1
|
Mohammadi-Bardbori A, Shadboorestan A, Niknahad H, Noorafshan A, Fardid R, Nadimi E, Bakhtari A, Omidi M. Disrupting Development: Unraveling the Interplay of Aryl Hydrocarbon Receptor (AHR) and Wnt/β-Catenin Pathways in Kidney Development Under the Influence of Environmental Pollutants. Biol Trace Elem Res 2024; 202:4482-4493. [PMID: 38117383 DOI: 10.1007/s12011-023-04009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
Understanding the intricate molecular mechanisms governing aryl hydrocarbon receptor (AHR) and Wnt/β-Catenin pathways crosstalk is of paramount importance for elucidating normal development. We investigated the repercussions of aberrant activation of these signaling pathways on kidney development. HEK-293 cells were subjected to AHR and Wnt activators and inhibitors for 3 and 24 h. Subsequently, pregnant adult female BALB/c mice were administered treatments at gestation day 9 (GD-9), and embryos were analyzed at GD-18 using a combination of cellular, molecular, stereological, and histopathological techniques. Our results demonstrated a noteworthy escalation in oxidative stress and gene expression endpoints associated with apoptosis. Moreover, stereological analyses exhibited alterations in cortex, proximal tubule, and kidney tissue vessels volumes. Remarkably, co-treatment with 6-formylindolo [3,2-b] carbazole (FICZ) and cadmium (Cd) resulted in a significant reduction in glomerulus volume, while elevating the volumes of distal tubule, Henle loop, and connective tissue, compared to the control group. Histopathological investigations further confirmed structural changes in the loop of Henle and proximal tubule, alongside a decline in glomerular volume. Additionally, the expression levels of AHR and Ctnnb1 genes significantly increased in the Cd-treated group compared to the control group. Enhanced expression of apoptosis-related genes, including Bcl-x, Bax, and Caspase3, along with alterations in mitochondrial membrane potential and cytochrome C release, was observed. In contrast, Gsk3 gene expression was significantly decreased. Our findings robustly establish that chemical pollutants, such as Cd, disrupt the AHR and Wnt/β-Catenin physiological roles during developmental stages by inhibiting the metabolic degradation of FICZ.
Collapse
Affiliation(s)
- Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Shadboorestan
- Depertment of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hossein Niknahad
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Departments of Anatomy, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Fardid
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Nadimi
- Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| |
Collapse
|
2
|
Tang JS, Stephens R, Li Y, Cait A, Gell K, Faulkner S, Grooby A, Herst PM, O'Sullivan D, Gasser O. Polyphenol and glucosinolate-derived AhR modulators regulate GPR15 expression on human CD4+ T cells. J Nutr Biochem 2023; 122:109456. [PMID: 37788725 DOI: 10.1016/j.jnutbio.2023.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Abstract
Diets high in fruit and vegetables are perceived to be beneficial for intestinal homeostasis, in health as well as in the context of inflammatory bowel diseases (IBDs). Recent breakthroughs in the field of immunology have highlighted the importance of the ligand-activated transcription factor aryl hydrocarbon receptor (AhR) as a critical regulator of mucosal immunity, including the intestinal trafficking of CD4+ helper T cells, an immune cell subset implicated in a wide range of homeostatic and pathogenic processes. Specifically, the AhR has been shown to directly regulate the expression of the chemoattractant receptor G Protein-Coupled Receptor 15 (GPR15) on CD4+ T cells. GPR15 is an important gut homing marker whose expression on CD4+ T cells in the peripheral circulation is elevated in patients suffering from ulcerative colitis, raising the possibility that, in this setting, the beneficial effect of a diet rich in fruits and vegetables may be mediated through the modulation of GPR15 expression. To address this, we screened physiologically-relevant polyphenol and glucosinolate metabolites for their ability to affect both AhR activity and GPR15 expression. Our complementary approach and associated findings suggest that polyphenol and glucosinolate metabolites can regulate GPR15 expression on human CD4+ T cells in an AhR-dependent manner.
