1
|
Furlan V, Tošović J, Bren U. QM-CSA: A Novel Quantum Mechanics-Based Protocol for Evaluation of the Carcinogen-Scavenging Activity of Polyphenolic Compounds. Foods 2024; 13:2708. [PMID: 39272474 PMCID: PMC11394233 DOI: 10.3390/foods13172708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
In this study, a novel quantum mechanics-based protocol for the evaluation of carcinogen-scavenging activity (QM-CSA) is developed. The QM-CSA protocol represents a universal and quantitative approach to evaluate and compare the activation-free energies for alkylation reactions between individual polyphenolic compounds and chemical carcinogens of the epoxy type at physiological conditions by applying two scales: the absolute scale allowing for the comparison with guanine and the relative scale allowing the comparison with glutathione as a reference compound. The devised quantum mechanical methodology was validated by comparing the activation-free energies calculated with 14 DFT functionals in conjunction with two implicit solvation models (SMD and CPCM) and the experimental activation-free energies for reactions between nine investigated chemical carcinogens and guanine. According to the obtained results, the best agreement with experimental data was achieved by applying DFT functionals M11-L and MN12-L in conjunction with the flexible 6-311++G(d,p) basis set and implicit solvation model SMD, and the obtained uncertainties were proven to be similar to the experimental ones. To demonstrate the applicability of the QM-CSA protocol, functionals M11-L, and MN12-L in conjunction with the SMD implicit solvation model were applied to calculate activation-free energies for the reactions of nine investigated chemical carcinogens of the epoxy type with three catechins, namely EGCG, EGC, and (+)-catechin. The order of CSA in this series of catechins in comparison to guanine and glutathione was determined as (+)-catechin > EGC > EGCG. The obtained results, for the first time, demonstrated the evaluation and comparison of CSA in a series of selected catechins with respect to glutathione and guanine. Moreover, the presented results provide valuable insights into the reaction mechanisms and configurations of the corresponding transition states. The novel QM-CSA protocol is also expected to expand the kinetic data for alkylation reactions between various polyphenolic compounds and chemical carcinogens of the epoxy type, which is currently lacking in the scientific literature.
Collapse
Grants
- J1-2471, P2-0046, L2-3175, J4-4633, J1-4398, L2-4430, J3-4498, J7-4638, J1-4414, J3-4497, P2-0438, and I0-E015 Slovenian Research and Innovation Agency (ARIS)
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
| | - Jelena Tošović
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
- Institute of Environmental Protection and Sensors, Beloruska Ulica 7, SI-2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
2
|
Acrylonitrile induction of rodent neoplasia: Potential mechanism of action and relevance to humans. TOXICOLOGY RESEARCH AND APPLICATION 2022. [DOI: 10.1177/23978473211055363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Acrylonitrile, an industrial chemical, is a multisite carcinogen in rats and mice, producing tumors in four tissues with barrier function, that is, brain, forestomach, Zymbal’s gland, and Harderian gland. To assess mechanism(s) of action (MoA) for induction of neoplasia and to evaluate whether the findings in rodents are indicative of human hazard, data on the potential key effects produced by acrylonitrile in the four rodent target tissues of carcinogenicity were evaluated. A notable finding was depletion of glutathione in various organs, including two target tissues, the brain, and forestomach, suggesting that this effect could be a critical initiating event. An additional combination of oxidative DNA damage and cytotoxic effects of acrylonitrile and its metabolites, cyanide, and 2-cyanoethylene oxide, could initiate pro-inflammatory signaling and sustained cell and tissue injury, leading to compensatory cell proliferation and neoplastic development. The in vivo DNA-binding and genotoxicity of acrylonitrile has been studied in several target tissues with no compelling positive results. Thus, while some mutagenic effects were reported in acrylonitrile-exposed rodents, data to determine whether this mutagenicity stems from direct DNA reactivity of acrylonitrile are insufficient. Accordingly, the induction of tumors in rodents is consistent primarily with a non-genotoxic MoA, although a contribution from weak mutagenicity cannot be ruled out. Mechanistic data to support conclusions regarding human hazard from acrylonitrile exposure is weak. Comparison of metabolism of acrylonitrile between rodents and humans provide little support for human hazard. Three of the tissues affected in bioassays (forestomach, Zymbal’s gland, and Harderian gland) are present only in rodents, while the brain is anatomically different between rodents and humans, diminishing relevance of tumor induction in these tissues to human hazard. Extensive epidemiological data has not revealed causation of human cancer by acrylonitrile.
