1
|
Alur A, Phillips J, Xu D. Effects of hexavalent chromium on mitochondria and their implications in carcinogenesis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:109-125. [PMID: 38230947 DOI: 10.1080/26896583.2024.2301899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hexavalent chromium (Cr(VI)) is a well-known occupational and environmental human carcinogen. The cellular effect of Cr(VI) is complex and often nonspecific due to its ability to modulate multiple cellular targets. The toxicity of Cr(VI) is strongly linked to the generation of reactive oxygen species (ROS) during its reduction process. ROS can cause oxidation of cellular macromolecules, such as proteins, lipids, and DNA, thereby altering their functions. A major genotoxic effect of Cr(VI) that contributes to carcinogenesis is the formation of DNA adducts, which can lead to DNA damage. Modulations of cellular signaling pathways and epigenetics may also contribute to the carcinogenic effects of Cr(VI). Cr(VI) has a major impact on many aspects of mitochondrial biology, including oxidative phosphorylation, mitophagy, and mitochondrial biogenesis. These effects have the potential to alter the trajectory of Cr(VI)-induced carcinogenic process. This perspective article summarizes current understandings of the effect of Cr(VI) on mitochondria and discusses the future directions of research in this area, particularly with regard to carcinogenesis.
Collapse
Affiliation(s)
- Anish Alur
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - John Phillips
- Department of Urology, New York Medical College School of Medicine, Valhalla, NY, USA
| | - Dazhong Xu
- Department of Pathology, Microbiology and Immunology, New York Medical College School of Medicine, Valhalla, NY, USA
| |
Collapse
|
2
|
Li X, Abdel-Moneim AME, Hua J, Zhao L, Hu Z, Pang X, Wang S, Chen Z, Yang B. Effects of Sodium Chromate Exposure on Gene Expression Profiles of Primary Rat Hepatocytes (In Vitro). Biol Trace Elem Res 2023; 201:1913-1934. [PMID: 35653032 DOI: 10.1007/s12011-022-03294-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
Chromium exposure has adverse impacts on human health and the environment, whereas chromate-induced hepatotoxicity's detailed mechanism is still unclear. Therefore, the purpose of the current study was to reveal the crucial signaling pathways and genes linked to sodium chromate-induced hepatotoxicity. GSE19662, a gene expression microarray, was obtained from Gene Expression Omnibus (GEO). Six primary rat hepatocyte (PRH) samples from GSE19662 include sodium chromate-treated (n = 3) and the control PRH samples (n = 3). A total of 2,525 differentially expressed genes (DEGs) were obtained, especially 962, and 1,563 genes were up- and downregulated in sodium chromate-treated PRHs compared to the control. Gene ontology (GO) enrichment analysis suggested that those DEGs were involved in multiple biological processes, including the response to toxic substances, the positive regulation of apoptotic process, lipid and cholesterol metabolic process, and others. Signaling pathway enrichment analysis indicated that the DEGs were mainly enriched in MAPK, PI3K-Akt, PPAR, AMPK, cellular senescence, hepatitis B, fatty acid biosynthesis, etc. Moreover, many genes, including CYP2E1, CYP1A2, CYP2C13, CDK1, NDC80, and CCNB1, might contribute to sodium chromate-induced hepatotoxicity. Taken together, this study enhances our knowledge of the potential molecular mechanisms of sodium chromate-induced hepatotoxicity.
Collapse
Affiliation(s)
- Xiaofeng Li
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Abdel-Moneim Eid Abdel-Moneim
- Biological Applications Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Abu-Zaabal, 13759, Egypt
| | - Jinling Hua
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Lei Zhao
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhongze Hu
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Xunsheng Pang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Shujuan Wang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Zhihao Chen
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China
| | - Bing Yang
- Anhui Key Laboratory of Poultry Infectious Disease Prevention and Control, College of Animal Science, Anhui Science and Technology University, Fengyang, 233100, China.
