1
|
Zhang X, Kong F, Wang T, Huang X, Li W, Zhang M, Wen T, Liu J, Zhang Y, Meng J, Xu H. Iron oxide nanoparticles cause surface coating- and core chemistry-dependent endothelial cell ferroptosis. Nanotoxicology 2022; 16:829-843. [PMID: 36660964 DOI: 10.1080/17435390.2022.2154176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Iron oxide nanoparticles (IONPs) are mostly intended to be administrated intravenously, understanding the interaction of IONPs with vascular endothelial cells is extremely crucial for developing safe application regimes of IONPs. In this work, interactions of three kinds of IONPs to endothelial cells were investigated both in human umbilical vein endothelial cells (HUVECs) and in healthy mice. Both meso-2,3-dimercaptosuccinic acid (DMSA) coated Fe3O4 NPs (DMSA-Fe3O4 NPs) and DMSA-Fe2O3 NPs induced cell growth inhibition, while polyglucose sorbitol carboxymethyether coated Fe2O3 NPs(PSC-Fe2O3 NPs) did not. The PSC coating inhibited the cellular uptake of the IONPs. Both DMSA-Fe3O4 and DMSA-Fe2O3 NPs induced ferroptosis of HUVEC through upregulating phospholipid peroxides, which could be inhibited by typical ferroptosis inhibitors ferrostatin-1, Trolox and deferoxamine. Moreover, transforming growth factor beta 1 (TGFβ1) was upregulated by DMSA-Fe3O4 NPs at protein and gene level. The inhibitor of TGFβ1 receptor LY210 could reduce the effect. When being intravenously injected in mice, DMSA-Fe3O4 NPs were observed locating in the liver, increased the levels of lipid peroxidation (4-hydroxynonenal), acyl-CoA synthetase long-chain family member 4(ACSL4) and TGFβ1, indicating ferroptosis occurrence in vivo. The ferroptosis of vascular endothelial cells in exposure with IONPs depended on the surface coating and core chemistry of the NPs. Both DMSA-Fe3O4 NPs and DMSA-Fe2O3 NPs could induce the ferroptosis of endothelial cells, while PSC-Fe2O3 NPs did not induce ferroptosis and apoptosis possibly due to the very low cellular uptake. DMSA-Fe3O4 NPs and TGFβ1 formed feedforward loop to induce ferroptosis.
Collapse
Affiliation(s)
- Xue Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fei Kong
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Tian Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Huang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Li
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meichen Zhang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Wen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Jie Meng
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haiyan Xu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
2
|
Chen Y, Zhang Q, Qin X, Li J, Zhao Y, Xia Y. Superparamagnetic Iron Oxide Nanoparticles Protect Human Gingival Fibroblasts from Porphyromonas gingivalis Invasion and Inflammatory Stimulation. Int J Nanomedicine 2022; 17:45-60. [PMID: 35027826 PMCID: PMC8749050 DOI: 10.2147/ijn.s333496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/23/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Modulating the inflammatory response of human gingival fibroblasts (hGFs) is important for the control of periodontal inflammation because it is a key event in the pathogenesis of periodontitis. Here, we aimed to determine whether polyglucose sorbitol carboxymethyl ether (PSC)-coated superparamagnetic iron oxide nanoparticles (SPIONs) protect hGFs against invasion and inflammatory stimulation by Porphyromonas gingivalis (P. gingivalis). Methods First, we determined the cytotoxicity and antimicrobial activity of PSC-SPIONs. Then, their effects on invasion of hGFs by P. gingivalis were evaluated by counting invading P. gingivalis, fluorescence staining, and transmission electron microscopy. The effect of PSC-SPIONs on inflammation in hGFs induced by P. gingivalis lipopolysaccharide was evaluated by measurement of reactive oxygen species (ROS), and enzyme-linked immunosorbent assays, quantitative reverse transcription-polymerase chain reaction, and Western blotting of key indicator molecules. The effects of dimercaptosuccinic acid (DMSA)-coated SPIONs and the free form of PSC alone were also tested and compared with those of PSC-SPIONs. Results PSC-SPIONs (25 μg/mL) are cytocompatible with hGFs and exhibit no antimicrobial effects on P. gingivalis. However, they inhibit invasion of hGFs by P. gingivalis at 15 μg/mL. They also decrease ROS production and inflammatory cytokine secretion by hGFs at 5, 15, and 25 μg/mL, by downregulating activation of the nuclear factor-kappa B signaling pathway. Furthermore, PSC alone does not inhibit inflammation, while DMSA-SPIONs do. This indicates that the nanosize effects of PSC-SPIONs, rather than their coating material, play the dominant role in their anti-inflammatory activity. Conclusion PSC-SPIONs protect hGFs against P. gingivalis invasion and inflammatory stimulation. Thus, they have potential for clinical application in control of periodontal inflammation.