Collapse
Affiliation(s)
- Jeffry S Tang
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| | - Ruth Stephens
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Yanyan Li
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Alissa Cait
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Katie Gell
- Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Sophie Faulkner
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Alix Grooby
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Patries M Herst
- Malaghan Institute of Medical Research, Wellington, New Zealand; Department of Radiation Therapy, University of Otago, Wellington, New Zealand
| | - David O'Sullivan
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Olivier Gasser
- Malaghan Institute of Medical Research, Wellington, New Zealand; High-Value Nutrition National Science Challenge, Auckland, New Zealand.
| |
Collapse
|
3
|
Jamil M, Mohammadi-Bardbori A, Safa O, Nikpoor AR, Bakhtari A, Mokhtarinejad M, Zadeh SN, Shadboorestan A, Omidi M. Arsenic trioxide-induced cytotoxicity in A549 cells: The role of necroptosis. Drug Res (Stuttg) 2023; 73:417-425. [PMID: 37230480 DOI: 10.1055/a-2076-3246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
INTRODUCTION Lung cancer is one of the deadliest cancers globally. Arsenic trioxide (ATO) is still present as a highly effective drug in treating acute promyelocytic leukemia (APL). Chemotherapy resistance is one of the major problems in cancer therapy. Necroptosis, can overcomes resistance to apoptosis, and can promote cancer treatment. This study examines the necroptosis pathway in A549 cancer cells exposed to ATO. METHODS We used the MTT test to determine the ATO effects on the viability of A549 cells at three different time intervals. Also, the reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were performed in three-time intervals. The effect of ATO on apoptosis was evaluated by Annexin V / PI staining and, the RIPK1 and MLKL gene expression were measured by Real-Time PCR. RESULTS The ATO has dose and time-dependent cytotoxic effects, so at 24, 48, and 72 h, the IC50 doses were 33.81 '11.44 '2.535 µM respectively. A 50 μM ATO is the most appropriate to increase the MMP loss significantly at all three times. At 24 and 48 h after exposure of cells to ATO, the ROS levels increased. The RIPK1 gene expression increased significantly compared to the control group at concentrations of 50 and 100 μM; however, MLKL gene expression decreased. CONCLUSIONS The A549 cells, after 48 h exposure to ATO at 50 and 100 μM, induces apoptosis and necroptosis. Due to the reduced expression of MLKL, it can be concluded that ATO is probably effective in the metastatic stage of cancer cells.
Collapse
Affiliation(s)
- Maryam Jamil
- Department of Pharmacology & Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Student research committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Safa
- Department of Clinical Pharmacy, School of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amin Reza Nikpoor
- Depertment of Medical Immunology, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnoosh Mokhtarinejad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Saghar Naybandi Zadeh
- Department of Pharmacognosy and Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Amir Shadboorestan
- Department of Toxicology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahmoud Omidi
- Department of Pharmacology & Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
4
|
Luo A, Wu Z, Li S, McReynolds CB, Wang D, Liu H, Huang C, He T, Zhang X, Wang Y, Liu C, Hammock BD, Hashimoto K, Yang C. The soluble epoxide hydrolase inhibitor TPPU improves comorbidity of chronic pain and depression via the AHR and TSPO signaling. J Transl Med 2023; 21:71. [PMID: 36732752 PMCID: PMC9896784 DOI: 10.1186/s12967-023-03917-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Patients suffering from chronic pain often also exhibit depression symptoms. Soluble epoxide hydrolase (sEH) inhibitors can decrease blood levels of inflammatory cytokines. However, whether inhibiting sEH signaling is beneficial for the comorbidity of pain and depression is unknown. METHODS According to a sucrose preference test (SPT), spared nerve injury (SNI) mice were classified into pain with or without an anhedonia phenotype. Then, sEH protein expression and inflammatory cytokines were assessed in selected tissues. Furthermore, we used sEH inhibitor TPPU to determine the role of sEH in chronic pain and depression. Importantly, agonists and antagonists of aryl hydrocarbon receptor (AHR) and translocator protein (TSPO) were used to explore the pathogenesis of sEH signaling. RESULTS In anhedonia-susceptible mice, the tissue levels of sEH were significantly increased in the medial prefrontal cortex (mPFC), hippocampus, spinal cord, liver, kidney, and gut. Importantly, serum CYP1A1 and inflammatory cytokines, such as interleukin 1β (IL-1β) and the tumor necrosis factor α (TNF-α), were increased simultaneously. TPPU improved the scores of mechanical withdrawal threshold (MWT) and SPT, and decreased the levels of serum CYP1A1 and inflammatory cytokines. AHR antagonist relieved the anhedonia behaviors but not the algesia behaviors in anhedonia-susceptible mice, whereas an AHR agonist abolished the antidepressant-like effect of TPPU. In addition, a TSPO agonist exerted a similar therapeutic effect to that of TPPU, whereas pretreatment with a TSPO antagonist abolished the antidepressant-like and analgesic effects of TPPU. CONCLUSIONS sEH underlies the mechanisms of the comorbidity of chronic pain and depression and that TPPU exerts a beneficial effect on anhedonia behaviors in a pain model via AHR and TSPO signaling.
