1
|
Ghazi S, Song MA, El-Hellani A. A scoping review of the toxicity and health impact of IQOS. Tob Induc Dis 2024; 22:TID-22-97. [PMID: 38832049 PMCID: PMC11145630 DOI: 10.18332/tid/188867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/14/2024] [Accepted: 05/18/2024] [Indexed: 06/05/2024] Open
Abstract
This work aims to summarize the current evidence on the toxicity and health impact of IQOS, taking into consideration the data source. On 1 June 2022, we searched PubMed, Web of Science, and Scopus databases using the terms: 'heated tobacco product', 'heat-not-burn', 'IQOS', and 'tobacco heating system'. The search was time-restricted to update a previous search conducted on 8 November 2021, on IQOS data from 2010-2021. The data source [independent, Philip Morris International (PMI), or other manufacturers] was retrieved from relevant sections of each publication. Publications were categorized into two general categories: 1) Toxicity assessments included in vitro, in vivo, and systems toxicology studies; and 2) The impact on human health included clinical studies assessing biomarkers of exposure and biomarkers of health effects. Generally, independent studies used classical in vitro and in vivo approaches, but PMI studies combined these with modeling of gene expression (i.e. systems toxicology). Toxicity assessment and health impact studies covered pulmonary, cardiovascular, and other systemic toxicity. PMI studies overall showed reduced toxicity and health risks of IQOS compared to cigarettes, but independent data did not always conform with this conclusion. This review highlights some discrepancies in IQOS risk assessment regarding methods, depth, and breadth of data collection, as well as conclusions based on the data source.
Collapse
Affiliation(s)
- Sarah Ghazi
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus OH, United States
| | - Min-Ae Song
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus OH, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus OH, United States
| | - Ahmad El-Hellani
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus OH, United States
- Center for Tobacco Research, The Ohio State University Comprehensive Cancer Center, Columbus OH, United States
| |
Collapse
|
2
|
Crowdsourced benchmarking of taxonomic metagenome profilers: lessons learned from the sbv IMPROVER Microbiomics challenge. BMC Genomics 2022; 23:624. [PMID: 36042406 PMCID: PMC9429340 DOI: 10.1186/s12864-022-08803-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/25/2022] [Indexed: 11/10/2022] Open
Abstract
Background Selection of optimal computational strategies for analyzing metagenomics data is a decisive step in determining the microbial composition of a sample, and this procedure is complex because of the numerous tools currently available. The aim of this research was to summarize the results of crowdsourced sbv IMPROVER Microbiomics Challenge designed to evaluate the performance of off-the-shelf metagenomics software as well as to investigate the robustness of these results by the extended post-challenge analysis. In total 21 off-the-shelf taxonomic metagenome profiling pipelines were benchmarked for their capacity to identify the microbiome composition at various taxon levels across 104 shotgun metagenomics datasets of bacterial genomes (representative of various microbiome samples) from public databases. Performance was determined by comparing predicted taxonomy profiles with the gold standard. Results Most taxonomic profilers performed homogeneously well at the phylum level but generated intermediate and heterogeneous scores at the genus and species levels, respectively. kmer-based pipelines using Kraken with and without Bracken or using CLARK-S performed best overall, but they exhibited lower precision than the two marker-gene-based methods MetaPhlAn and mOTU. Filtering out the 1% least abundance species—which were not reliably predicted—helped increase the performance of most profilers by increasing precision but at the cost of recall. However, the use of adaptive filtering thresholds determined from the sample’s Shannon index increased the performance of most kmer-based profilers while mitigating the tradeoff between precision and recall. Conclusions kmer-based metagenomic pipelines using Kraken/Bracken or CLARK-S performed most robustly across a large variety of microbiome datasets. Removing non-reliably predicted low-abundance species by using diversity-dependent adaptive filtering thresholds further enhanced the performance of these tools. This work demonstrates the applicability of computational pipelines for accurately determining taxonomic profiles in clinical and environmental contexts and exemplifies the power of crowdsourcing for unbiased evaluation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08803-2.
