1
|
Jeong H, Ali W, Zinck P, Souissi S, Lee JS. Toxicity of methylmercury in aquatic organisms and interaction with environmental factors and coexisting pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173574. [PMID: 38823721 DOI: 10.1016/j.scitotenv.2024.173574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
Mercury is a hazardous heavy metal that is distributed worldwide in aquatic ecosystems. Methylmercury (MeHg) poses significant toxicity risks to aquatic organisms, primarily through bioaccumulation and biomagnification, due to its strong affinity for protein thiol groups, which results in negative effects even at low concentrations. MeHg exposure can cause various physiological changes, oxidative stress, neurotoxicity, metabolic disorders, genetic damage, and immunotoxicity. To assess the risks of MeHg contamination in actual aquatic ecosystems, it is important to understand how MeHg interacts with environmental factors such as temperature, pH, dissolved organic matter, salinity, and other pollutants such as microplastics and organic compounds. Complex environmental conditions can cause potential toxicity, such as synergistic, antagonistic, and unchanged effects, of MeHg in aquatic organisms. This review focuses on demonstrating the toxic effects of single MeHg exposure and the interactive relationships between MeHg and surrounding environmental factors or pollutants on aquatic organisms. Our review also recommends further research on biological and molecular responses in aquatic organisms to better understand the potential toxicity of combinational exposure.
Collapse
Affiliation(s)
- Haksoo Jeong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Wajid Ali
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France; Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France
| | - Philippe Zinck
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, F-59000 Lille, France
| | - Sami Souissi
- Univ. Lille, CNRS, Univ. Littoral Côte d'Opale, IRD, UMR-8187-LOG, Laboratoire d'Océanologie et de Géosciences, Station Marine de Wimereux, F-59000 Lille, France; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan; Operation Center for Enterprise Academia Networking, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
2
|
Marchese MJ, Zhu T, Hawkey AB, Wang K, Yuan E, Wen J, Be SE, Levin ED, Feng L. Prenatal and perinatal exposure to Per- and polyfluoroalkyl substances (PFAS)-contaminated drinking water impacts offspring neurobehavior and development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170459. [PMID: 38290673 PMCID: PMC10923173 DOI: 10.1016/j.scitotenv.2024.170459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent organic pollutants ubiquitous in the environment and humans. In-utero PFAS exposure is associated with numerous adverse health impacts. However, little is known about how prenatal PFAS mixture exposure affects offspring's neurobehavioral function. This study aims to determine the causal relationship between in-utero PFAS mixture exposure and neurobehavioral changes in Sprague-Dawley rat offspring. Dams were exposed via drinking water to the vehicle (control), an environmentally relevant PFAS mixture, or a high-dose PFAS mixture. The environmentally relevant mixture was formulated to resemble measured tap water levels in Pittsboro, NC, USA (10 PFAS compounds; sum PFAS =758.6 ng/L). The high-dose PFAS load was 3.8 mg/L (5000×), within the range of exposures in the experimental literature. Exposure occurred seven days before mating until birth. Following exposure to PFAS-laden water or the vehicle during fetal development, neurobehavioral toxicity was assessed in male and female offspring with a battery of motor, cognitive, and affective function tests as juveniles, adolescents, and adults. Just before weaning, the environmentally relevant exposure group had smaller anogenital distances compared to the vehicle and high-dose groups on day 17, and males in the environmentally relevant exposure group demonstrated lower weights than the high-dose group on day 21 (p < 0.05). Reflex development delays were seen in negative geotaxis acquisition for both exposure groups compared to vehicle-exposed controls (p = 0.009). Our post-weaning behavioral measures of anxiety, depression, and memory were not found to be affected by maternal PFAS exposure. In adolescence (week five) and adulthood (week eight), the high PFAS dose significantly attenuated typical sex differences in locomotor activity. Maternal exposure to an environmentally relevant PFAS mixture produced developmental delays in the domains of pup weight, anogenital distance, and reflex acquisition for rat offspring. The high-dose PFAS exposure significantly decreased typical sex differences in locomotor activity.