Collapse
Affiliation(s)
- Ailin Luo
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zifeng Wu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Shan Li
- grid.33199.310000 0004 0368 7223Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Cindy B. McReynolds
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616 USA
| | - Di Wang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Hanyu Liu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Chaoli Huang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China ,grid.41156.370000 0001 2314 964XState Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, Nanjing University, Nanjing, 210061 China
| | - Teng He
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Xinying Zhang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Yuanyuan Wang
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Cunming Liu
- grid.412676.00000 0004 1799 0784Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029 China
| | - Bruce D. Hammock
- grid.27860.3b0000 0004 1936 9684Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616 USA
| | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, 260-8670, Japan.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Shen C, Cai Y, Li J, He C, Zuo Z. Mepanipyrim induces visual developmental toxicity and vision-guided behavioral alteration in zebrafish larvae. J Environ Sci (China) 2023; 124:76-88. [PMID: 36182181 DOI: 10.1016/j.jes.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 06/16/2023]
Abstract
Mepanipyrim, an anilinopyrimidine fungicide, has been extensively used to prevent fungal diseases in fruit culture. Currently, research on mepanipyrim-induced toxicity in organisms is still very scarce, especially visual developmental toxicity. Here, zebrafish larvae were employed to investigate mepanipyrim-induced visual developmental toxicity. Intense light and monochromatic light stimuli-evoked escape experiments were used to investigate vision-guided behaviors. Meanwhile, transcriptomic sequencing and real-time quantitative PCR assays were applied to assess the potential mechanisms of mepanipyrim-induced visual developmental toxicity and vision-guided behavioral alteration. Our results showed that mepanipyrim exposure could induce retinal impairment and vision-guided behavioral alteration in larval zebrafish. In addition, the grk1b gene of the phototransduction signaling pathway was found to be a potential aryl hydrocarbon receptor (AhR)-regulated gene. Mepanipyrim-induced visual developmental toxicity was potentially related to the AhR signaling pathway. Furthermore, mepanipyrim-induced behavioral alteration was guided by the visual function, and the effects of mepanipyrim on long and middle wavelength light-sensitive opsins may be the main cause of vision-guided behavioral alteration. Our results provide insights into understanding the relationship between visual development and vision-guided behaviors induced by mepanipyrim exposure.
Collapse
Affiliation(s)
- Chao Shen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yimei Cai
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Jialing Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Yan X, Lin T, Zhu Q, Zhang Y, Song Z, Pan X. Naringenin protects against acute pancreatitis-associated intestinal injury by inhibiting NLRP3 inflammasome activation via AhR signaling. Front Pharmacol 2023; 14:1090261. [PMID: 36713830 PMCID: PMC9881748 DOI: 10.3389/fphar.2023.1090261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Background: In this study, we examined the functions and mechanisms by which naringenin protects against SAP (severe acute pancreatitis)-related intestinal injury by modulating the AhR/NLRP3 signaling pathway. Material and methods: Fifteen healthy male C57BL/6 mice were randomly divided into SAP (n = 12) and normal (n = 3) groups. Mice in the SAP group received caerulein and lipopolysaccharide intraperitoneal injections and were then randomly assigned to the SAP, NAR, CH223191, and Dexamethasone (DEX) groups. Pathological changes in the pancreatic and intestinal mucosa were observed by Hematoxylin & Eosin (H&E) staining. In vitro, RAW264.7 cells were exposed to lipopolysaccharide and treated with naringenin. The levels of NLRP3, AhR, IL-1β, TNF, and IL-6 in the SAP model and RAW264.7 cells were evaluated by enzyme-linked immunosorbent assay (ELISA), quantitative real-time PCR (qRT-PCR), western blot, and immunohistochemistry. The nuclear translocation of AhR was shown by immunofluorescence. AutoDockTools was used to predict the conformations of naringenin-AhR binding, and PyMol 2.4 was used to visualize the conformations. Results: Mouse pancreatic and intestinal injury was alleviated by treatment with naringenin. Naringenin inhibited the activation of the NLRP3 inflammasome and inhibited damage to intestinal tight junctions. Moreover, naringenin increased AhR nuclear translocation and activated the AhR pathway. Conclusion: Naringenin can reduce SAP-associated intestinal injury by inhibiting the activation of the NLRP3 inflammasome via the AhR signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | - Xinting Pan
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
7
|