Collapse
|
3
|
Tetko IV, Tropsha A. Joint Virtual Special Issue on Computational Toxicology. J Chem Inf Model 2020; 60:1069-1071. [PMID: 32101004 DOI: 10.1021/acs.jcim.0c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Igor V Tetko
- Institute of Structural Biology, Helmholtz Zentrum Munchen Deutsches Forschungszentrum fur Umwelt und Gesundheit, Munich 27599, Germany
| | - Alexander Tropsha
- UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Picache J, May JC, McLean JA. Crowd-Sourced Chemistry: Considerations for Building a Standardized Database to Improve Omic Analyses. ACS OMEGA 2020; 5:980-985. [PMID: 31984253 PMCID: PMC6977078 DOI: 10.1021/acsomega.9b03708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/24/2019] [Indexed: 05/09/2023]
Abstract
Mass spectrometry (MS) is used in multiple omics disciplines to generate large collections of data. This data enables advancements in biomedical research by providing global profiles of a given system. One of the main barriers to generating these profiles is the inability to accurately annotate omics data, especially small molecules. To complement pre-existing large databases that are not quite complete, research groups devote efforts to generating personal libraries to annotate their data. Scientific progress is impeded during the generation of these personal libraries because the data contained within them is often redundant and/or incompatible with other databases. To overcome these redundancies and incompatibilities, we propose that communal, crowd-sourced databases be curated in a standardized fashion. A small number of groups have shown this model is feasible and successful. While the needs of a specific field will dictate the functionality of a communal database, we discuss some features to consider during database development. Special emphasis is made on standardization of terminology, documentation, format, reference materials, and quality assurance practices. These standardization procedures enable a field to have higher confidence in the quality of the data within a given database. We also discuss the three conceptual pillars of database design as well as how crowd-sourcing is practiced. Generating open-source databases requires front-end effort, but the result is a well curated, high quality data set that all can use. Having a resource such as this fosters collaboration and scientific advancement.
Collapse
Affiliation(s)
- Jaqueline
A. Picache
- Department of Chemistry,
Center for Innovative Technology, Vanderbilt Institute of Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jody C. May
- Department of Chemistry,
Center for Innovative Technology, Vanderbilt Institute of Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Department of Chemistry,
Center for Innovative Technology, Vanderbilt Institute of Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education, Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
5
|
Martin F, Talikka M, Ivanov NV, Haziza C, Hoeng J, Peitsch MC. A Meta-Analysis of the Performance of a Blood-Based Exposure Response Gene Signature Across Clinical Studies on the Tobacco Heating System 2.2 (THS 2.2). Front Pharmacol 2019; 10:198. [PMID: 30971916 PMCID: PMC6444181 DOI: 10.3389/fphar.2019.00198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/18/2019] [Indexed: 11/28/2022] Open
Abstract
As part of emerging tobacco harm reduction strategies, modified risk tobacco products (MRTP) are being developed to offer alternatives that have the potential to reduce the individual risk and population harm compared with smoking cigarettes for adult smokers who want to continue using tobacco and nicotine products. MRTPs are defined as any tobacco products that are distributed for use to reduce harm or the risk of tobacco-related disease associated with commercially marketed tobacco products. One such candidate MRTP is the Tobacco Heating System (THS) 2.2, which does not burn tobacco but instead heats it, thus producing significantly reduced levels of harmful and potentially harmful constituents compared with cigarettes. The clinical assessment of candidate MRTPs requires the development of exposure-response markers to distinguish current smokers from either nonsmokers or former smokers with high specificity and sensitivity. Toward this end, a whole blood-derived gene signature was previously developed and reported. Four randomized, controlled, open-label, three-arm parallel group reduced exposure clinical studies have been conducted with subjects randomized to three arms: switching from cigarettes to THS 2.2, continuous use of cigarettes, or smoking abstinence. These clinical studies had an investigational period of 5 days in confinement, which was followed by an 85-day ambulatory period in two studies. Here we tested the previously developed blood-derived signature on the samples derived from those clinical studies. We showed that in all four studies, the signature scores were reduced consistently in subjects who either stopped smoking or switched to THS 2.2 compared with subjects who continued smoking cigarettes.