Collapse
Affiliation(s)
- Yulian Chen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,The Affiliated Stomatological Hospital of Soochow University, Suzhou Stomatological Hospital, Suzhou, Jiangsu, People's Republic of China
| | - Qian Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xuan Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jin Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yantao Zhao
- Institute of Orthopedics, Fourth Medical Center of the General Hospital of CPLA, Beijing, People's Republic of China.,Beijing Engineering Research Center of Orthopedics Implants, Beijing, People's Republic of China
| | - Yang Xia
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Shen Y, Zhang W, Li G, Ning P, Li Z, Chen H, Wei X, Pan X, Qin Y, He B, Yu Z, Cheng Y. Adaptive Control of Nanomotor Swarms for Magnetic-Field-Programmed Cancer Cell Destruction. ACS NANO 2021; 15:20020-20031. [PMID: 34807565 DOI: 10.1021/acsnano.1c07615] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Magnetic nanomotors (MNMs), powered by a magnetic field, are ideal platforms to achieve versatile biomedical applications in a collective and spatiotemporal fashion. Although the programmable swarm of MNMs that mimics the highly ordered behaviors of living creatures has been extensively studied at the microscale, it is of vital importance to manipulate MNM swarms at the nanoscale for on-demand tasks at the cellular level. In this work, a Cy5-tagged caspase-3-specific peptide-modified MNM is designed, and the adaptive control behaviors of MNM swarms are revealed in lysosomes to induce the cancer cell apoptosis under a rotating magnetic field (RMF). A magneto-programmed vortex is predicted to occur with swarms under RMF by the finite element method model and verified in vitro. According to the dynamic model and numerical simulation, the critical rotating frequency under which MNMs are out of step is strongly correlated to their assembling and swarming properties. The adaptivity of swarms maximizes the synchronous rotation to achieve an optimal energy conversion rate. The frequency-adapted controllability of MNM swarms for cancer cell apoptosis is observed in real time in vitro and in vivo. This work provides theoretical and experimental insights to adaptively control MNM swarms for cancer treatment.
Collapse
Affiliation(s)
- Yajing Shen
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Wei Zhang
- College of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Gang Li
- College of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Peng Ning
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Zhenguang Li
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Haotian Chen
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Xueyan Wei
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Xin Pan
- Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Yao Qin
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Bin He
- College of Electronics and Information Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zuoren Yu
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| | - Yu Cheng
- Shanghai East Hospital, School of Medicine, Tongji University, 1800 Yuntai Road, Shanghai 200120, China
| |
Collapse
|
4
|
Abstract
Although some effective therapies have been available for cancer, it still poses a great threat to human health and life due to its drug resistance and low response in patients. Here, we develop a ferroptosis-based therapy by combining iron nanoparticles and cancer-specific gene interference. The expression of two iron metabolic genes (FPN and LCN2) was selectively knocked down in cancer cells by Cas13a or microRNA controlled by a NF-κB-specific promoter. Cells were simultaneously treated by iron nanoparticles. As a result, a significant ferroptosis was induced in a wide variety of cancer cells. However, the same treatment had little effect on normal cells. By transferring genes with adeno-associated virus and iron nanoparticles, the significant tumor growth inhibition and durable cure were obtained in mice with the therapy. In this work, we thus show a cancer therapy based on gene interference-enhanced ferroptosis.