da Silva JF, Bolsoni JA, da Costa RM, Alves JV, Bressan AFM, Silva LEV, Costa TJ, Oliveira AER, Manzato CP, Aguiar CA, Fazan R, Cunha FQ, Nakaya HI, Carneiro FS, Tostes RC. Aryl-hydrocarbon receptor (AhR) activation contributes to high-fat diet-induced vascular dysfunction. Br J Pharmacol 2022; 179:2938-2952. [PMID: 34978070 DOI: 10.1111/bph.15789] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Metabolic and vascular dysfunction are common features of obesity. Aryl hydrocarbons receptors (AhR) regulate lipid metabolism and vascular homeostasis, but whether vascular AhR are activated in obesity or if AhR have protective or harmful effects on vascular function in obesity are not known. Thus, our study addressed whether AhR activation contributes to obesity-associated vascular dysfunction and the mechanisms involved in the AhR effects. EXPERIMENTAL APPROACH Male AhRKO (AhR knockout) and WT (wild type) mice were fed either a control or a HF (high-fat) diet for ten weeks. Metabolic and inflammatory parameters were measured in serum and adipose tissue. Vascular reactivity (isometric force) was evaluated using a myography. eNOS and AhR protein expression was determined by Western blot; Cyp1A1 and eNOS gene expression by RT-PCR. Nitric oxide (NO) production was quantified by DAF fluorescence. KEY RESULTS HF diet increased serum total, HDL, and LDL cholesterol, as well as vascular AhR protein expression and proinflammatory cytokines in the adipose tissue. HF diet decreased endothelium-dependent vasodilation. AhR deletion protected mice from HF diet-induced dyslipidemia, weight gain, and inflammatory processes. HF diet-induced endothelial dysfunction was attenuated in AhRKO mice. Vessels from AhRKO mice exhibited a greater NO reserve. In cultured endothelial cells, lysophosphatidylcholine (LPC, a major component of LDL and oxLDL) reduced eNOS gene expression and NO production. Antagonism of AhR abrogated LPC effects on endothelial cells and LPC-induced decreased endothelium-dependent vasodilation. CONCLUSION AND IMPLICATIONS AhR deletion attenuates HF diet-induced dyslipidemia and vascular dysfunction by improving eNOS/NO signalling. Targeting AhR may prevent obesity-associated vascular dysfunction.
Collapse
Affiliation(s)
- Josiane Fernandes da Silva
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Juliana A Bolsoni
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rafael M da Costa
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Academic Unit on Health Sciences, Jataí Federal University, Jataí, Brazil
| | - Juliano V Alves
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Alecsander F M Bressan
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Luiz Eduardo V Silva
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | | | - Antonio E R Oliveira
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil.,Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil
| | - Carla P Manzato
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Carlos A Aguiar
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rubens Fazan
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Sao Paulo, Brazil.,Israelita Albert Einstein Hospital, Sao Paulo, Brazil
| | - Fernando S Carneiro
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Rita C Tostes
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
8
|
Keshavarzi M, Moradbeygi F, Mobini K, Ghaffarian Bahraman A, Mohammadi P, Ghaedi A, Mohammadi-Bardbori A. The interplay of aryl hydrocarbon receptor/WNT/CTNNB1/Notch signaling pathways regulate amyloid beta precursor mRNA/protein expression and effected the learning and memory of mice. Toxicol Res (Camb) 2021; 11:147-161. [PMID: 35237419 PMCID: PMC8882790 DOI: 10.1093/toxres/tfab120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/31/2022] Open
Abstract
The amyloid beta precursor protein (APP) plays a pathophysiological role in the development of Alzheimer's disease as well as a physiological role in neuronal growth and synaptogenesis. The aryl hydrocarbon receptor (AhR)/WNT/Catenin Beta 1 (CTNNB1)/Notch signaling pathways stamp in many functions, including development and growth of neurons. However, the regulatory role of AhR-/WNT-/CTNNB1-/Notch-induced APP expression and its influence on hippocampal-dependent learning and memory deficits is not clear. Male BALB/C mice received 6-formylindolo[3,2-b]carbazole (an AhR agonist), CH223191(an AhR antagonist), DAPT (an inhibitor of Notch signaling), and XAV-939 (a WNT pathway inhibitor) at a single dose of 100 μg/kg, 1, 5 , and 5 mg/kg of body weight, respectively, via intraperitoneal injection alone or in combination. Gene expression analyses and protein assay were performed on the 7th and 29th days. To assess the hippocampal-dependent memory, all six mice also underwent contextual fear conditioning on the 28th day after treatments. Our results showed that endogenous ligand of AhR has a regulatory effect on APP gene. Also, the interaction of AhR/WNT/CTNNB1 has a positive regulatory effect, but Notch has a negative regulatory effect on the mRNA and protein expression of APP, which have a correlation with mice's learning skills and memory.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Keivan Mobini
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Ali Ghaffarian Bahraman
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran,Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Parisa Mohammadi
- Department of Environmental Health, Faculty of Health, Sabzevar University of Medical Sciences, Sabzevar 7146864685, Iran
| | - Afsaneh Ghaedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Afshin Mohammadi-Bardbori
- Correspondence address. Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran. Tel.: +98(71)32425374; Fax: +98(71)32424326; E-mail:
| |
Collapse
|
9
|
Ghaffarian-Bahraman A, Arabnezhad MR, Keshavarzi M, Davani-Davari D, Jamshidzadeh A, Mohammadi-Bardbori A. Influence of cellular redox environment on aryl hydrocarbon receptor ligands induced melanogenesis. Toxicol In Vitro 2021; 79:105282. [PMID: 34856342 DOI: 10.1016/j.tiv.2021.105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/07/2021] [Accepted: 11/23/2021] [Indexed: 11/25/2022]
