1
|
Guo X, Zhang M, Li Y, Ding Z, Liu M, Li W, Peng Y, Zheng J. CYP3A4-Mediated Metabolic Activation and Cytotoxicity of Chlortoluron. Chem Res Toxicol 2024; 37:1104-1112. [PMID: 38885202 DOI: 10.1021/acs.chemrestox.3c00351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Chlortoluron (CTU) is an herbicide extensively used in agricultural settings for crop cultivation. Its presence in water has been identified as a pollutant detrimental to aquatic species. The objective of the present study was to explore the metabolic activation and hepatotoxicity of CTU. Through human and rat liver microsomal incubations supplemented with CTU, nicotinamide adenine dinucleotide phosphate (NADPH), and either glutathione or N-acetyl cysteine, a benzylic alcohol metabolite (M1) was discerned, alongside a phenol metabolite (M2), a glutathione conjugate (M3), and an N-acetyl cysteine conjugate (M4). In rats exposed to CTU, biliary M3 and urinary M4 were detected in their bile and urine, respectively. The generation of M1 was detected in the presence of NADPH. The observation of M3 and M4 suggests the formation of an iminoquinone methide intermediate arising from the oxidation of M1. CYP3A4 was found to be the principal enzyme catalyzing the metabolic activation of CTU. Furthermore, CTU exhibited cytotoxic properties in cultured rat primary hepatocytes in a concentration-dependent pattern. Concomitant treatment of hepatocytes with ketoconazole mitigated their susceptibility to the cytotoxic effects of CTU.
Collapse
Affiliation(s)
- Xinxin Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Mingyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Ya Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Zifang Ding
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Minglu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
- Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
2
|
Khatun S, Bhagat RP, Amin SA, Jha T, Gayen S. Density functional theory (DFT) studies in HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. Comput Biol Med 2024; 175:108468. [PMID: 38657469 DOI: 10.1016/j.compbiomed.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the electronic properties of atoms, molecules, and solids based on the density of electrons rather than wavefunctions. It provides insights into the structure, bonding, and behavior of different molecules, including those involved in the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACis). HDACs are a wide group of metalloenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the N-terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially cancer. Therefore, it has been recognized as a prospective target for accelerating the development of anticancer therapies. Researchers have studied HDACs and its inhibitors extensively using a combination of experimental methods and diverse in-silico approaches such as machine learning and quantitative structure-activity relationship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and more. In this context, DFT studies can make significant contribution by shedding light on the molecular properties, interactions, reaction pathways, transition states, reactivity and mechanisms involved in the development of HDACis. This review attempted to elucidate the scope in which DFT methodologies may be used to enhance our comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide experimental efforts toward developing more potent and selective HDAC inhibitors.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
3
|
Farghaly TA, Alfaifi GH, Gomha SM. Recent Literature on the Synthesis of Thiazole Derivatives and their Biological Activities. Mini Rev Med Chem 2024; 24:196-251. [PMID: 37496137 DOI: 10.2174/1389557523666230726142459] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 07/28/2023]
Abstract
The thiazole ring is naturally occurring and is primarily found in marine and microbial sources. It has been identified in various compounds such as peptides, vitamins (thiamine), alkaloids, epothilone, and chlorophyll. Thiazole-containing compounds are widely recognized for their antibacterial, antifungal, anti-inflammatory, antimalarial, antitubercular, antidiabetic, antioxidant, anticonvulsant, anticancer, and cardiovascular activities. The objective of this review is to present recent advancements in the discovery of biologically active thiazole derivatives, including their synthetic methods and biological effects. This review comprehensively discusses the synthesis methods of thiazole and its corresponding biological activities within a specific timeframe, from 2017 until the conclusion of 2022.