Collapse
Affiliation(s)
- Florian Martin
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Christelle Haziza
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International Research and Development, Philip Morris Products S.A., Neuchâtel, Switzerland
| |
Collapse
|
6
|
Dautzenberg B, Dautzenberg MD. [Systematic analysis of the scientific literature on heated tobacco]. Rev Mal Respir 2019; 36:82-103. [PMID: 30429092 DOI: 10.1016/j.rmr.2018.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
Abstract
INTRODUCTION The tobacco industry (TI) reports that heated tobacco reduces risk of tobacco use and will replace cigarettes. An analysis of the scientific literature was conducted in order to enlighten professionals and decision-makers. METHOD After a Medline query in February 2018, a systematic analysis was conducted. RESULTS Of the 100 papers published in 2008-2018, 75 have authors affiliated or linked to TI. Emissions contain gases, droplets and solid particles, so are smokes. The main products are: THS2.2 (Iqos®) which heats mini-cigarettes at 340°C, the THP1.0 (Glo®) which heats at 240°C sticks delivering about half as much nicotine, Ploom® which uses reconstituted tobacco microcapsules heated at 180°C. Under the experimental conditions, there is a reduction of toxic emissions and biological effects, but the expected risk reduction is not demonstrated. Symptoms related to passive smoking are described. The 4 epidemiological articles report that heated tobacco is used in 10 to 45% of cases by non-smokers and demonstrate the effectiveness of TI promotion campaigns. Thus, the THS2.2 is more a gateway to smoking (20%) than an exit door (11%); moreover, it is not expected risk reduction among the 69% who are mixed users. CONCLUSIONS While reducing emissions is documented, reducing the risk to the smoker who switches to heated-tobacco remains to be demonstrated. On the other hand, the worsening of the global tobacco risk related to the promotion of the products by the TI is anticipated, justifying that the authorities take the appropriate measures to control the promotion of heated tobacco.
Collapse
Affiliation(s)
- B Dautzenberg
- Service de pharmacologie, Pitié-Salpêtrière, AP-HP, 75013 Paris, France; Consultation de médecine, hôpital Marmottan, 75017 Paris, France; Consultation de tabacologie, institut Arthur-Vernes, 75006 Paris, France; Paris sans tabac, 14, avenue Bosquet, 75007 Paris, France.
| | | |
Collapse
|
7
|
Abstract
Low rates of reproducibility and translatability of data from nonclinical research have been reported. Major causes of irreproducibility include oversights in study design, failure to characterize reagents and protocols, a lack of access to detailed methods and data, and an absence of universally accepted and applied standards and guidelines. Specific areas of concern include uncharacterized antibodies and cell lines, the use of inappropriate sampling and testing protocols, a lack of transparency and access to raw data, and deficiencies in the translatability of findings to the clinic from studies using animal models of disease. All stakeholders—academia, industry, funding agencies, regulators, nonprofit entities, and publishers—are encouraged to play active roles in addressing these challenges by formulating and promoting access to best practices and standard operating procedures and validating data collaboratively at each step of the biomedical research life cycle.
Collapse
Affiliation(s)
- Stéphanie Boué
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | - Michael Byrne
- Global Biological Standards Institute (GBSI), Washington, DC, USA
| | - A Wallace Hayes
- Michigan State University, Institute for Integrative Toxicology, East Lansing, MI, USA.,University of South Florida, College of Public Health, Tampa, FL, USA
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Neuchâtel, Switzerland
| | | |
Collapse
|
8
|
Poussin C, Sierro N, Boué S, Battey J, Scotti E, Belcastro V, Peitsch MC, Ivanov NV, Hoeng J. Interrogating the microbiome: experimental and computational considerations in support of study reproducibility. Drug Discov Today 2018; 23:1644-1657. [PMID: 29890228 DOI: 10.1016/j.drudis.2018.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/03/2018] [Accepted: 06/06/2018] [Indexed: 12/12/2022]
Abstract
The microbiome is an important factor in human health and disease and is investigated to develop novel therapeutics. Metagenomics leverages advances in sequencing technologies and computational analysis to identify and quantify the microorganisms present in a sample. This field has, however, not yet reached maturity and the international metagenomics community, aware of the current limitations and of the necessity for standardization, has started investigating sources of variability in experimental and computational workflows. The first studies have already resulted in the identification of crucial steps and factors affecting metagenomics data quality, quantification and interpretation. This review summarizes experimental and computational considerations for interrogating the microbiome and establishing reproducible and robust analysis workflows.