Abstract
Many environmental pollutants, natural compounds, as well as endogenous chemicals exert their biological/toxicological effects by reacting with the aryl hydrocarbon receptor (AhR). Previous evidence shed new light on the role of AhR in skin physiology by regulating melanin production. In this study, we investigated the effect of oxidative imbalance induced by AhR ligands on the melanogenesis process in B16 murine melanoma cells. Exposure to 6-formylindolo[3,2-b] carbazole (FICZ) or benzo-α-pyrene (BαP) led to enhanced expression of CTNNB1, MITF, and TYR genes following increased tyrosinase enzyme activity and melanin content in an AhR-dependent manner. Analysis of the presence of reactive oxygen species (ROS) as well as reduced glutathione (GSH) / oxidized glutathione (GSSG) ratio revealed that treatment with AhR ligands is associated with oxidative stress which can be ameliorated with NAC (N-acetyl cysteine) or diphenyleneiodonium chloride (DPI). On the other hand, NAC and DPI enhanced melanogenesis induced by AhR ligands by reducing the level of ROS. We have shown for the first time that a cellular redox status is a critical event during AhR ligand-induced melanogenesis.
Collapse
Affiliation(s)
- Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran; Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad-Reza Arabnezhad
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Majid Keshavarzi
- Department of Environmental Health Engineering, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Dorna Davani-Davari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Akram Jamshidzadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran.
| |
Collapse
|
10
|
Huang Y, Zhang J, Tao Y, Ji C, Aniagu S, Jiang Y, Chen T. AHR/ROS-mediated mitochondria apoptosis contributes to benzo[a]pyrene-induced heart defects and the protective effects of resveratrol. Toxicology 2021; 462:152965. [PMID: 34597721 DOI: 10.1016/j.tox.2021.152965] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene (BaP), a prototypical polycyclic aromatic hydrocarbon, is widely present in the environment. BaP-induced heart defects have been frequently reported, but the underlying molecular mechanisms remain elusive. Here, we found that BaP increased heart malformations in zebrafish embryos in a concentration-dependent manner, which were attenuated by supplementation with either CH223191 (CH), an aryl hydrocarbon receptor (AHR) inhibitor, or N-acetyl-l-cysteine (NAC), a reactive oxygen species (ROS) scavenger. While CH and NAC both inhibited BaP-induced ROS generation, NAC had no effect on BaP-induced AHR activation. We further demonstrated that BaP increased mitochondrial ROS, decreased mitochondrial membrane potential, and caused endogenous apoptosis, with all these effects being counteracted by supplementation with either CH or NAC. Resveratrol (RSV), a natural AHR antagonist and ROS scavenger, also counteracted the heart malformations caused by BaP. Further experiments showed that RSV attenuated BaP-induced oxidative stress, mitochondrial damage and apoptosis, but had no significant effect on AHR activation. In conclusion, our findings show that BaP induces oxidative stress via AHR activation, which causes mitochondria-mediated intrinsic apoptosis, resulting in heart malformations in zebrafish embryos, and that RSV had a protective effect against BaP-induced heart defects mainly by inhibiting oxidative stress rather than through antagonism of AHR activity.
Collapse
Affiliation(s)
- Yujie Huang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Yizhou Tao
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment, and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- School of Biology and Basic Medical Sciences, Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
11
|
Liu JR, Miao H, Deng DQ, Vaziri ND, Li P, Zhao YY. Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation. Cell Mol Life Sci 2021; 78:909-922. [PMID: 32965514 PMCID: PMC11073292 DOI: 10.1007/s00018-020-03645-1] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/31/2020] [Accepted: 09/12/2020] [Indexed: 02/06/2023]
Abstract
The gut microbiota has a crucial effect on regulating the intestinal mucosal immunity and maintaining intestinal homeostasis both in health and in disease state. Many effects are mediated by gut microbiota-derived metabolites and tryptophan, an essential aromatic amino acid, is considered important among many metabolites in the crosstalk between gut microbiota and the host. Kynurenine, serotonin, and indole derivatives are derived from the three major tryptophan metabolism pathways modulated by gut microbiota directly or indirectly. Aryl hydrocarbon receptor (AHR) is a cytoplasmic ligand-activated transcription factor involved in multiple cellular processes. Tryptophan metabolites as ligands can activate AHR signaling in various diseases such as inflammation, oxidative stress injury, cancer, aging-related diseases, cardiovascular diseases (CVD), and chronic kidney diseases (CKD). Accumulated uremic toxins in the body fluids of CKD patients activate AHR and affect disease progression. In this review, we will elucidate the relationship between gut microbiota-derived uremic toxins by tryptophan metabolism and AHR activation in CKD and its complications. This review will provide therapeutic avenues for targeting CKD and concurrently present challenges and opportunities for designing new therapeutic strategies against renal fibrosis.