Collapse
Affiliation(s)
- Thoraya A Farghaly
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Ghaidaa H Alfaifi
- Department of Chemistry, Faculty of Applied Science, Umm Al-Qura University, Makkah Almukaramah, 21514, Saudi Arabia
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah, 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| |
Collapse
|
4
|
Kamel EM, Tawfeek AM, El-Bassuony AA, Lamsabhi AM. Mechanistic aspects of reactive metabolite formation in clomethiazole catalyzed biotransformation by cytochrome P450 enzymes. Org Biomol Chem 2023; 21:7158-7172. [PMID: 37609887 DOI: 10.1039/d3ob01014g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Clomethiazole (CLM), a sedative and anticonvulsant drug, is commonly employed for the treatment of alcohol withdrawal syndrome because it suppresses cytochrome P450 (P450) activity associated with the generation of free radicals and liver damage. The catalyzed biotransformation of thiazole-containing drugs by P450 is known to afford reactive metabolites. These metabolites can alter the biological functions of macromolecules and result in toxicity and adverse drug interactions. Multitargeted molecular modeling and quantum chemical DFT calculations were performed to explore the binding modes and molecular mechanisms underlying the mechanism-based inactivation (MBI) of P450 by CLM. The mechanistic details associated with reactive metabolite formation from further metabolic processes were extensively assessed. Seven possible routes were proposed for CLM-P450 biotransformation including CLM hydroxylation, sulfoxidation, N-oxidation, CN epoxidation (oxaziridine formation), and CC epoxidation. The results revealed a degree of preference for the C-N epoxidation pathway because of the low energy requirements of its rate-determining step (8.74 and 10.07 kcal mol-1 for LS and HS states, respectively). A kinetic competition for the CLM-methyl hydroxylation pathway was detected because the H-abstraction energy barrier was relatively comparable to the thermodynamically prevailing oxaziridine formation rate-determining step (12.58 and 14.52 kcal mol-1 for quartet and doublet states, respectively). Our studies assessed the mechanisms of covalent nucleophilic epoxide adduct formation through nucleophilic addition, hydrolysis of epoxidation products, and nonenzymatic degradation. CLM was shown to display P450-inhibitory activity by forming covalent adducts rather than further metabolization to reactive metabolites. The outcomes of molecular docking allowed assessing the binding profile of CLM with three human P450 isozymes, namely, CYP2E1, CYP3A4, and CYP2D6.
Collapse
Affiliation(s)
- Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ashraf A El-Bassuony
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt.
| | - Al Mokhtar Lamsabhi
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC Cantoblanco, Madrid 28049, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
5
|
Tabor W, Katsogiannou A, Karta D, Andrianopoulou E, Berlicki Ł, Vassiliou S, Grabowiecka A. Exploration of Thiourea-Based Scaffolds for the Construction of Bacterial Ureases Inhibitors. ACS OMEGA 2023; 8:28783-28796. [PMID: 37576686 PMCID: PMC10413841 DOI: 10.1021/acsomega.3c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
A series of 32 thiourea-based urease inhibitors were synthesized and evaluated against native bacterial enzyme and whole cells of Sporosarcina pasteurii and Proteus mirabilis strains. The proposed inhibitors represented structurally diverse thiosemicarbazones and thiocarbohydrazones, benzyl-substituted thiazolyl thioureas, 1H-pyrazole-1-carbothioamides, and dihydropirimidine-2(1H)-thiones. Kinetic characteristics with purified S. pasteurii enzyme determined low micromolar inhibitors within each structural group. (E)-2-(1-Phenylethylidene)hydrazine-1-carbothioamide 19 (Ki = 0.39 ± 0.01 μM), (E)-2-(4-methylbenzylidene)hydrazine-1-carbothioamide 16 (Ki = 0.99 ± 0.04 μM), and N'-((1E,2E)-1,3-diphenylallylidene)hydrazinecarbothiohydrazide 29 (Ki = 2.23 ± 0.19 μM) were used in modeling studies that revealed sulfur ion coordination of the active site nickel ion and hydrogen bonds between the amide group and the side chain of Asp363 and Ala366 carbonyl moiety. Whole-cell studies proved the activity of compounds in Gram-positive and Gram-negative microorganisms. Ureolysis control observed in P. mirabilis PCM 543 (e.g., IC50 = 304 ± 14 μM for 1-benzyl-3-(4-(4-hydroxyphenyl)thiazol-2-yl)thiourea 52) is a valuable achievement, as urease is recognized as a major virulence factor of this urinary tract pathogen.