Collapse
Affiliation(s)
- Carine Poussin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nicolas Sierro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stéphanie Boué
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - James Battey
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Elena Scotti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Vincenzo Belcastro
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| |
Collapse
|
9
|
Giordano M, Tripathi KP, Guarracino MR. Ensemble of rankers for efficient gene signature extraction in smoke exposure classification. BMC Bioinformatics 2018. [PMID: 29536823 PMCID: PMC5850943 DOI: 10.1186/s12859-018-2035-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Background System toxicology aims at understanding the mechanisms used by biological systems to respond to toxicants. Such understanding can be leveraged to assess the risk of chemicals, drugs, and consumer products in living organisms. In system toxicology, machine learning techniques and methodologies are applied to develop prediction models for classification of toxicant exposure of biological systems. Gene expression data (RNA/DNA microarray) are often used to develop such prediction models. Results The outcome of the present work is an experimental methodology to develop prediction models, based on robust gene signatures, for the classification of cigarette smoke exposure and cessation in humans. It is a result of the participation in the recent sbv IMPROVER SysTox Computational Challenge. By merging different gene selection techniques, we obtain robust gene signatures and we investigate prediction capabilities of different off-the-shelf machine learning techniques, such as artificial neural networks, linear models and support vector machines. We also predict six novel genes in our signature, and firmly believe these genes have to be further investigated as biomarkers for tobacco smoking exposure. Conclusions The proposed methodology provides gene signatures with top-ranked performances in the prediction of the investigated classification methods, as well as new discoveries in genetic signatures for bio-markers of the smoke exposure of humans. Electronic supplementary material The online version of this article (10.1186/s12859-018-2035-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maurizio Giordano
- High Performance Computing and Networking Institute (ICAR), National Council of Research (CNR), Naples, Italy.
| | - Kumar Parijat Tripathi
- High Performance Computing and Networking Institute (ICAR), National Council of Research (CNR), Naples, Italy
| | - Mario Rosario Guarracino
- High Performance Computing and Networking Institute (ICAR), National Council of Research (CNR), Naples, Italy
| |
Collapse
|
10
|
Barcelona de Mendoza V, Huang Y, Crusto CA, Sun YV, Taylor JY. Perceived Racial Discrimination and DNA Methylation Among African American Women in the InterGEN Study. Biol Res Nurs 2018; 20:145-152. [PMID: 29258399 PMCID: PMC5741522 DOI: 10.1177/1099800417748759] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Experiences of racial discrimination have been associated with poor health outcomes. Little is known, however, about how perceived racial discrimination influences DNA methylation (DNAm) among African Americans (AAs). We examined the association of experiences of discrimination with DNAm among AA women in the Intergenerational Impact of Genetic and Psychological Factors on Blood Pressure (InterGEN) study. METHODS The InterGEN study examines the effects of genetic and psychological factors on blood pressure among AA women and their children. Measures include the Major Life Discrimination (MLD) and the Race-Related Events (RES) scales. In the present analysis, we examined discrimination and DNAm at baseline in the InterGEN study. The 850K EPIC Illumina BeadChip was used for evaluating DNAm in this epigenome-wide association study (EWAS). RESULTS One hundred and fifty-two women contributed data for the RES-EWAS analysis and 147 for the MLD-EWAS analysis. Most were 30-39 years old, nonsmokers, had some college education, and had incomes CONCLUSION We observed significant epigenetic associations between disease-associated genes (e.g., schizophrenia, bipolar disorder, and asthma) and perceived discrimination as measured by the MLD Scale. Future health disparities research should include epigenetics in high-risk populations to elucidate functional consequences induced by the psychosocial environment.