Collapse
Affiliation(s)
- Jing-Ru Liu
- Faculty of Life Science, & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - Hua Miao
- Faculty of Life Science, & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China
| | - De-Qiang Deng
- Department of Nephrology, Urumqi Chinese Medicine Hospital, No. 590 Fridenly South Road, Urumqi, 830000, Xinjiang Uygur Autonomous Region, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Department of Nephrology, Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Ying-Yong Zhao
- Faculty of Life Science, & Medicine, Northwest University, No. 229 Taibai North Road, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
12
|
Guerrina N, Aloufi N, Shi F, Prasade K, Mehrotra C, Traboulsi H, Matthews J, Eidelman DH, Hamid Q, Baglole CJ. The aryl hydrocarbon receptor reduces LC3II expression and controls endoplasmic reticulum stress. Am J Physiol Lung Cell Mol Physiol 2020; 320:L339-L355. [PMID: 33236922 DOI: 10.1152/ajplung.00122.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor whose physiological function is poorly understood. The AhR is highly expressed in barrier organs such as the skin, intestine, and lung. The lungs are continuously exposed to environmental pollutants such as cigarette smoke (CS) that can induce cell death mechanisms such as apoptosis, autophagy, and endoplasmic reticulum (ER) stress. CS also contains toxicants that are AhR ligands. We have previously shown that the AhR protects against apoptosis, but whether the AhR also protects against autophagy or ER stress is not known. Using cigarette smoke extract (CSE) as our in vitro surrogate of environmental tobacco exposure, we first assessed the conversion of LC3I to LC3II, a classic feature of both autophagic and ER stress-mediated cell death pathways. LC3II was elevated in CSE-exposed lung structural cells [mouse lung fibroblasts (MLFs), MLE12 and A549 cells] when AhR was absent. However, this heightened LC3II expression could not be explained by increased expression of key autophagy genes (Gabarapl1, Becn1, Map1lc3b), upregulation of upstream autophagic machinery (Atg5-12, Atg3), or impaired autophagic flux, suggesting that LC3II may be autophagy independent. This was further supported by the absence of autophagosomes in Ahr-/- lung cells. However, Ahr-/- lung cells had widespread ER dilation, elevated expression of the ER stress markers CHOP and GADD34, and an accumulation of ubiquitinated proteins. These findings collectively illustrate a novel role for the AhR in attenuating ER stress by a mechanism that may be autophagy independent.
Collapse
Affiliation(s)
- Necola Guerrina
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Noof Aloufi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Fangyi Shi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada
| | - Kashmira Prasade
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Caitlin Mehrotra
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | - Hussein Traboulsi
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jason Matthews
- Department of Nutrition, University of Oslo, Oslo, Norway.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - David H Eidelman
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Qutayba Hamid
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Carolyn J Baglole
- Research Institute of the McGill University Health Centre, McGill University, Montreal, Quebec, Canada.,Department of Pathology, McGill University, Montreal, Quebec, Canada.,Department of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Targeting the aryl hydrocarbon receptor with a novel set of triarylmethanes. Eur J Med Chem 2020; 207:112777. [PMID: 32971427 DOI: 10.1016/j.ejmech.2020.112777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023]
Abstract
The aryl hydrocarbon receptor (AhR) is a chemical sensor upregulating the transcription of responsive genes associated with endocrine homeostasis, oxidative balance and diverse metabolic, immunological and inflammatory processes, which have raised the pharmacological interest on its modulation. Herein, a novel set of 32 unsymmetrical triarylmethane (TAM) class of structures has been synthesized, characterized and their AhR transcriptional activity evaluated using a cell-based assay. Eight of the assayed TAM compounds (14, 15, 18, 19, 21, 22, 25, 28) exhibited AhR agonism but none of them showed antagonist effects. TAMs bearing benzotrifluoride, naphthol or heteroaromatic (indole, quinoline or thiophene) rings seem to be prone to AhR activation unlike phenyl substituted or benzotriazole derivatives. A molecular docking analysis with the AhR ligand binding domain (LBD) showed similarities in the binding mode and in the interactions of the most potent TAM identified 4-(pyridin-2-yl (thiophen-2-yl)methyl)phenol (22) compared to the endogenous AhR agonist 5,11-dihydroindolo[3,2-b]carbazole-12-carbaldehyde (FICZ). Finally, in silico predictions of physicochemical and biopharmaceutical properties for the most potent agonistic compounds were performed and these exhibited acceptable druglikeness and good ADME profiles. To our knowledge, this is the first study assessing the AhR modulatory effects of unsymmetrical TAM class of compounds.
