1
|
Ong HW, Yang X, Smith JL, Dickmander RJ, Brown JW, Havener TM, Taft-Benz S, Howell S, Sanders MK, Capener JL, Couñago RM, Chang E, Krämer A, Moorman NJ, Heise M, Axtman AD, Drewry DH, Willson TM. More than an Amide Bioisostere: Discovery of 1,2,4-Triazole-containing Pyrazolo[1,5- a]pyrimidine Host CSNK2 Inhibitors for Combatting β-Coronavirus Replication. J Med Chem 2024; 67:12261-12313. [PMID: 38959455 DOI: 10.1021/acs.jmedchem.4c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The pyrazolo[1,5-a]pyrimidine scaffold is a promising scaffold to develop potent and selective CSNK2 inhibitors with antiviral activity against β-coronaviruses. Herein, we describe the discovery of a 1,2,4-triazole group to substitute a key amide group for CSNK2 binding present in many potent pyrazolo[1,5-a]pyrimidine inhibitors. Crystallographic evidence demonstrates that the 1,2,4-triazole replaces the amide in forming key hydrogen bonds with Lys68 and a water molecule buried in the ATP-binding pocket. This isosteric replacement improves potency and metabolic stability at a cost of solubility. Optimization for potency, solubility, and metabolic stability led to the discovery of the potent and selective CSNK2 inhibitor 53. Despite excellent in vitro metabolic stability, rapid decline in plasma concentration of 53 in vivo was observed and may be attributed to lung accumulation, although in vivo pharmacological effect was not observed. Further optimization of this novel chemotype may validate CSNK2 as an antiviral target in vivo.
Collapse
Affiliation(s)
- Han Wee Ong
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xuan Yang
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffery L Smith
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rebekah J Dickmander
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason W Brown
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Tammy M Havener
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Sharon Taft-Benz
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Stefanie Howell
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Marcia K Sanders
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jacob L Capener
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rafael M Couñago
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Centro de Química Medicinal (CQMED), Centro de Biologia Molecular e Engenharia Genética (CBMEG), University of Campinas, Campinas, São Paulo 13083-886, Brazil
| | - Edcon Chang
- Takeda Development Center Americas, Inc., San Diego, California 92121, United States
| | - Andreas Krämer
- SGC, Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Nathaniel J Moorman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark Heise
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D Axtman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - David H Drewry
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Timothy M Willson
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Structural Genomics Consortium (SGC) and Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Jeon JS, Kim H, Jo S, Sim J, Kim SK. Role of microsomal metabolism in bromfenac-induced cytotoxicity. Chem Biol Interact 2024; 391:110903. [PMID: 38331335 DOI: 10.1016/j.cbi.2024.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Accepted: 02/05/2024] [Indexed: 02/10/2024]
Abstract
This study delves into the intricate mechanisms underlying drug-induced liver injury (DILI) with a specific focus on bromfenac, the withdrawn nonsteroidal anti-inflammatory drug. DILI is a pervasive concern in drug development, prompting market withdrawals and posing significant challenges to healthcare. Despite the withdrawal of bromfenac due to DILI, the exact role of its microsomal metabolism in inducing hepatotoxicity remains unclear. Herein, employing HepG2 cells with human liver microsomes and UDP-glucuronic acid (UDPGA), our investigation revealed a substantial increase in bromfenac-induced cytotoxicity in the presence of UDPGA, pointing to the significance of UDP-glucuronosyltransferase (UGT)-dependent metabolism in augmenting toxicity. Notably, among the recombinant UGTs examined, UGT2B7 emerged as a pivotal enzyme in the metabolic activation of bromfenac. Metabolite identification studies disclosed the formation of reactive intermediates, with bromfenac indolinone (lactam) identified as a potential mediator of hepatotoxic effects. Moreover, in cytotoxicity experiments, the toxicity of bromfenac lactam exhibited a 34-fold increase, relative to bromfenac. The toxicity of bromfenac lactam was mitigated by nicotinamide adenine dinucleotide phosphate-dependent metabolism. This finding underscores the role of UGT-dependent metabolism in generating reactive metabolites that contribute to the observed hepatotoxicity associated with bromfenac. Understanding these metabolic pathways and the involvement of specific enzymes, such as UGT2B7, provides crucial insights into the mechanisms of bromfenac-induced liver injury. In conclusion, this research sheds light on the metabolic intricacies leading to cytotoxicity induced by bromfenac, especially emphasizing the role of UGT-dependent metabolism and the formation of reactive intermediates like bromfenac lactam. These findings offer insight into the mechanistic basis of DILI and emphasize the importance of understanding metabolism-mediated toxicity.