Collapse
Affiliation(s)
| | - Yunfeng Huang
- 2 Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | - Cindy A Crusto
- 3 Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yan V Sun
- 2 Department of Epidemiology, Emory University Rollins School of Public Health, Atlanta, GA, USA
| | | |
Collapse
|
11
|
Reynolds LM, Lohman K, Pittman GS, Barr RG, Chi GC, Kaufman J, Wan M, Bell DA, Blaha MJ, Rodriguez CJ, Liu Y. Tobacco exposure-related alterations in DNA methylation and gene expression in human monocytes: the Multi-Ethnic Study of Atherosclerosis (MESA). Epigenetics 2018; 12:1092-1100. [PMID: 29166816 PMCID: PMC5810757 DOI: 10.1080/15592294.2017.1403692] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Alterations in DNA methylation and gene expression in blood leukocytes are potential biomarkers of harm and mediators of the deleterious effects of tobacco exposure. However, methodological issues, including the use of self-reported smoking status and mixed cell types have made previously identified alterations in DNA methylation and gene expression difficult to interpret. In this study, we examined associations of tobacco exposure with DNA methylation and gene expression, utilizing a biomarker of tobacco exposure (urine cotinine) and CD14+ purified monocyte samples from 934 participants of the community-based Multi-Ethnic Study of Atherosclerosis (MESA). Urine cotinine levels were measured using an immunoassay. DNA methylation and gene expression were measured with microarrays. Multivariate linear regression was used to test for associations adjusting for age, sex, race/ethnicity, education, and study site. Urine cotinine levels were associated with methylation of 176 CpGs [false discovery rate (FDR)<0.01]. Four CpGs not previously identified by studies of non-purified blood samples nominally replicated (P value<0.05) with plasma cotinine-associated methylation in 128 independent monocyte samples. Urine cotinine levels associated with expression of 12 genes (FDR<0.01), including increased expression of P2RY6 (Beta ± standard error = 0.078 ± 0.008, P = 1.99 × 10−22), a gene previously identified to be involved in the release of pro-inflammatory cytokines. No cotinine-associated (FDR<0.01) methylation profiles significantly (FDR<0.01) correlated with cotinine-associated (FDR<0.01) gene expression profiles. In conclusion, our findings i) identify potential monocyte-specific smoking-associated methylation patterns and ii) suggest that alterations in methylation may not be a main mechanism regulating gene expression in monocytes in response to cigarette smoking.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- a Division of Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC 27157
| | - Kurt Lohman
- a Division of Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC 27157
| | - Gary S Pittman
- b Immunity, Inflammation and Disease Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC 27709
| | - R Graham Barr
- c Departments of Medicine and Epidemiology , Columbia University Medical Center , New York , NY 10032
| | - Gloria C Chi
- d Department of Epidemiology, School of Public Health , University of Washington , Seattle , WA 98105
| | - Joel Kaufman
- d Department of Epidemiology, School of Public Health , University of Washington , Seattle , WA 98105
| | - Ma Wan
- b Immunity, Inflammation and Disease Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC 27709
| | - Douglas A Bell
- b Immunity, Inflammation and Disease Laboratory , National Institute of Environmental Health Sciences, National Institutes of Health , Research Triangle Park , NC 27709
| | - Michael J Blaha
- e Johns Hopkins Ciccarone Center for the Prevention of Heart Disease , Baltimore , MD 21287
| | - Carlos J Rodriguez
- a Division of Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC 27157
| | - Yongmei Liu
- a Division of Public Health Sciences , Wake Forest School of Medicine , Winston-Salem , NC 27157
| |
Collapse
|
12
|
Iskandar AR, Titz B, Sewer A, Leroy P, Schneider T, Zanetti F, Mathis C, Elamin A, Frentzel S, Schlage WK, Martin F, Ivanov NV, Peitsch MC, Hoeng J. Systems toxicology meta-analysis of in vitro assessment studies: biological impact of a candidate modified-risk tobacco product aerosol compared with cigarette smoke on human organotypic cultures of the aerodigestive tract. Toxicol Res (Camb) 2017; 6:631-653. [PMID: 30090531 PMCID: PMC6062142 DOI: 10.1039/c7tx00047b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/26/2017] [Indexed: 12/22/2022] Open
Abstract