| |
Collapse
|
3
|
Krawic C, Zhitkovich A. Chemical mechanisms of DNA damage by carcinogenic chromium(VI). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:25-46. [PMID: 36858775 PMCID: PMC10069994 DOI: 10.1016/bs.apha.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hexavalent chromium is a firmly established human carcinogen with documented exposures in many professional groups. Environmental exposure to Cr(VI) is also a significant public health concern. Cr(VI) exists in aqueous solutions as chromate anion that is unreactive with DNA and requires reductive activation inside the cells to produce genotoxic and mutagenic effects. Reduction of Cr(VI) in cells is nonenzymatic and in vivo principally driven by ascorbate with a secondary contribution from nonprotein thiols glutathione and cysteine. In addition to its much faster rate of reduction, ascorbate-driven metabolism avoids the formation of Cr(V) which is the first intermediate in Cr(VI) reduction by thiols. The end-product of Cr(VI) reduction is Cr(III) which forms several types of Cr-DNA adducts that are collectively responsible for all mutagenic and genotoxic effects in Cr(VI) reactions with ascorbate and thiols. Some Cr(V) forms can react with H2O2 to produce DNA-oxidizing peroxo species although this genotoxic pathway is suppressed in cells with physiological levels of ascorbate. Chemical reactions of Cr(VI) with ascorbate or thiols lack directly DNA-oxidizing metabolites. The formation of oxidative DNA breaks in early studies of these reactions was caused by iron contamination. Production of Cr(III)-DNA adducts in cells showed linear dose-dependence irrespective of the predominant reduction pathway and their processing by mismatch repair generated more toxic secondary genetic lesions in euchromatin. Overall, Cr(III)-DNA adduction is the dominant pathway for the formation of genotoxic and mutagenic DNA damage by carcinogenic Cr(VI).
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Legorreta Cancer Center, Brown University, Providence, RI, United States.
| |
Collapse
|
4
|
Innes E, Yiu HHP, McLean P, Brown W, Boyles M. Simulated biological fluids - a systematic review of their biological relevance and use in relation to inhalation toxicology of particles and fibres. Crit Rev Toxicol 2021; 51:217-248. [PMID: 33905298 DOI: 10.1080/10408444.2021.1903386] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The use of simulated biological fluids (SBFs) is a promising in vitro technique to better understand the release mechanisms and possible in vivo behaviour of materials, including fibres, metal-containing particles and nanomaterials. Applications of SBFs in dissolution tests allow a measure of material biopersistence or, conversely, bioaccessibility that in turn can provide a useful inference of a materials biodistribution, its acute and long-term toxicity, as well as its pathogenicity. Given the wide range of SBFs reported in the literature, a review was conducted, with a focus on fluids used to replicate environments that may be encountered upon material inhalation, including extracellular and intracellular compartments. The review aims to identify when a fluid design can replicate realistic biological conditions, demonstrate operation validation, and/or provide robustness and reproducibility. The studies examined highlight simulated lung fluids (SLFs) that have been shown to suitably replicate physiological conditions, and identify specific components that play a pivotal role in dissolution mechanisms and biological activity; including organic molecules, redox-active species and chelating agents. Material dissolution was not always driven by pH, and likewise not only driven by SLF composition; specific materials and formulations correspond to specific dissolution mechanisms. It is recommended that SLF developments focus on biological predictivity and if not practical, on better biological mimicry, as such an approach ensures results are more likely to reflect in vivo behaviour regardless of the material under investigation.
Collapse
Affiliation(s)
- Emma Innes
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Humphrey H P Yiu
- Chemical Engineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - William Brown
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | | |
Collapse
|
5
|
Abstract
![]()
Vitamin
C (ascorbic acid) is a water-soluble antioxidant and a
cofactor for a large number of enzymes. It is present in all tissues
and especially abundant in corneal epithelium, stem cells, and neurons.
Although similar to thiols in its ability to react with many reactive
oxygen species (ROS), ascorbate is much better (>100× faster)
than glutathione at scavenging of primary ROS (superoxide radical
and singlet oxygen). Ascorbate appears to be especially important
for elimination of O2•– in the
nucleus which contains little or no SOD activity. Cofactor functions
of ascorbate involve the maintenance of activity of Fe(II)/2-oxoglutarate-dependent
dioxygenases via reduction of Fe(III). The most prominent activity
of ascorbate-dependent dioxygenases in the cytoplasm is hydroxylation
of prolines in proteins involved in the formation of extracellular
matrix and regulation of metabolism and hypoxia responses. In the
nucleus, ascorbate is important for oxidative demethylation of 5-methylcytosine
in DNA (by TET proteins) and removal of methyl groups from histone
lysines (by JmjC demethylases). Differentiation and other cellular
reprograming processes involving DNA demethylation are especially
sensitive to ascorbate insufficiency. High doses of vitamin C alone