Collapse
Affiliation(s)
| | - Tianyi Zhu
- Duke University Global Health Institute, Durham, NC, USA
| | - Andrew B Hawkey
- Department of Biomedical Sciences, Midwestern University, Downers Grove, IL, USA
| | | | - Emi Yuan
- Duke University, Durham, NC, USA
| | | | | | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
3
|
Carazza-Kessler FG, Campos MS, Bittencourt RR, Rosa-Silva HTD, Brum PO, Silveira AK, Teixeira AA, Ribeiro CT, Peixoto DO, Santos L, Andrade G, Panzenhagen AC, Scheibel IM, Gelain DP, Fonseca Moreira JC. Transgenerational inheritance of methylmercury and vitamin A-induced toxicological effects in a Wistar rats environmental-based model. CHEMOSPHERE 2024; 351:141239. [PMID: 38272134 DOI: 10.1016/j.chemosphere.2024.141239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) and vitamin A (VitA) are two environmental factors with potential health impacts, especially during pregnancy and early childhood. Fish and seafood may present elevated levels of methylmercury (MeHg), the major Hg derivative, and VitA. This study aimed to evaluate the transgenerational effects of exposure to MeHg and/or VitA on epigenetic and toxicological parameters in a Wistar rat model. Our findings revealed persistent toxicological effects in generations F1 and F2 following low/mild doses of MeHg and/or VitA exposure during dams' (F0) gestation and breastfeeding. Toxicological effects observed in F2 included chronic DNA damage, bone marrow toxicity, altered microglial content, reduced neuronal signal, and diminished male longevity. Sex-specific patterns were also observed. Co-exposure to MeHg and VitA showed both synergistic and antagonistic effects. Additionally, the study demonstrated that MeHg and VitA affected histone methylation and caused consistent effects in F2. While MeHg exposure has been associated with transgenerational inheritance effects in other organisms, this study provides the first evidence of transgenerational inheritance of MeHg and VitA-induced toxicological effects in rodents. Although the exact mechanism is not yet fully understood, these findings suggest that MeHg and VitA may perpetuate their impacts across generations. The study highlights the need for remedial policies and interventions to mitigate the potential health problems faced by future generations exposed to MeHg or VitA. Further research is warranted to investigate the transgenerational effects beyond F2 and determine the matrilineal or patrilineal inheritance patterns.
Collapse
Affiliation(s)
- Flávio Gabriel Carazza-Kessler
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Marlene Soares Campos
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Reykla Ramon Bittencourt
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Helen Taís da Rosa-Silva
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Pedro Ozorio Brum
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Alexandre Kléber Silveira
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Alexsander Alves Teixeira
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Camila Tiefensee Ribeiro
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Daniel Oppermann Peixoto
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Giovanni Andrade
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Alana Castro Panzenhagen
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Ingrid Matsubara Scheibel
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo - Laboratório 32, Programa de Pós-Graduação em Biologia Celular e Molecular - Instituto de Biociências - Universidade Federal do Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos 2600 - Prédio Anexo, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| |
Collapse
|
4
|
Wee SY, Aris AZ. Environmental impacts, exposure pathways, and health effects of PFOA and PFOS. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115663. [PMID: 37976959 DOI: 10.1016/j.ecoenv.2023.115663] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals that have been widely utilized in various industries since the 1940s, and have now emerged as environmental contaminants. In recent years, perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) have been restricted and replaced with several alternatives. The high persistence, bioaccumulation, and toxicity of these substances have contributed to their emergence as environmental contaminants, and several aspects of their behavior remain largely unknown and require further investigation. The trace level of PFAS makes the development of a monitoring database challenging. Additionally, the potential health issues associated with PFAS are not yet fully understood due to ongoing research and inadequate evidence (experimental and epidemiological studies), especially with regard to the combined effects of exposure to PFAS mixtures and human health risks from drinking water consumption. This in-depth review offers unprecedented insights into the exposure pathways and toxicological impacts of PFAS, addressing critical knowledge gaps in their behaviors and health implications. It presents a comprehensive NABC-Needs, Approach, Benefits, and Challenges-analysis to guide future strategies for the sustainable monitoring and management of these pervasive environmental contaminants.
Collapse
Affiliation(s)
- Sze Yee Wee
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Biodiversity and Environmental Conservation, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak, Malaysia.
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
5
|
Reardon AJF, Hajihosseini M, Dinu I, Field CJ, Kinniburgh DW, MacDonald AM, Dewey D, England-Mason G, Martin JW. Maternal co-exposure to mercury and perfluoroalkyl acid isomers and their associations with child neurodevelopment in a Canadian birth cohort. ENVIRONMENT INTERNATIONAL 2023; 178:108087. [PMID: 37454627 DOI: 10.1016/j.envint.2023.108087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Perfluoroalkyl acids (PFAAs) within the broader class of per- and polyfluoroalkyl substances (PFAS) are present in human serum as isomer mixtures, but epidemiological studies have yet to address isomer-specific associations with child development and behavior. OBJECTIVES To examine associations between prenatal exposure to 25 PFAAs, including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) isomers, and child neurodevelopment among 490 mother-child pairs in a prospective Canadian birth cohort, the Alberta Pregnancy Outcomes and Nutrition (APrON) study. To consider the influence of a classic neurotoxicant, total mercury (THg), based on its likelihood of co-exposure with PFAAs from common dietary sources. METHODS Maternal blood samples were collected in the second trimester and child neurodevelopment was assessed at 2 years of age using the Bayley Scales of Infant and Toddler Development, 3rd Edition (Bayley-III). Linear or curvilinear multiple regression models were used to examine associations between exposures and neurodevelopment outcomes. RESULTS Select PFAAs were associated with lower Cognitive composite scores, including perfluoroheptanoate (PFHpA) (β = -0.88, 95% confidence interval (CI): -1.7, -0.06) and perfluorododecanoate (PFDoA) (β = -2.0, 95% CI: -3.9, -0.01). Non-linear relationships revealed associations of total PFOS (β = -4.4, 95% CI: -8.3, -0.43), and linear-PFOS (β = -4.0, 95% CI: -7.5, -0.57) and 1m-PFOS (β = -1.8, 95% CI: -3.3, -0.24) isomers with lower Language composite scores. Although there was no effect modification, including THg interaction terms in PFAA models revealed negative associations between perfluorononanoate (PFNA) and Motor (β = -3.3, 95% CI: -6.2, -0.33) and Social-Emotional (β = -3.0, 95% CI: -5.6, -0.40) composite scores. DISCUSSION These findings reinforce previous reports of adverse effects of maternal PFAA exposure during pregnancy on child neurodevelopment. The unique hazards posed from isomers of PFOS justify isomer-specific analysis in future studies. To control for possible confounding, mercury co-exposure may be considered in studies of PFAAs.