Collapse
|
14
|
Ren F, Ji C, Huang Y, Aniagu S, Jiang Y, Chen T. AHR-mediated ROS production contributes to the cardiac developmental toxicity of PM2.5 in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:135097. [PMID: 31837856 DOI: 10.1016/j.scitotenv.2019.135097] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
Recent studies have shown an association between maternal exposure to ambient fine particle matter (PM2.5) and congenital heart defects in the offspring, but the underlying molecular mechanisms are yet to be elucidated. Previously, we demonstrated that extractable organic matter (EOM) from PM2.5 induced heart defects in zebrafish embryos by activating the aromatic hydrocarbon receptor (AHR). Hence, we hypothesized that AHR mediates excessive reactive oxygen species (ROS) production, leading to the cardiac developmental toxicity of PM2.5. To test our hypothesis, we examined AHR activity and ROS levels in the heart of zebrafish embryos under a fluorescence microscope. mRNA expression levels were then quantified using qPCR whereas DNA damage and apoptosis were detected by immunofluorescence. Our results showed that the AHR inhibitor, CH223191 (CH) as well as the ROS scavenger, N-Acetyl-L-cysteine (NAC), significantly mitigated the PM2.5-induced cardiac malformations in zebrafish embryos. Furthermore, both CH and NAC diminished the EOM-elevated ROS generation, DNA damage and apoptosis in the test system. Incidentally, both CH and NAC attenuated the EOM-induced changes in the mRNA expression of genes involved in cardiac development (nkx2.5, sox9b), oxidative stress (nrf2a, nrf2b, gstp1, gstp2, sod2, ho1, cat) and apoptosis (p53, bax). We further confirmed that AHR activity is a necessary condition for EOM-induced ROS generation, DNA damage and apoptosis, through AHR knockdown. However, the ROS scavenger NAC did not counteract the EOM-induced AHR activity. In conclusion, our findings suggest that AHR mediates EOM-induced oxidative stress, resulting in DNA damage and apoptosis, thereby contributing to the cardiac developmental toxicity of PM2.5.
Collapse
Affiliation(s)
- Fei Ren
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Cheng Ji
- Medical College of Soochow University, Suzhou, China
| | - Yujie Huang
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Stanley Aniagu
- Toxicology, Risk Assessment and Research Division, Texas Commission on Environmental Quality, 12015 Park 35 Cir, Austin, TX, USA
| | - Yan Jiang
- Medical College of Soochow University, Suzhou, China.
| | - Tao Chen
- Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China.
| |
Collapse
|
15
|
Goya-Jorge E, Abdmouleh F, Carpio LE, Giner RM, Sylla-Iyarreta Veitía M. Discovery of 2-aryl and 2-pyridinylbenzothiazoles endowed with antimicrobial and aryl hydrocarbon receptor agonistic activities. Eur J Pharm Sci 2020; 151:105386. [PMID: 32470576 PMCID: PMC7251408 DOI: 10.1016/j.ejps.2020.105386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/19/2022]
Abstract
Benzothiazole is a privileged scaffold in medicinal chemistry present in diverse bioactive compounds with multiple pharmacological applications such as analgesic, anticonvulsant, antidiabetic, anti-inflammatory, anticancer and radioactive amyloidal imagining agents. We reported in this work the study of sixteen functionalized 2-aryl and 2-pyridinylbenzothiazoles as antimicrobial agents and as aryl hydrocarbon receptor (AhR) modulators. The antimicrobial activity against Gram-positive (S. aureus and M. luteus) and Gram-negative (P. aeruginosa, S. enterica and E. coli) pathogens yielded MIC ranging from 3.13 to 50 μg/mL and against the yeast C. albicans, the benzothiazoles displayed MIC from 12.5 to 100 μg/mL. All compounds showed promising antibiofilm activity against S. aureus and P. aeruginosa. The arylbenzothiazole 12 displayed the greatest biofilm eradication in S. aureus (74%) subsequently verified by fluorescence microscopy. The ability of benzothiazoles to modulate AhR expression was evaluated in a cell-based reporter gene assay. Six benzothiazoles (7, 8-10, 12, 13) induced a significant AhR-mediated transcription and interestingly compound 12 was also the strongest AhR-agonist identified. Structure-activity relationships are suggested herein for the AhR-agonism and antibiofilm activities. Furthermore, in silico predictions revealed a good ADMET profile and druglikeness for the arylbenzothiazole 12 as well as binding similarities to AhR compared with the endogenous agonist FICZ.