Systems biology combines comprehensive molecular analyses with quantitative modeling to understand the characteristics of a biological system as a whole. Leveraging a similar approach, systems toxicology aims to decipher complex biological responses following exposures. This work reports a systems toxicology meta-analysis in the context of in vitro assessment of a candidate modified-risk tobacco product (MRTP) using three human organotypic cultures of the aerodigestive tract (buccal, bronchial, and nasal epithelia). Complementing a series of functional measures, a causal network enrichment analysis of transcriptomic data was used to compare quantitatively the biological impact of aerosol from the Tobacco Heating System (THS) 2.2, a candidate MRTP, with 3R4F cigarette smoke (CS) at similar nicotine concentrations. Lower toxicity was observed in all cultures following exposure to THS2.2 aerosol compared with 3R4F CS. Because of their morphological differences, a smaller exposure impact was observed in the buccal (stratified epithelium) compared with the bronchial and nasal (pseudostratified epithelium). However, the causal network enrichment approach supported a similar mechanistic impact of CS across the three cultures, including the impact on xenobiotic, oxidative stress, and inflammatory responses. At comparable nicotine concentrations, THS2.2 aerosol elicited reduced and more transient effects on these processes. To demonstrate the benefits of additional data modalities, we employed a newly established targeted mass-spectrometry marker panel to further confirm the reduced cellular stress responses elicited by THS2.2 aerosol compared with 3R4F CS in the nasal culture. Overall, this work demonstrates the applicability and robustness of the systems toxicology approach for in vitro inhalation toxicity assessment.
Collapse
Affiliation(s)
- A R Iskandar
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - B Titz
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Sewer
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - P Leroy
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - T Schneider
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - F Zanetti
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - C Mathis
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - A Elamin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - S Frentzel
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - W K Schlage
- Biology consultant , Max-Baermann-Str. 21 , 51429 Bergisch Gladbach , Germany
| | - F Martin
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - N V Ivanov
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - M C Peitsch
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| | - J Hoeng
- PMI R&D , Philip Morris Products S.A. (part of the Philip Morris International group of companies) , Quai Jeanrenaud 5 , CH-2000 Neuchâtel , Switzerland . ; ; Tel: +41 (58)242 2214
| |
Collapse
|
13
|
The sbv IMPROVER Systems Toxicology Computational Challenge: Identification of Human and Species-Independent Blood Response Markers as Predictors of Smoking Exposure and Cessation Status. ACTA ACUST UNITED AC 2017; 5:38-51. [PMID: 30221212 DOI: 10.1016/j.comtox.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cigarette smoking entails chronic exposure to a mixture of harmful chemicals that trigger molecular changes over time, and is known to increase the risk of developing diseases. Risk assessment in the context of 21st century toxicology relies on the elucidation of mechanisms of toxicity and the identification of exposure response markers, usually from high-throughput data, using advanced computational methodologies. The sbv IMPROVER Systems Toxicology computational challenge (Fall 2015-Spring 2016) aimed to evaluate whether robust and sparse (≤40 genes) human (sub-challenge 1, SC1) and species-independent (sub-challenge 2, SC2) exposure response markers (so called gene signatures) could be extracted from human and mouse blood transcriptomics data of current (S), former (FS) and never (NS) smoke-exposed subjects as predictors of smoking and cessation status. Best-performing computational methods were identified by scoring anonymized participants' predictions. Worldwide participation resulted in 12 (SC1) and six (SC2) final submissions qualified for scoring. The results showed that blood gene expression data were informative to predict smoking exposure (i.e. discriminating smoker versus never or former smokers) status in human and across species with a high level of accuracy. By contrast, the prediction of cessation status (i.e. distinguishing FS from NS) remained challenging, as reflected by lower classification performances. Participants successfully developed inductive predictive models and extracted human and species-independent gene signatures, including genes with high consensus across teams. Post-challenge analyses highlighted "feature selection" as a key step in the process of building a classifier and confirmed the importance of testing a gene signature in independent cohorts to ensure the generalized applicability of a predictive model at a population-based level. In conclusion, the Systems Toxicology challenge demonstrated the feasibility of extracting a consistent blood-based smoke exposure response gene signature and further stressed the importance of independent and unbiased data and method evaluations to provide confidence in systems toxicology-based scientific conclusions.
Collapse
|