Collapse
Affiliation(s)
- Wojciech Tabor
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Aikaterini Katsogiannou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Danai Karta
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Evgenia Andrianopoulou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
6
|
Gan J, Bilal M, Li X, Hussain Shah SZ, Mohamed BA, Hadibarata T, Cheng H. Peroxidases-based enticing biotechnological platforms for biodegradation and biotransformation of emerging contaminants. CHEMOSPHERE 2022; 307:136035. [PMID: 35973503 DOI: 10.1016/j.chemosphere.2022.136035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/27/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Rampant industrial boom, urbanization, and exponential population growth resulted in widespread environmental pollution, with water being one of the leading affected resources. All kinds of pollutants, including phenols, industrial dyes, antibiotics, pharmaceutically active residues, and persistent/volatile organic compounds, have a paramount effect, either directly or indirectly, on human health and aquatic entities. Strategies for affordable and efficient decontamination of these emerging pollutants have become the prime focus of academic researchers, industry, and government to constitute a sustainable human society. Classical treatment techniques for environmental contaminants are associated with several limitations, such as inefficiency, complex pretreatments, overall high process cost, high sludge generation, and highly toxic side-products formation. Enzymatic remediation is considered a green and ecologically friendlier method that holds considerable potential to mitigate any kinds of contaminating agents. Exploiting the potential of various peroxidases for pollution abatement is an emerging research area and has considerable advantages, such as efficiency and ease of handling, over other methods. This work is designed to provide recent progress in deploying peroxidases as green and versatile biocatalytic tools for the degradation and transformation of a spectrum of potentially hazardous environmental pollutants to broaden their scope for biotechnological and environmental purposes. More studies are required to explicate the degradation mechanisms, assess the toxicology levels of bio-transformed metabolites, and standardize the treatment strategies for economic viability.
Collapse
Affiliation(s)
- JianSong Gan
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China; School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - XiaoBing Li
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China.
| | | | - Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, El-Gamma Street, Giza, Egypt
| | - Tony Hadibarata
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, Miri, 98009, Malaysia
| | - Hairong Cheng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Abdizadeh R, Hadizadeh F, Abdizadeh T. Evaluation of apigenin-based biflavonoid derivatives as potential therapeutic agents against viral protease (3CLpro) of SARS-CoV-2 via molecular docking, molecular dynamics and quantum mechanics studies. J Biomol Struct Dyn 2022:1-31. [PMID: 35848354 DOI: 10.1080/07391102.2022.2098821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative agent of the pandemic COVID-19 disease that affects human respiratory function. Despite the scientific progression made in the development of the vaccine, there is an urgent need for the discovery of antiviral drugs for better performance at different stages of SARS-CoV-2 reproduction. The main protease (Mpro or 3CLpro) plays a pivotal role in the life cycle of the virus, making it an attractive target for the development of antiviral agents effective against the new strains of coronaviruses (CoVs). In this study, a series of apigenin-based natural biflavonoid derivatives as potential inhibitors of coronaviruses 3CLpro was investigated by in silico approaches. For this purpose, the molecular docking was performed to analyze the interaction of the natural biflavonoids with SARS-Cov-2 main protease and for further investigation, docking to the 3CLpro of SARS-CoV and MERS-CoV. Based on docking scores and comparison with the reference inhibitors (ritonavir and lopinavir), more than half of the biflavonoids had strong interactions with the residues of the binding pocket of the coronaviruses 3CLpro and exhibited better binding affinities toward the main protease than ritonavir and lopinavir. The top biflavonoids were further explored through molecular dynamics simulation, binding free energy calculation and residual energy contributions estimated by the MM-PBSA. Also, drug likeness property investigation by Swiss ADME tools and density functional theory (DFT) calculations were performed. The results confirmed that the 3CLpro-amentoflavone, 3CLpro-bilobetin, 3CLpro-ginkgetin, and 3CLpro-sotetsuflavone complexes possess a large amount of dynamic properties such as high stability, significant binding energy and fewer conformation fluctuations. Also, the pharmacokinetics and drug-likeness studies and HOMO-LUMO and DFT descriptor values indicated a promising result of the selected natural biflavonoids. Overall findings indicate that the apigenin-based biflavonoids may inhibit COVID-19 by significant interactions in the binding pocket and those results can pave the way in drug discovery although the effectiveness of these bioactive compounds should be further validated by in-vitro and in-vivo investigations. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Rahman Abdizadeh
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
8
|
Eno EA, Louis H, Unimuke TO, Egemonye TC, Adalikwu SA, Agwupuye JA, Odey DO, Abu AS, Eko IJ, Ifeatu CE, Ntui TN. Synthesis, characterization, and theoretical investigation of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)asmino-4-(2,4-dichlorophenyl)thiazol-5-yl-diazenyl)phenyl as potential SARS-CoV-2 agent. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
The synthesis of 4-chloro-6(phenylamino)-1,3,5-triazin-2-yl)amino-4-(2,4 dichlorophenyl)thiazol-5-yl-diazenyl)phenyl is reported in this work with a detailed structural and molecular docking study on two SARS-COV-2 proteins: 3TNT and 6LU7. The studied compound has been synthesized by the condensation of cyanuric chloride with aniline and characterized with various spectroscopic techniques. The experimentally obtained spectroscopic data has been compared with theoretical calculated results achieved using high-level density functional theory (DFT) method. Stability, nature of bonding, and reactivity of the studied compound was evaluated at DFT/B3LYP/6-31 + (d) level of theory. Hyper-conjugative interaction persisting within the molecules which accounts for the bio-activity of the compound was evaluated from natural bond orbital (NBO) analysis. Adsorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties of the experimentally synthesized compound was studied to evaluate the pharmacological as well as in silico molecular docking against SARS-CoV-2 receptors. The molecular docking result revealed that the investigated compound exhibited binding affinity of −9.3 and −8.8 for protein 3TNT and 6LU7 respectively. In conclusion, protein 3TNT with the best binding affinity for the ligand is the most suitable for treatment of SARS-CoV-2.
Collapse
Affiliation(s)
- Ededet A. Eno
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Tomsmith O. Unimuke
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - ThankGod C. Egemonye
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Stephen A. Adalikwu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
| | - John A. Agwupuye
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences , University of Calabar , Calabar , Nigeria
| | - Diana O. Odey
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Biochemistry, Faculty of Physical Sciences , Cross River University of Technology , Calabar , Nigeria
| | - Abu Solomon Abu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Marine Biology, Faculty of Biology Sciences , University of Calabar , Calabar , Nigeria
| | - Ishegbe J. Eko
- Department of Polymer and Textile Engineering , Ahmadu Bello University Zaria , Kaduna , Nigeria
| | - Chukwudubem E. Ifeatu
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
| | - Tabe N. Ntui
- Computational and Bio-Simulation Research Group , University of Calabar, Calabar , Nigeria
- Department of Chemistry, Faculty of Physical Sciences , Cross River University of Technology , Calabar , Nigeria
| |
Collapse
|
9
|
Zhang M, Hu Y, Li W, Sun C, Guan C, Peng Y, Zheng J. In Vitro and In Vivo Metabolic Activation and Hepatotoxicity of Environmental Pollutant 2,6-Dimethylphenol. Chem Res Toxicol 2022; 35:1036-1044. [PMID: 35583464 DOI: 10.1021/acs.chemrestox.2c00048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
2,6-Dimethylphenol (2,6-DMP) is an environmental pollutant found in industrial wastewater. Exposure to 2,6-DMP is of increasing concern as it endangered reportedly some aquatic animals. In this study, we investigated the metabolic activation and hepatotoxicity of 2,6-DMP. 2,6-DMP was metabolized to an o-quinone methide intermediate in vitro and in vivo. The electrophilic metabolite was reactive to the sulfhydryl groups of glutathione, N-acetyl cysteine, and cysteine. NADPH was required for the formation of the reactive metabolite. The quinone methide intermediate reacted with cysteine residues to form hepatic protein adduction. A single dose of 2,6-DMP induced marked elevation of serum ALT and AST in mice. Both the protein adduction and hepatotoxicity of 2,6-DMP showed dose dependency.