Collapse
Affiliation(s)
- Jang Su Jeon
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyemin Kim
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Seongyea Jo
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jaehoon Sim
- College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
3
|
Yang X, Ong HW, Dickmander RJ, Smith JL, Brown JW, Tao W, Chang E, Moorman NJ, Axtman AD, Willson TM. Optimization of 3-Cyano-7-cyclopropylamino-pyrazolo[1,5- a]pyrimidines toward the Development of an In Vivo Chemical Probe for CSNK2A. ACS OMEGA 2023; 8:39546-39561. [PMID: 37901516 PMCID: PMC10600890 DOI: 10.1021/acsomega.3c05377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023]
Abstract
3-Cyano-7-cyclopropylamino-pyrazolo[1,5-a]pyrimidines, including the chemical probe SGC-CK2-1, are potent and selective inhibitors of CSNK2A in cells but have limited utility in animal models due to their poor pharmacokinetic properties. While developing analogues with reduced intrinsic clearance and the potential for sustained exposure in mice, we discovered that phase II conjugation by GST enzymes was a major metabolic transformation in hepatocytes. A protocol for codosing with ethacrynic acid, a covalent reversible GST inhibitor, was developed to improve the exposure of analogue 2h in mice. A double codosing protocol, using a combination of ethacrynic acid and irreversible P450 inhibitor 1-aminobenzotriazole, increased the blood level of 2h by 40-fold at a 5 h time point.
Collapse
Affiliation(s)
- Xuan Yang
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Han Wee Ong
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Rebekah J. Dickmander
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department
of Microbiology & Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jeffery L. Smith
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason W. Brown
- Takeda Development
Center Americas, Inc., San Diego, California 92121, United States
| | - William Tao
- Takeda Development
Center Americas, Inc., San Diego, California 92121, United States
| | - Edcon Chang
- Takeda Development
Center Americas, Inc., San Diego, California 92121, United States
| | - Nathaniel J. Moorman
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
- Department
of Microbiology & Immunology, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger
Comprehensive Cancer Center, University
of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Alison D. Axtman
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Timothy M. Willson
- Structural
Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Rapidly
Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
4
|
Cheng Y, Liang X, Hao J, Niu C, Lai Y. Application of a PBPK model to elucidate the changes of systemic and liver exposures for rosuvastatin, carotegrast, and bromfenac followed by OATP inhibition in monkeys. Clin Transl Sci 2021; 14:1924-1934. [PMID: 34058067 PMCID: PMC8504809 DOI: 10.1111/cts.13047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 11/21/2022] Open
Abstract
The impact of organic anion‐transporting polypeptide (OATP) inhibition on systemic and liver exposures of three OATP substrates was investigated in cynomolgus monkeys. A monkey physiologically‐based pharmacokinetic (PBPK) model was constructed to describe the exposure changes followed by OATP functional attenuation. Rosuvastatin, bromfenac, and carotegrast were administered as a single intravenous cassette dose (0.5 mg/kg each) in monkeys with and without predosing with rifampin (RIF; 20 mg/kg) orally. The plasma exposure of rosuvastatin, bromfenac, carotegrast, and OATP biomarkers, coproporphyrin I (CP‐I) and CP‐III were increased 2.3, 2.1, 9.1, 5.4, and 8.8‐fold, respectively, when compared to the vehicle group. The liver to plasma ratios of rosuvastatin and bromfenac were reduced but the liver concentration of the drugs remained unchanged by RIF treatment. The liver concentrations of carotegrast, CP‐I, and CP‐III were unchanged at 1 h but increased at 6 h in the RIF‐treated group. The passive permeability, active uptake, and biliary excretion were characterized in suspended and sandwich‐cultured monkey hepatocytes and then incorporated into the monkey PBPK model. As demonstrated by the PBPK model, the plasma exposure is increased through OATP inhibition while liver exposure is maintained by passive permeability driven from an elevated plasma level. Liver exposure is sensitive to the changes of metabolism and biliary clearances. The model further suggested the involvement of additional mechanisms for hepatic uptakes of rosuvastatin and bromfenac, and of the inhibition of biliary excretion for carotegrast, CP‐I, and CP‐III by RIF. Collectively, impaired OATP function would not reduce the liver exposure of its substrates in monkeys.
Collapse
Affiliation(s)
- Yaofeng Cheng
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Jia Hao
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Congrong Niu
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| | - Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA, USA
| |
Collapse
|
5
|
Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development. Bioanalysis 2021; 13:913-930. [PMID: 33961500 DOI: 10.4155/bio-2021-0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Advancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different in vitro and in vivo approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern in vitro and in vivo approaches for executing metabolism studies with special emphasis on the recent advancement in the field. Advanced bioanalytical techniques, which can be employed in metabolism studies, have been discussed suggesting their particular application based on specific study objectives. This article can efficiently guide the researchers to scientifically plan metabolism studies and their bioanalysis during drug development programs taking advantage of a detailed understanding of instances of failure in the past.
