis values aligned with expectations from in vivo results, unlike results from citrate-containing modified Gamble's solution. Predictive equations relating fiber chemistry to kdis showed reasonable agreement between the measured and predicted values. CONCLUSIONS Citrate inclusion in the solution under high F/A conditions significantly increased the measured kdis. This resulted in more biorelevant data being obtained using the PSF fluid with the high F/A method used. The developed predictive equations, sufficient for fiber development work, require refinement before a recommending their use in place of in vivo biopersistence testing. Significant fit improvements are possible through additional measurements under these experimental conditions.
Collapse
Affiliation(s)
| | - John W Hoffman
- Owens Corning Science and Technology Center, Granville, OH, USA
| | - John G Hadley
- Owens Corning Science and Technology Center, Granville, OH, USA
| |
Collapse
|
7
|
Zanoni I, Keller JG, Sauer UG, Müller P, Ma-Hock L, Jensen KA, Costa AL, Wohlleben W. Dissolution Rate of Nanomaterials Determined by Ions and Particle Size under Lysosomal Conditions: Contributions to Standardization of Simulant Fluids and Analytical Methods. Chem Res Toxicol 2022; 35:963-980. [PMID: 35593714 PMCID: PMC9215348 DOI: 10.1021/acs.chemrestox.1c00418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Indexed: 01/08/2023]
Abstract
Dissolution of inhaled engineered nanomaterials (ENM) under physiological conditions is essential to predict the clearance of the ENM from the lungs and to assess their biodurability and the potential effects of released ions. Alveolar macrophage (AM) lysosomes contain a pH 4.5 saline brine with enzymes and other components. Different types of artificial phagolysosomal simulant fluids (PSFs) have been developed for dissolution testing, but the consequence of using different media is not known. In this study, we tested to which extent six fundamentally different PSFs affected the ENM dissolution kinetics and particle size as determined by a validated transmission electron microscopy (TEM) image analysis. Three lysosomal simulant media were consistent with each other and with in vivo clearance. These media predict the quick dissolution of ZnO, the partial dissolution of SiO2, and the very slow dissolution of TiO2. The valid media use either a mix of organic acids (with the total concentration below 0.5 g/L, thereof citric acid below 0.15 g/L) or another organic acid (KH phthalate). For several ENM, including ZnO, BaSO4, and CeO2, all these differences induce only minor modulation of the dissolution rates. Only for TiO2 and SiO2, the interaction with specific organic acids is highly sensitive, probably due to sequestration of the ions, and can lead to wrong predictions when compared to the in vivo behavior. The media that fail on TiO2 and SiO2 dissolution use citric acid at concentrations above 5 g/L (up to 28 g/L). In the present selection of ENM, fluids, and methods, the different lysosomal simulant fluids did not induce changes of particle morphology, except for small changes in SiO2 and BaSO4 particles most likely due to ion dissolution, reprecipitation, and coalescence between neighboring particles. Based on the current evidence, the particle size by TEM analysis is not a sufficiently sensitive analytical method to deduce the rate of ENM dissolution in physiological media. In summary, we recommend the standardization of ENM dissolution testing by one of the three valid lysosomal simulant fluids with determination of the dissolution rate and halftime by the quantification of ions. This recommendation was established for a continuous flow system but may be relevant as well for static (batch) solubility testing.