Collapse
|
3
|
Bhutani P, Murray MT, Sommer CW, Wilson KA, Wetmore SD. Structural Rationalization for the Nonmutagenic and Mutagenic Bypass of the Tobacco-Derived O4-4-(3-Pyridyl)-4-oxobut-1-yl-thymine Lesion by Human Polymerase η: A Multiscale Computational Study. Chem Res Toxicol 2021; 34:1619-1629. [PMID: 33856186 DOI: 10.1021/acs.chemrestox.1c00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Tobacco-derived pyridyloxobutyl (POB) DNA adducts are unique due to the large size and flexibility of the alkyl chain connecting the pyridyl ring to the nucleobase. Recent experimental work suggests that the O4-4-(3-pyridyl)-4-oxobut-1-yl-T (O4-POB-T) lesion can undergo both nonmutagenic (dATP) and mutagenic (dGTP) insertion by the translesion synthesis (TLS) polymerase (pol) η in human cells. Interestingly, the mutagenic rate for O4-POB-T replication is reduced compared to that for the smaller O4-methylthymine (O4-Me-T) lesion, and O4-POB-T yields a different mutagenic profile than the O2-POB-T variant (dTTP insertion). The present work uses a combination of density functional theory calculations and molecular dynamics simulations to probe the impact of the size and flexibility of O4-POB-T on pol η replication outcomes. Due to changes in the Watson-Crick binding face upon damage of canonical T, O4-POB-T does not form favorable hydrogen-bonding interactions with A. Nevertheless, dATP is positioned for insertion in the pol η active site by a water chain to the template strand, which suggests a pol η replication pathway similar to that for abasic sites. Although a favorable O4-POB-T:G mispair forms in the pol η active site and DNA duplexes, the inherent dynamical nature of O4-POB-T periodically disrupts interstrand hydrogen bonding that would otherwise facilitate dGTP insertion and stabilize damaged DNA duplexes. In addition to explaining the origin of the experimentally reported pol η outcomes associated with O4-POB-T replication, comparison to structural data for the O4-Me-T and O2-POB-T adducts highlights an emerging common pathway for the nonmutagenic replication of thymine alkylated lesions by pol η, yet underscores the broader impacts of bulky moiety size, flexibility, and position on the associated mutagenic outcomes.
Collapse
Affiliation(s)
- Priya Bhutani
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Makay T Murray
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Craig W Sommer
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Katie A Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta, Canada T1K 3M4
| |
Collapse
|
4
|
Liljenberg M, Ripa L, Shamovsky I. Theoretical Studies of the Mechanism of Carbamoylation of Nucleobases by Isocyanates. Chem Res Toxicol 2020; 33:2845-2853. [PMID: 33076655 DOI: 10.1021/acs.chemrestox.0c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Isocyanates with the -N═C═O functional group are highly reactive compounds. They are used in various industrial applications and have been found as possible metabolites of hydroxamic acids. Isocyanates interact with biopolymers and are notorious mutagens. Mutagenic effects of isocyanates are caused by the formation of covalent adducts with nucleobases of DNA, primarily cytosines, through carbamoylation of NH2 groups to give the corresponding urea. The mechanism of carbamoylation of nucleobases by aryl isocyanates is studied by high-level density functional theory calculations. Three possible pathways are analyzed. It is demonstrated that the reaction follows the stepwise pathway, which starts with the formation of a π-complex followed by a rate-determining C-N covalent bond formation via the reactive tautomeric imine forms of the nucleobases. The reaction proceeds further through two consecutive proton transfers mediated by water molecules to give the final adduct. The predicted activation free energies of the rate-determining step in water agree with experimental data. In line with experiments, the reactivity of isocyanates toward nucleobases decreases in the order cytosine > adenine > guanine, and we rationalize this order of reactivity by the fall of their basicity and destabilization of the imine forms. Activation barriers of the alternative concerted pathways are higher than that of the preferred stepwise mechanism, and the match to experiment is poor. The kinetic effect of adding electron-withdrawing or electron-donating groups to the aryl group of aryl isocyanate is minute, which suggests that mutagenicity of isocyanates is determined exclusively by the reactivity of the -N═C═O group and as such cannot be removed by structural alterations of the adjacent aryl.