Collapse
Affiliation(s)
- Jinliang Gao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Tao Luo
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, China.
| |
Collapse
|
5
|
Çitoğlu S, Coşkun ÖD, Tung LD, Onur MA, Thanh NTK. DMSA-coated cubic iron oxide nanoparticles as potential therapeutic agents. Nanomedicine (Lond) 2021; 16:925-941. [PMID: 34015971 DOI: 10.2217/nnm-2020-0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Superparamagnetic cubic iron oxide nanoparticles (IONPs) were synthesized and functionalized with meso-2,3-dimercaptosuccinic acid (DMSA) as a potential agent for cancer treatment. Methods: Monodisperse cubic IONPs with a high value of saturation magnetization were synthesized by thermal decomposition method and functionalized with DMSA via ligand exchange reaction, and their cytotoxic effects on HeLa cells were investigated. Results: DMSA functionalized cubic IONPs with an edge length of 24.5 ± 1.9 nm had a specific absorption rate value of 197.4 W/gFe (15.95 kA/m and 488 kHz) and showed slight cytotoxicity on HeLa cells when incubated with 3.3 × 1010, 6.6 × 1010 and 9.9 × 1010 NP/mL for 24, 48 and 72 h. Conclusion: To the best of our knowledge, this is the first study to investigate both the cytotoxic effects of DMSA-coated cubic IONPs on HeLa cells and hyperthermia performance of these nanoparticles.
Collapse
Affiliation(s)
- Senem Çitoğlu
- Department of Nanotechnology & Nanomedicine, Institute of Science, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Özlem Duyar Coşkun
- Thin Film Preparation and Characterization Laboratory, Department of Physics Engineering, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Le Duc Tung
- UCL Healthcare Biomagnetic & Nanomaterials Laboratories, The Royal Institution of Great Britain, 21 Albemarle Street, London, W1S 4BS, UK.,Biophysics Group, Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mehmet Ali Onur
- Department of Biology, Faculty of Science, Hacettepe University, Beytepe, Ankara, 06800, Turkey
| | - Nguyen Thi Kim Thanh
- UCL Healthcare Biomagnetic & Nanomaterials Laboratories, The Royal Institution of Great Britain, 21 Albemarle Street, London, W1S 4BS, UK.,Biophysics Group, Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
6
|
Sen R, Ganguly S, Ganguly S, Debnath MC, Chakraborty S, Mukherjee B, Chattopadhyay D. Apigenin-Loaded PLGA-DMSA Nanoparticles: A Novel Strategy to Treat Melanoma Lung Metastasis. Mol Pharm 2021; 18:1920-1938. [PMID: 33780261 DOI: 10.1021/acs.molpharmaceut.0c00977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The flavone apigenin (APG), alone as well as in combination with other chemotherapeutic agents, is known to exhibit potential anticancer effects in various tumors and inhibit growth and metastasis of melanoma. However, the potential of apigenin nanoparticles (APG-NPs) to prevent lung colonization of malignant melanoma has not been well investigated. APG-loaded PLGA-NPs were surface-functionalized with meso-2,3-dimercaptosuccinic acid (DMSA) for the treatment of melanoma lung metastasis. DMSA-conjugated APG-loaded NPs (DMSA-APG-NPs) administered by an oral route exhibited sustained APG release and showed considerable enhancement of plasma half-life, Cmax value, and bioavailability compared to APG-NPs both in plasma and the lungs. DMSA-conjugated APG-NPs showed comparably higher cellular internalization in B16F10 and A549 cell lines compared to that of plain NPs. Increased cytotoxicity was observed for DMSA-APG-NPs compared to APG-NPs in A549 cells. This difference between the two formulations was lower in B16F10 cells. Significant depolarization of mitochondrial transmembrane potential and an enhanced level of caspase activity were observed in B16F10 cells treated with DMSA-APG-NPs compared to APG-NPs as well. Western blot analysis of various proteins was performed to understand the mechanism of apoptosis as well as prevention of melanoma cell migration and invasion. DMSA conjugation substantially increased accumulation of DMSA-APG-NPs given by an intravenous route in the lungs compared to APG-NPs at 6 and 8 h. This was also corroborated by scintigraphic imaging studies with radiolabeled formulations administered by an intravenous route. Conjugation also allowed comparatively higher penetration as evident from an in vitro three-dimensional tumor spheroid model study. Finally, the potential therapeutic efficacy of the formulation was established in experimental B16F10 lung metastases, which suggested an improved bioavailability with enhanced antitumor and antimetastasis efficacy of DMSA-conjugated APG-NPs following oral administration.