Collapse
|
6
|
Shanu-Wilson J, Evans L, Wrigley S, Steele J, Atherton J, Boer J. Biotransformation: Impact and Application of Metabolism in Drug Discovery. ACS Med Chem Lett 2020; 11:2087-2107. [PMID: 33214818 DOI: 10.1021/acsmedchemlett.0c00202] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
Biotransformation has a huge impact on the efficacy and safety of drugs. Ultimately the effects of metabolism can be the lynchpin in the discovery and development cycle of a new drug. This article discusses the impact and application of biotransformation of drugs by mammalian systems, microorganisms, and recombinant enzymes, covering active and reactive metabolites, the impact of the gut microbiome on metabolism, and how insights gained from biotransformation studies can influence drug design from the combined perspectives of a CRO specializing in a range of biotransformation techniques and pharma biotransformation scientists. We include a commentary on how biology-driven approaches can complement medicinal chemistry strategies in drug optimization and the in vitro and surrogate systems available to explore and exploit biotransformation.
Collapse
Affiliation(s)
- Julia Shanu-Wilson
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Liam Evans
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Stephen Wrigley
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - Jonathan Steele
- Hypha Discovery Ltd., 154B Brook Drive, Milton Park, Abingdon, Oxfordshire OX14 4SD, U.K
| | - James Atherton
- Incyte Corporation, 1801 Augustine Cut-off, Wilmington, Delaware 19803, United States
| | - Jason Boer
- Incyte Corporation, 1801 Augustine Cut-off, Wilmington, Delaware 19803, United States
| |
Collapse
|
7
|
Yadav AS, Shah NR, Carlson TJ, Driscoll JP. Metabolite Profiling and Reaction Phenotyping for the in Vitro Assessment of the Bioactivation of Bromfenac †. Chem Res Toxicol 2019; 33:249-257. [PMID: 31815452 DOI: 10.1021/acs.chemrestox.9b00268] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bromfenac is a nonsteroidal anti-inflammatory drug that was approved and subsequently withdrawn from the market because of reported cases of acute hepatotoxicity. Recently, in vitro studies have revealed that bromfenac requires UDPGA and alamethicin supplemented human liver microsomes (HLM) to form a major metabolite, bromfenac indolinone (BI). Bromfenac and BI form thioether adducts through a bioactivation pathway in HLM and hepatocytes. [J. P. Driscoll et al., Chem. Res. Toxicol. 2018, 31, 223-230.] Here, Cytochrome P450 (CYP) and UDP-glucuronosyltransferase (UGT) reaction phenotyping experiments using recombinant enzymes were performed on bromfenac and BI to identify the CYP and UGT enzymes responsible for bromfenac's metabolism and bioactivation. It was determined that UGT2B7 converts bromfenac to BI, and that while CYP2C8, CYP2C9, and CYP2C19 catalyze the hydroxylation of bromfenac, only CYP2C9 forms thioether adducts when incubated with NAC or GSH as trapping agents. Although CYP2C9 was shown to form a reactive intermediate, no inhibition of CYP2C9 was observed when an IC50 shift assay was performed. Reaction phenotyping experiments with BI and recombinant CYP enzymes indicated that CYPs 1A2, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4 were responsible for the formation of an aliphatic hydroxylated metabolite. An aromatic hydroxylation on the indolinone moiety was also formed by CYP1A2 and CYP3A4. The aromatic hydroxylated BI is a precursor to the quinone methide and quinone imine intermediates in the proposed bioactivation pathway. Through time-dependent inhibition (TDI) experiments, it was revealed that BI can cause an IC50 shift in CYP1A2 and CYP3A4. However, BI does not inhibit the other isoforms that were also responsible for the formation of the aliphatic hydroxylation, an alternative biotransformation that does not undergo further downstream bioactivation. The results of these metabolism studies with bromfenac and BI add to our understanding of the relationship between biotransformation, reactive intermediate generation, and a potential mechanistic link to the hepatotoxicity of this compound.
Collapse
Affiliation(s)
- Aprajita S Yadav
- MyoKardia, Inc. , 333 Allerton Avenue , South San Francisco , California 94080 , United States
| | - Nina R Shah
- MyoKardia, Inc. , 333 Allerton Avenue , South San Francisco , California 94080 , United States
| | - Timothy J Carlson
- MyoKardia, Inc. , 333 Allerton Avenue , South San Francisco , California 94080 , United States
| | - James P Driscoll
- MyoKardia, Inc. , 333 Allerton Avenue , South San Francisco , California 94080 , United States
| |
Collapse
|
8
|
Harada H, Toyoda Y, Abe Y, Endo T, Takeda H. Quantitative Evaluation of Reactivity and Toxicity of Acyl Glucuronides by [35S]Cysteine Trapping. Chem Res Toxicol 2019; 32:1955-1964. [DOI: 10.1021/acs.chemrestox.9b00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Hiroshi Harada
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Yasuyuki Toyoda
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Yoshikazu Abe
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Takuro Endo
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| | - Hiroo Takeda
- Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1, Hotaka-Kashiwabara, Azumino, Nagano 399-8304, Japan
| |
Collapse
|