Collapse
Affiliation(s)
| | - Lena Ripa
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| | - Igor Shamovsky
- Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, 431 83 Mölndal, Sweden
| |
Collapse
|
5
|
Walker VE, Walker DM, Ghanayem BI, Douglas GR. Analysis of Biomarkers of DNA Damage and Mutagenicity in Mice Exposed to Acrylonitrile. Chem Res Toxicol 2020; 33:1623-1632. [PMID: 32529832 DOI: 10.1021/acs.chemrestox.0c00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acrylonitrile (ACN), which is a widely used industrial chemical, induces cancers in the mouse via unresolved mechanisms. For this report, complementary and previously described methods were used to assess in vivo genotoxicity and/or mutagenicity of ACN in several mouse models, including (i) female mice devoid of cytochrome P450 2E1 (CYP2E1), which yields the epoxide intermediate cyanoethylene oxide (CEO), (ii) male lacZ transgenic mice, and (iii) female (wild-type) B6C3F1 mice. Exposures of wild-type mice and CYP2E1-null mice to ACN at 0, 2.5 (wild-type mice only), 10, 20, or 60 (CYP2E1-null mice only) mg/kg body weight by gavage for 6 weeks (5 days/week) produced no elevations in the frequencies of micronucleated erythrocytes, but induced significant dose-dependent increases in DNA damage, detected by the alkaline (pH >13) Comet assay, in one target tissue (forestomach) and one nontarget tissue (liver) of wild-type mice only. ACN exposures by gavage also caused significant dose-related elevations in the frequencies of mutations in the hypoxanthine-guanine phosphoribosyltransferase (Hprt) reporter gene of T-lymphocytes from spleens of wild-type mice; however, Hprt mutant frequencies were significantly increased in CYP2E1-null mice only at a high dose of ACN (60 mg/kg) that is lethal to wild-type mice. Similarly, drinking water exposures of lacZ transgenic mice to 0, 100, 500, or 750 ppm ACN for 4 weeks caused significant dose-dependent elevations in Hprt mutant frequencies in splenic T-cells; however, these ACN exposures did not increase the frequency of lacZ transgene mutations above spontaneous background levels in several tissues from the same animals. Together, the Comet assay and Hprt mutant frequency data from these studies indicate that oxidative metabolism of ACN by CYP2E1 to CEO is central to the induction of the majority of DNA damage and mutations in ACN-exposed mice, but ACN itself also may contribute to the carcinogenic modes of action via mechanisms involving direct and/or indirect DNA reactivity.
Collapse
Affiliation(s)
- Vernon E Walker
- Wadsworth Center, New York State Department of Health, Albany, New York 12201, United States.,Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, Vermont 05405, United States.,The Burlington HC Research Group, Inc., Jericho, Vermont 05465, United States
| | - Dale M Walker
- The Burlington HC Research Group, Inc., Jericho, Vermont 05465, United States.,Experimental Pathology Laboratories, Sterling, Virginia 20167, United States
| | - Burhan I Ghanayem
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, United States
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
6
|
Furlan V, Bren U. Protective Effects of [6]-Gingerol Against Chemical Carcinogens: Mechanistic Insights. Int J Mol Sci 2020; 21:E695. [PMID: 31973096 PMCID: PMC7037038 DOI: 10.3390/ijms21030695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/28/2022] Open
Abstract
[6]-Gingerol from ginger has received considerable attention as a potential cancer therapeutic agent because of its chemopreventive and chemotherapeutic effects, as well as its safety. In the current study, we examined [6]-gingerol as a natural scavenger of nine ultimate chemical carcinogens to which we are frequently exposed: glycidamide, styrene oxide, aflatoxin B1 exo-8,9-epoxide, β-propiolactone, ethylene oxide, propylene oxide, 2-cyanoethylene oxide, chloroethylene oxide, and vinyl carbamate epoxide. To evaluate [6]-gingerol efficacy, we expanded our research with the examination of glutathione-the strongest natural scavenger in human cells. The corresponding activation free energies were calculated using Hartree-Fock method with three flexible basis sets and two implicit solvation models. According to our results, [6]-gingerol proves to be an extremely effective scavenger of chemical carcinogens of the epoxy type. On the other hand, with the exception of aflatoxin B1 exo-8,9-epoxide, glutathione represents a relatively poor scavenger, whose efficacy could be augmented by [6]-gingerol. Moreover, our quantum mechanical study of the alkylation reactions of chemical carcinogens with [6]-gingerol and glutathione provide valuable insights in the reaction mechanisms and the geometries of the corresponding transition states. Therefore, we strongly believe that our research forms a solid basis for further computational, experimental and clinical studies of anticarcinogenic properties of [6]-gingerol as well as for the development of novel chemoprophylactic dietary supplements. Finally, the obtained results also point to the applicability of quantum chemical methods to studies of alkylation reactions related to chemical carcinogenesis.