Collapse
Affiliation(s)
- Ramkrishna Sen
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India.,Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Soumya Ganguly
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shantanu Ganguly
- Regional Radiation Medicine Center, Thakurpukur Cancer Center and Welfare Home Campus, Kolkata 700063, India
| | - Mita Chatterjee Debnath
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subrata Chakraborty
- Department of Pathology, Mata Gujri Memorial Medical College, Kishanganj 855107, India
| | - Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University College of Science and Technology, University of Calcutta, Kolkata 700009, India
| |
Collapse
|
7
|
Willmann W, Dringen R. Monitoring of the Cytoskeleton-Dependent Intracellular Trafficking of Fluorescent Iron Oxide Nanoparticles by Nanoparticle Pulse-Chase Experiments in C6 Glioma Cells. Neurochem Res 2018; 43:2055-2071. [PMID: 30196349 DOI: 10.1007/s11064-018-2627-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Iron oxide nanoparticles (IONPs) are used for various biomedical and therapeutic approaches. To investigate the uptake and the intracellular trafficking of IONPs in neural cells we have performed nanoparticle pulse-chase experiments to visualize the internalization and the fate of fluorescent IONPs in C6 glioma cells and astrocyte cultures. Already a short exposure to IONPs for 10 min at 4 °C (nanoparticle pulse) allowed binding of substantial amounts of nanoparticles to the cells, while internalization of IONPs into the cell was prevented. The uptake of bound IONPs and the intracellular trafficking was started by increasing the temperature to 37 °C (chase period). While hardly any cellular fluorescence nor any iron staining was detectable directly after the nanoparticle pulse, dotted cellular fluorescence and iron patterns appeared already within a few minutes after start of the chase incubation and became intensified in the perinuclear region during further incubation for up to 90 min. Longer chase incubations resulted in separation of the fluorescent coat from the core of the internalized IONPs. Disruption of actin filaments in C6 cells strongly impaired the internalization of IONPs, whereas destabilization of microtubules traped IONP-containing vesicles to the plasma membrane. In conclusion, nanoparticle pulse-chase experiments allowed to synchronize the cellular uptake of fluorescent IONPs and to identify for C6 cells an actin-dependent early and a microtubule-dependent later process in the intracellular trafficking of fluorescent IONPs.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany
- Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, PO. Box 330440, 28334, Bremen, Germany.
- Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
8
|
Willmann W, Dringen R. How to Study the Uptake and Toxicity of Nanoparticles in Cultured Brain Cells: The Dos and Don't Forgets. Neurochem Res 2018; 44:1330-1345. [PMID: 30088236 DOI: 10.1007/s11064-018-2598-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/09/2018] [Accepted: 07/18/2018] [Indexed: 12/16/2022]
Abstract
Due to their exciting properties, engineered nanoparticles have obtained substantial attention over the last two decades. As many types of nanoparticles are already used for technical and biomedical applications, the chances that cells in the brain will encounter nanoparticles have strongly increased. To test for potential consequences of an exposure of brain cells to engineered nanoparticles, cell culture models for different types of neural cells are frequently used. In this review article we will discuss experimental strategies and important controls that should be used to investigate the physicochemical properties of nanoparticles for the cell incubation conditions applied as well as for studies on the biocompatibility and the cellular uptake of nanoparticles in neural cells. The main focus of this article will be the interaction of cultured neural cells with iron oxide nanoparticles, but similar considerations are important for studying the consequences of an exposure of other types of cultured cells with other types of nanoparticles. Our article aims to improve the understanding of the special technical challenges of working with nanoparticles on cultured neural cells, to identify potential artifacts and to prevent misinterpretation of data on the potential adverse or beneficial consequences of a treatment of cultured cells with nanoparticles.