Collapse
Affiliation(s)
- Elizabeth Goya-Jorge
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València. Av. Vicente Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain; ProtoQSAR SL. CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Av. Benjamin Franklin 12, 46980 Paterna, Valencia, Spain
| | - Fatma Abdmouleh
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 rue Conté, 75003, HESAM Université, Paris, France.; Laboratoire de Biotechnologie Microbienne et d'Ingénierie des Enzymes (LBMIE). Centre de Biotechnologie de Sfax, Université de Sfax, Route de Sidi Mansour Km 6, BP 1177, 3018, Sfax, Tunisie
| | - Laureano E Carpio
- ProtoQSAR SL. CEEI (Centro Europeo de Empresas Innovadoras), Parque Tecnológico de Valencia, Av. Benjamin Franklin 12, 46980 Paterna, Valencia, Spain
| | - Rosa M Giner
- Departament de Farmacologia, Facultat de Farmàcia, Universitat de València. Av. Vicente Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain
| | - Maité Sylla-Iyarreta Veitía
- Equipe de Chimie Moléculaire du Laboratoire Génomique, Bioinformatique et Chimie Moléculaire (EA 7528), Conservatoire National des Arts et Métiers (Cnam), 2 rue Conté, 75003, HESAM Université, Paris, France..
| |
Collapse
|
16
|
Venkateswaran N, Lafita-Navarro MC, Hao YH, Kilgore JA, Perez-Castro L, Braverman J, Borenstein-Auerbach N, Kim M, Lesner NP, Mishra P, Brabletz T, Shay JW, DeBerardinis RJ, Williams NS, Yilmaz OH, Conacci-Sorrell M. MYC promotes tryptophan uptake and metabolism by the kynurenine pathway in colon cancer. Genes Dev 2019; 33:1236-1251. [PMID: 31416966 PMCID: PMC6719621 DOI: 10.1101/gad.327056.119] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 07/12/2019] [Indexed: 11/24/2022]
Abstract
Tumors display increased uptake and processing of nutrients to fulfill the demands of rapidly proliferating cancer cells. Seminal studies have shown that the proto-oncogene MYC promotes metabolic reprogramming by altering glutamine uptake and metabolism in cancer cells. How MYC regulates the metabolism of other amino acids in cancer is not fully understood. Using high-performance liquid chromatography (HPLC)-tandem mass spectrometry (LC-MS/MS), we found that MYC increased intracellular levels of tryptophan and tryptophan metabolites in the kynurenine pathway. MYC induced the expression of the tryptophan transporters SLC7A5 and SLC1A5 and the enzyme arylformamidase (AFMID), involved in the conversion of tryptophan into kynurenine. SLC7A5, SLC1A5, and AFMID were elevated in colon cancer cells and tissues, and kynurenine was significantly greater in tumor samples than in the respective adjacent normal tissue from patients with colon cancer. Compared with normal human colonic epithelial cells, colon cancer cells were more sensitive to the depletion of tryptophan. Blocking enzymes in the kynurenine pathway caused preferential death of established colon cancer cells and transformed colonic organoids. We found that only kynurenine and no other tryptophan metabolite promotes the nuclear translocation of the transcription factor aryl hydrocarbon receptor (AHR). Blocking the interaction between AHR and kynurenine with CH223191 reduced the proliferation of colon cancer cells. Therefore, we propose that limiting cellular kynurenine or its downstream targets could present a new strategy to reduce the proliferation of MYC-dependent cancer cells.
Collapse
Affiliation(s)
- Niranjan Venkateswaran
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - M Carmen Lafita-Navarro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yi-Heng Hao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jessica A Kilgore
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lizbeth Perez-Castro
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jonathan Braverman
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Nofit Borenstein-Auerbach
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Min Kim
- Lydia Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Nicholas P Lesner
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Prashant Mishra
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Thomas Brabletz
- Nikolaus-Fiebiger-Center for Molecular Medicine, University Erlangen-Nurnberg, Erlangen 91054, Germany
| | - Jerry W Shay
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, Dallas, Texas 75390, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Omer H Yilmaz
- Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.,Department of Pathology, Massachusetts General Hospital Boston, Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Maralice Conacci-Sorrell
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|