Collapse
Affiliation(s)
- Veronika Furlan
- Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
| | - Urban Bren
- Faculty of Chemistry and Chemical Technology, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia;
- National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
| |
Collapse
|
7
|
Hostnik G, Gladović M, Bren U. Tannin Basic Building Blocks as Potential Scavengers of Chemical Carcinogens: A Computational Study. JOURNAL OF NATURAL PRODUCTS 2019; 82:3279-3287. [PMID: 31799841 DOI: 10.1021/acs.jnatprod.9b00435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Tannins are natural compounds that have historically been used in the tanning of leather. In the scientific literature, one finds many reports of their possible beneficial health effects, although these are not always unequivocally confirmed. In order to gain a better insight into their proposed anticancer potential, we studied the scavenging capacity of the basic tannin building blocks against various chemical carcinogens of the epoxy type. The reactivity of gallic acid, ellagic acid, and epicathechin was examined using quantum mechanical calculations at the Hartree-Fock level of theory in conjunction with flexible basis sets and implicit solvation models. The monomeric tannin building blocks exhibited significant scavenging potential, with epicatechin presenting the best scavenger, thus encouraging and guiding future experimental studies of their anticarcinogenic properties.
Collapse
Affiliation(s)
- Gregor Hostnik
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
| | - Martin Gladović
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Technology , University of Maribor , Smetanova 17 , SI-2000 Maribor , Slovenia
- National Institute of Chemistry , Hajdrihova 19 , SI-1001 Ljubljana , Slovenia
| |
Collapse
|
8
|
Knez Hrnčič M, Španinger E, Košir IJ, Knez Ž, Bren U. Hop Compounds: Extraction Techniques, Chemical Analyses, Antioxidative, Antimicrobial, and Anticarcinogenic Effects. Nutrients 2019; 11:E257. [PMID: 30678345 PMCID: PMC6412513 DOI: 10.3390/nu11020257] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
Hop plants comprise a variety of natural compounds greatly differing in their structure and properties. A wide range of methods have been developed for their isolation and chemical analysis, as well as for determining their antioxidative, antimicrobial, and antigenotoxic potentials. This contribution provides an overview of extraction and fractionation techniques of the most important hop compounds known for their health-promoting features. Although hops remain the principal ingredient for providing the taste, stability, and antimicrobial protection of beer, they have found applications in the pharmaceutical and other food industries as well. This review focuses on numerous health-promoting effects of hops raging from antioxidative, sedative, and anti-inflammatory potentials, over anticarcinogenic features to estrogenic activity. Therefore, hops should be exploited for the prevention and even healing of several prevalent diseases like cardiovascular disorders and various cancer types. New ideas for future studies on hops are finally presented: computational investigations of chemical reactivities of hop compounds, nanoencapsulation, and synergistic effects leading to a higher bioavailability of biologically active substances as well as the application of waste hop biomass from breweries for the production of high-added-value products in accordance with the biorefinery concept.
Collapse
Affiliation(s)
- Maša Knez Hrnčič
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Eva Španinger
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Iztok Jože Košir
- Slovenian Institute of Hop Research and Brewing, Cesta Žalskega Tabora 2, SI-3310 Žalec, Slovenia.
| | - Željko Knez
- Laboratory of Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| | - Urban Bren
- Laboratory of Physical Chemistry and Chemical Thermodynamics, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, SI-2000 Maribor, Slovenia.
| |
Collapse
|