Collapse
Affiliation(s)
- Ilaria Zanoni
- CNR-ISTEC-National
Research Council of Italy, Institute of
Science and Technology for Ceramics, Faenza 48018, Italy
| | - Johannes G. Keller
- Department
of Material Physics and Analytics, BASF
SE, Ludwigshafen 67056, Germany
- Department
of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen 67056, Germany
| | - Ursula G. Sauer
- Scientific
Consultancy-Animal Welfare, Neubiberg 85579, Germany
| | - Philipp Müller
- Department
of Material Physics and Analytics, BASF
SE, Ludwigshafen 67056, Germany
| | - Lan Ma-Hock
- Department
of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen 67056, Germany
| | - Keld A. Jensen
- National
Research Centre for Work Environment (NRCWE), Copenhagen 2100, Denmark
| | - Anna Luisa Costa
- CNR-ISTEC-National
Research Council of Italy, Institute of
Science and Technology for Ceramics, Faenza 48018, Italy
| | - Wendel Wohlleben
- Department
of Material Physics and Analytics, BASF
SE, Ludwigshafen 67056, Germany
- Department
of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen 67056, Germany
| |
Collapse
|
8
|
Okhrimenko DV, Bøtner JA, Riis HK, Ceccato M, Foss M, Solvang M. The dissolution of stone wool fibers with sugar-based binder and oil in different synthetic lung fluids. Toxicol In Vitro 2021; 78:105270. [PMID: 34757181 DOI: 10.1016/j.tiv.2021.105270] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 01/15/2023]
Abstract
The biopersistence of fiber materials is one of the cornerstones in estimating potential risk to human health upon inhalation. To connect epidemiological and in vivo investigations with in vitro studies, reliable and robust methods of fiber biopersistence determination and understanding of fiber dissolution mechanism are required. We investigated dissolution properties of oil treated stone wool fibers with and without sugar-based binder (SBB) at 37 °C in the liquids representing macrophages intracellular conditions (pH 4.5). Conditions varied from batch to flow of different rates. Fiber morphology and surface chemistry changes caused by dissolution were monitored with scanning electron microscopy and time-of-flight secondary ion mass spectrometry mapping. Stone wool fiber dissolution rate depends on liquid composition (presence of ligands, such as citrate), pH, reaction products transport and fibers wetting properties. The dissolution rate decreases when: 1) citrate is consumed by the reaction with the released Al cations; 2) the pH increases during a reaction in poorly buffered solutions; 3) the dissolution products are accumulated; 4) fibers are not fully wetted with the fluid. Presence of SBB has no influence on dissolution rate if fiber material was wetted prior to dissolution experiment to avoid poorly wetted fiber agglomerates formation in the synthetic lung fluids.
Collapse
Affiliation(s)
- D V Okhrimenko
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark.
| | - J A Bøtner
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| | - H K Riis
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| | - M Ceccato
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - M Foss
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus 8000, Denmark
| | - M Solvang
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| |
Collapse
|
9
|
Koch C, Okhrimenko DV, Solvang M, Aznar A, Pezennec E, Chaudan E, Magrane Francesch J, Lindberg P, Herault Q, Alami Badissi A. Comment on Critical Choices in Predicting Stone Wool Biodurability: Lysosomal Fluid Compositions and Binder Effects. Chem Res Toxicol 2021; 34:1695-1696. [PMID: 34213311 DOI: 10.1021/acs.chemrestox.1c00135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christoph Koch
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| | | | - Mette Solvang
- ROCKWOOL International A/S, Hovedgaden 584, 2640 Hedehusene, Denmark
| | - Anna Aznar
- URSA Insulation, Paseo de Recoletos, 28004 Madrid, Spain
| | - Eric Pezennec
- Knauf Insulation, Rue de Maestricht 95, 4600 Vise, Belgium
| | - Elodie Chaudan
- Saint-Gobain, 12 place de l'Iris, 92096 La Defense Cedex, France
| | | | | | - Quentin Herault
- Saint-Gobain, 12 place de l'Iris, 92096 La Defense Cedex, France
| | - Anissa Alami Badissi
- European Insulation Manufacturers Association, Avenue Louise 375, 1050 Brussels, Belgium
| |
Collapse
|
10
|
Hirth S, Waindok H, Wohlleben W. Which fraction of stone wool fibre surface remains uncoated by binder? A detailed analysis by time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy. RSC Adv 2021; 11:39545-39552. [PMID: 35492464 PMCID: PMC9044424 DOI: 10.1039/d1ra06251d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/25/2021] [Indexed: 11/21/2022] Open
Abstract
ToF-SIMS mapping reveals that man-made vitreous fibres (MMVF) are fully covered with binder explaining variations in biodurability testing with simulated lung fluid described earlier.
Collapse
Affiliation(s)
- Sabine Hirth
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Hubert Waindok
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| | - Wendel Wohlleben
- BASF SE, Carl-Bosch-Straße 38, 67056 Ludwigshafen am Rhein, Germany
| |
Collapse
|