Collapse
Affiliation(s)
- Mingyu Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Yaodong Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Wei Li
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chen Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Chunjing Guan
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P. R. China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China.,Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550025, P. R. China
| |
Collapse
|
10
|
Improving Antimicrobial Activity and Physico-Chemical Properties by Isosteric Replacement of 2-Aminothiazole with 2-Aminooxazole. Pharmaceuticals (Basel) 2022; 15:ph15050580. [PMID: 35631406 PMCID: PMC9143880 DOI: 10.3390/ph15050580] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial drug resistance is currently one of the most critical health issues. Pathogens resistant to last-resort antibiotics are increasing, and very few effective antibacterial agents have been introduced in recent years. The promising drug candidates are often discontinued in the primary stages of the drug discovery pipeline due to their unspecific reactivity (PAINS), toxicity, insufficient stability, or low water solubility. In this work, we investigated a series of substituted N-oxazolyl- and N-thiazolylcarboxamides of various pyridinecarboxylic acids. Final compounds were tested against several microbial species. In general, oxazole-containing compounds showed high activity against mycobacteria, especially Mycobacterium tuberculosis (best MICH37Ra = 3.13 µg/mL), including the multidrug-resistant strains. Promising activities against various bacterial and fungal strains were also observed. None of the compounds was significantly cytotoxic against the HepG2 cell line. Experimental measurement of lipophilicity parameter log k’w and water solubility (log S) confirmed significantly (typically two orders in logarithmic scale) increased hydrophilicity/water solubility of oxazole derivatives in comparison with their thiazole isosteres. Mycobacterial β-ketoacyl-acyl carrier protein synthase III (FabH) was suggested as a probable target by molecular docking and molecular dynamics simulations.
Collapse
|
11
|
Liu S, Hirao H. Energy Decomposition Analysis of the Nature of Coordination Bonding at the Heme Iron Center in Cytochrome P450 Inhibition. Chem Asian J 2022; 17:e202200360. [PMID: 35514038 DOI: 10.1002/asia.202200360] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/26/2022] [Indexed: 11/11/2022]
Abstract
Drug compounds or their metabolic intermediates (MIs) sometimes inhibit the function of cytochrome P450 enzymes (P450s) by forming a coordination bond with the Fe(III) heme or Fe(II) heme of P450s. Such inhibition is one of the major causes of drug-drug interactions (DDIs), a subject of longstanding academic and practical interest. However, such coordination bonding is not fully understood at the quantum mechanical level, thus hampering rational improvement of the accuracy of DDI-related predictions. In this work, we employed density functional theory (DFT) and the generalized Kohn-Sham energy decomposition analysis (GKS-EDA) scheme to investigate the nature of the coordination bonding formed in the reversible and quasi-irreversible inhibition of P450s. The GKS-EDA results highlighted a previously unrecognized role of the electron correlation effect in P450 inhibition. The correlation effect tends to be larger in Fe(II) complexes of MI-type inhibitors and is particularly prominent for the nitrosoalkane ligand. An additional natural bond orbital (NBO) analysis provided insight into the relative significance of the σ donation and π backdonation effects in various heme-inhibitor complexes.
Collapse
Affiliation(s)
- Shuyang Liu
- The Chinese University of Hong Kong - Shenzhen, School of Life and Health Sciences, CHINA
| | - Hajime Hirao
- The Chinese University of Hong Kong - Shenzhen, School of Life and Health Sciences, …, Shenzhen, CHINA
| |
Collapse
|
12
|
Qin D, Dong L, Yang L. Theoretical study of thiazole activation in sudoxicam and meloxicam: Reaction center, biotransformation, and methyl effects. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Dan Qin
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong Sichuan China
| | - Lu Dong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong Sichuan China
| | - Lijun Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province China West Normal University Nanchong Sichuan China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School Sichuan University Chengdu Sichuan China
| |
Collapse
|
13
|
Dorofeev IА, Zhilitskaya LV, Yarosh NО. Synthesis of Salts and Ionic Liquids on the Basis of 2-Aminothiazolium Cations. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221120136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|