Collapse
Affiliation(s)
- Wiebke Willmann
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany.,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany
| | - Ralf Dringen
- Center for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany. .,Center for Environmental Research and Sustainable Technology, Leobener Strasse, 28359, Bremen, Germany.
| |
Collapse
|
9
|
Wierzbinski KR, Szymanski T, Rozwadowska N, Rybka JD, Zimna A, Zalewski T, Nowicka-Bauer K, Malcher A, Nowaczyk M, Krupinski M, Fiedorowicz M, Bogorodzki P, Grieb P, Giersig M, Kurpisz MK. Potential use of superparamagnetic iron oxide nanoparticles for in vitro and in vivo bioimaging of human myoblasts. Sci Rep 2018; 8:3682. [PMID: 29487326 PMCID: PMC5829264 DOI: 10.1038/s41598-018-22018-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Myocardial infarction (MI) is one of the most frequent causes of death in industrialized countries. Stem cells therapy seems to be very promising for regenerative medicine. Skeletal myoblasts transplantation into postinfarction scar has been shown to be effective in the failing heart but shows limitations such, e.g. cell retention and survival. We synthesized and investigated superparamagnetic iron oxide nanoparticles (SPIONs) as an agent for direct cell labeling, which can be used for stem cells imaging. High quality, monodisperse and biocompatible DMSA-coated SPIONs were obtained with thermal decomposition and subsequent ligand exchange reaction. SPIONs' presence within myoblasts was confirmed by Prussian Blue staining and inductively coupled plasma mass spectrometry (ICP-MS). SPIONs' influence on tested cells was studied by their proliferation, ageing, differentiation potential and ROS production. Cytotoxicity of obtained nanoparticles and myoblast associated apoptosis were also tested, as well as iron-related and coating-related genes expression. We examined SPIONs' impact on overexpression of two pro-angiogenic factors introduced via myoblast electroporation method. Proposed SPION-labeling was sufficient to visualize firefly luciferase-modified and SPION-labeled cells with magnetic resonance imaging (MRI) combined with bioluminescence imaging (BLI) in vivo. The obtained results demonstrated a limited SPIONs' influence on treated skeletal myoblasts, not interfering with basic cell functions.
Collapse
Affiliation(s)
| | - Tomasz Szymanski
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | | | - Jakub D Rybka
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland
| | - Agnieszka Zimna
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Tomasz Zalewski
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | | | - Agnieszka Malcher
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Michal Krupinski
- The Henryk Niewodniczanski Institute, Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland
| | - Michal Fiedorowicz
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Bogorodzki
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Pawel Grieb
- Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Giersig
- Faculty of Chemistry, Adam Mickiewicz University, Poznan, Poland.,Wielkopolska Centre of Advanced Technologies, Adam Mickiewicz University, Poznan, Poland.,Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Maciej K Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.
| |
Collapse
|
10
|
Joris F, Valdepérez D, Pelaz B, Wang T, Doak SH, Manshian BB, Soenen SJ, Parak WJ, De Smedt SC, Raemdonck K. Choose your cell model wisely: The in vitro nanoneurotoxicity of differentially coated iron oxide nanoparticles for neural cell labeling. Acta Biomater 2017; 55:204-213. [PMID: 28373085 DOI: 10.1016/j.actbio.2017.03.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/27/2017] [Accepted: 03/30/2017] [Indexed: 02/06/2023]
Abstract
Currently, there is a large interest in the labeling of neural stem cells (NSCs) with iron oxide nanoparticles (IONPs) to allow MRI-guided detection after transplantation in regenerative medicine. For such biomedical applications, excluding nanotoxicity is key. Nanosafety is primarily evaluated in vitro where an immortalized or cancer cell line of murine origin is often applied, which is not necessarily an ideal cell model. Previous work revealed clear neurotoxic effects of PMA-coated IONPs in distinct cell types that could potentially be applied for nanosafety studies regarding neural cell labeling. Here, we aimed to assess if DMSA-coated IONPs could be regarded as a safer alternative for this purpose and how the cell model impacted our nanosafety optimization study. Hereto, we evaluated cytotoxicity, ROS production, calcium levels, mitochondrial homeostasis and cell morphology in six related neural cell types, namely neural stem cells, an immortalized cell line and a cancer cell line from human and murine origin. The cell lines mostly showed similar responses to both IONPs, which were frequently more pronounced for the PMA-IONPs. Of note, ROS and calcium levels showed opposite trends in the human and murine NSCs, indicating the importance of the species. Indeed, the human cell models were overall more sensitive than their murine counterpart. Despite the clear cell type-specific nanotoxicity profiles, our multiparametric approach revealed that the DMSA-IONPs outperformed the PMA-IONPs in terms of biocompatibility in each cell type. However, major cell type-dependent variations in the observed effects additionally warrant the use of relevant human cell models. STATEMENT OF SIGNIFICANCE Inorganic nanoparticle (NP) optimization is chiefly performed in vitro. For the optimization of iron oxide (IO)NPs for neural stem cell labeling in the context of regenerative medicine human or rodent neural stem cells, immortalized or cancer cell lines are applied. However, the use of certain cell models can be questioned as they phenotypically differ from the target cell. The impact of the neural cell model on nanosafety remains relatively unexplored. Here we evaluated cell homeostasis upon exposure to PMA- and DMSA-coated IONPs. Of note, the DMSA-IONPs outperformed the PMA-IONPs in each cell type. However, distinct cell type-specific effects were witnessed, indicating that nanosafety should be evaluated in a human cell model that represents the target cell as closely as possible.