or in combinations with drugs produced cancer-suppressive effects
which involved redox, immune, and epigenetic mechanisms. Solutions
to vitamin C deficiency in cultured cells are discussed to improve
the physiological relevance of in vitro models. An
abundance of vitamin C in rodents limits their ability to fully recapitulate
human sensitivity to adverse health effects of malnutrition and xenobiotics,
including neurotoxicity, lung injury, and intergenerational and other
epigenetic effects.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
6
|
Devoy J, Cosnier F, Bonfanti E, Antoine G, Nunge H, Lambert-Xolin AM, Décret MJ, Douteau L, Lorcin M, Sébillaud S, Grossmann S, Michaux S, Müller S, Viton S, Seidel C, Gaté. L. Intra-erythrocyte chromium as an indicator of exposure to hexavalent chromium: An in vivo evaluation in intravenous administered rat. Toxicol Lett 2019; 314:133-141. [DOI: 10.1016/j.toxlet.2019.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/05/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022]
|
7
|
Luczak MW, Krawic C, Zhitkovich A. p53 activation by Cr(VI): a transcriptionally limited response induced by ATR kinase in S-phase. Toxicol Sci 2019; 172:11-22. [PMID: 31388677 PMCID: PMC6813752 DOI: 10.1093/toxsci/kfz178] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/19/2019] [Accepted: 07/26/2019] [Indexed: 01/30/2023] Open
Abstract
Cellular reduction of carcinogenic chromium(VI) causes several forms of Cr-DNA damage with different genotoxic properties. Chromate-treated cultured cells have shown a strong proapoptotic activity of the DNA damage-sensitive transcription factor p53. However, induction of p53 transcriptional targets by Cr(VI) in rodent lungs was weak or undetectable. We examined Cr(VI) effects on the p53 pathway in human cells with restored levels of ascorbate that acts as a principal reducer of Cr(VI) in vivo but is nearly absent in standard cell cultures. Ascorbate-restored H460 and primary human cells treated with Cr(VI) contained higher levels of p53 and its Ser15 phosphorylation, which were induced by ATR kinase. Cr(VI)-stimulated p53 phosphorylation occurred in S-phase by a diffusible pool of ATR that was separate from the chromatin-bound pool targeting DNA repair substrates at the sites of toxic mismatch repair of Cr-DNA adducts. Even when more abundantly present than after exposure to the radiomimetic bleomycin, Cr(VI)-stabilized p53 showed a much more limited activation of its target genes in two types of primary human cells. No increases in mRNA were found for nucleotide excision repair factors and a majority of proapoptotic genes. A weak transcription activity of Cr(VI)-upregulated p53 was associated with its low lysine acetylation in the regulatory C-terminal domain, resulting from the inability of Cr(VI) to activate ATM in ascorbate-restored cells. Thus, p53 activation by ascorbate-metabolized Cr(VI) represents a limited genome-protective response that is defective in upregulation of DNA repair genes and proapoptotic transcripts for elimination of damaged cells.
Collapse
Affiliation(s)
- Michal W Luczak
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Casey Krawic
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| | - Anatoly Zhitkovich
- Brown University, Department of Pathology and Laboratory Medicine, Providence, RI, USA
| |
Collapse
|
8
|
Krawic C, Zhitkovich A. Toxicological Antagonism among Welding Fume Metals: Inactivation of Soluble Cr(VI) by Iron. Chem Res Toxicol 2018; 31:1172-1184. [PMID: 30362728 PMCID: PMC6247247 DOI: 10.1021/acs.chemrestox.8b00182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Indexed: 12/19/2022]
Abstract
Epidemiological studies in chromate production have established hexavalent chromium as a potent lung carcinogen. Inhalation of chromium(VI) most often occurs in mixtures with other metals as among stainless steel welders, which is the largest occupational group with Cr(VI) exposure. Surprisingly, carcinogenicity of Cr(VI)-containing welding fumes is moderate and not consistently higher than that of Cr-free welding. Here, we investigated interactions between chromate and three other metal ions [Fe(III), Mn(II), Ni(II)] that are typically released from stainless steel welding particles. In human lung epithelial cells with physiological levels of ascorbate and glutathione, Cr(VI) was by far the most cytotoxic metal in single exposures. Coexposure with Fe(III) suppressed cytotoxicity and genotoxicity of Cr(VI), which resulted from a severe inhibition of Cr uptake by cells and required extracellular ascorbate/glutathione. Chemically, detoxification of Cr(VI) occurred via its rapid extracellular reduction by Fe(II) that primarily originated from ascorbate-reduced Fe(III). Glutathione was a significant contributor to reduction of Cr(VI) by Fe only in the presence of ascorbate. We further found that variability in Cr(VI) metabolism among common cell culture media was caused by their different Fe content. Ni(II) and Mn(II) had no detectable effects on metabolism, cellular uptake or cytotoxicity of Cr(VI). The main biological findings were confirmed in three human lung cell lines, including stem cell-like and primary cells. We discovered extracellular detoxification of carcinogenic chromate in coexposures with Fe(III) ions and identified the underlying chemical mechanism. Our findings established an important case when exposure to mixtures causes inactivation of a potent human carcinogen.
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory
Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory
Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|