Collapse
Affiliation(s)
- Freya Joris
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Daniel Valdepérez
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Beatriz Pelaz
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Tianqiang Wang
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Shareen H Doak
- Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, Wales SA2 8PP, UK
| | - Bella B Manshian
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Stefaan J Soenen
- Biomedical MRI Unit/MoSAIC, Department of Medicine, KULeuven, Herestraat 49, B-3000 Leuven, Belgium
| | - Wolfgang J Parak
- Philipps University of Marburg, Department of Physics, Renthof 7, D-35037 Marburg, Germany
| | - Stefaan C De Smedt
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| | - Koen Raemdonck
- Lab of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| |
Collapse
|
11
|
Davis K, Cole B, Ghelardini M, Powell BA, Mefford OT. Quantitative Measurement of Ligand Exchange with Small-Molecule Ligands on Iron Oxide Nanoparticles via Radioanalytical Techniques. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13716-13727. [PMID: 27966977 DOI: 10.1021/acs.langmuir.6b03644] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Ligand exchange on the surface of hydrophobic iron oxide nanoparticles is a common method for controlling surface chemistry for a desired application. Furthermore, ligand exchange with small-molecule ligands may be necessary to obtain particles with a specific size or functionality. Understanding to what extent ligand exchange occurs and what factors affect it is important for the optimization of this critical procedure. However, quantifying the amount of exchange may be difficult because of the limitations of commonly used characterization techniques. Therefore, we utilized a radiotracer technique to track the exchange of a radiolabeled 14C-oleic acid ligand with hydrophilic small-molecule ligands on the surface of iron oxide nanoparticles. Iron oxide nanoparticles functionalized with 14C-oleic acid were modified with small-molecule ligands with terminal functional groups including catechols, phosphonates, sulfonates, thiols, carboxylic acids, and silanes. These moieties were selected because they represent the most commonly used ligands for this procedure. The effectiveness of these molecules was compared using both procedures widely found in the literature and using a standardized procedure. After ligand exchange, the nanoparticles were analyzed using liquid scintillation counting (LSC) and inductively coupled plasma-mass spectrometry. The labeled and unlabeled particles were further characterized by transmission electron microscopy (TEM) and dynamic light scattering (DLS) to determine the particle size, hydrodynamic diameter, and zeta potential. The unlabeled particles were characterized via attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) and vibrating sample magnetometry (VSM) to confirm the presence of the small molecules on the particles and verify the magnetic properties, respectively. Radioanalytical determination of 14C-oleic acid was used to calculate the total amount of oleic acid remaining on the surface of the particles after ligand exchange. The results revealed that the ligand-exchange reactions performed using widely cited procedures did not go to completion. Residual oleic acid remained on the particles after these reactions and the reactions using a standardized protocol. A comparison of the ligand-exchange procedures indicated that the binding moiety, multidenticity, reaction time, temperature, and presence of a catalyst impacted the extent of exchange. Quantification of the oleic acid remaining after ligand exchange revealed a binding hierarchy in which catechol-derived anchor groups displace the most oleic acid on the surface of the nanoparticles and the thiol group displaces the least amount of oleic acid. Thorough characterization of ligand exchange is required to develop nanoparticles suitable for their intended application.
Collapse
Affiliation(s)
| | - Brian Cole
- Department of Chemistry, Henderson State University , Arkadelphia, Arkansas 71999, United States
| | | | | | | |
Collapse
|