Collapse
Affiliation(s)
- Anthony J F Reardon
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada
| | | | - Irina Dinu
- School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - David W Kinniburgh
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Amy M MacDonald
- Alberta Centre for Toxicology, University of Calgary, Calgary, Alberta, Canada
| | - Deborah Dewey
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada; Department of Community Health Science, University of Calgary, Calgary, Alberta, Canada
| | - Gillian England-Mason
- Department of Pediatrics, University of Calgary, Calgary, Alberta, Canada; Owerko Centre at the Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan W Martin
- Division of Analytical and Environmental Toxicology, University of Alberta, Edmonton, Alberta, Canada; Science for Life Laboratory, Department of Environmental Sciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
6
|
Liu Y, Yu G, Zhang R, Feng L, Zhang J. Early life exposure to low-dose perfluorooctane sulfonate disturbs gut barrier homeostasis and increases the risk of intestinal inflammation in offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121708. [PMID: 37100370 DOI: 10.1016/j.envpol.2023.121708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023]
Abstract
Perfluorooctane sulfonate (PFOS), one of the legacy per- and poly-fluoroalkyl substances (PFAS), is associated with multiple adverse health effects on children. However, much remains to be known about its potential impacts on intestinal immune homeostasis during early life. Our study found that PFOS exposure during pregnancy in rats significantly increased the maternal serum levels of interleukin-6 (IL-6) and zonulin, a gut permeability biomarker, and decreased gene expressions of Tight junction protein 1 (Tjp1) and Claudin-4 (Cldn4), the tight junction proteins, in maternal colons on gestation day 20 (GD20). Being exposed to PFOS during pregnancy and lactation in rats significantly decreased the body weight of pups and increased the offspring's serum levels of IL-6 and tumor necrosis factor-α (TNF-α) on postnatal day 14 (PND14), and induced a disrupted gut tight junction, manifested by decreased expressions of Tjp1 in pup's colons on PND14 and increased pup's serum concentrations of zonulin on PND28. By integrating high-throughput 16S rRNA sequencing and metabolomics, we demonstrated that early-life PFOS exposure altered the diversity and composition of gut microbiota that were correlated with the changed metabolites in serum. The altered blood metabolome was associated with increased proinflammatory cytokines in offspring. These changes and correlations were divergent at each developmental stage, and pathways underlying immune homeostasis imbalance were significantly enriched in the PFOS-exposed gut. Our findings provide new evidence for the developmental toxicity of PFOS and its underlying mechanism and explain in part the epidemiological observation of its immunotoxicity.
Collapse
Affiliation(s)
- Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai, 200233, PR China
| | - Guoqi Yu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ruiyuan Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Liping Feng
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, USA
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Akash MSH, Yaqoob A, Rehman K, Imran M, Assiri MA, Al-Rashed F, Al-Mulla F, Ahmad R, Sindhu S. Metabolomics: a promising tool for deciphering metabolic impairment in heavy metal toxicities. Front Mol Biosci 2023; 10:1218497. [PMID: 37484533 PMCID: PMC10357477 DOI: 10.3389/fmolb.2023.1218497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 06/21/2023] [Indexed: 07/25/2023] Open
Abstract
Heavy metals are the metal compounds found in earth's crust and have densities higher than that of water. Common heavy metals include the lead, arsenic, mercury, cadmium, copper, manganese, chromium, nickel, and aluminum. Their environmental levels are consistently rising above the permissible limits and they are highly toxic as enter living systems via inhalation, ingestion, or inoculation. Prolonged exposures cause the disruption of metabolism, altered gene and/or protein expression, and dysregulated metabolite profiles. Metabolomics is a state of the art analytical tool widely used for pathomolecular inv22estigations, biomarkers, drug discovery and validation of biotransformation pathways in the fields of biomedicine, nutrition, agriculture, and industry. Here, we overview studies using metabolomics as a dynamic tool to decipher the mechanisms of metabolic impairment related to heavy metal toxicities caused by the environmental or experimental exposures in different living systems. These investigations highlight the key role of metabolomics in identifying perturbations in pathways of lipid and amino acid metabolism, with a critical role of oxidative stress in metabolic impairment. We present the conclusions with future perspectives on metabolomics applications in meeting emerging needs.
Collapse
Affiliation(s)
| | - Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The Women University, Multan, Pakistan
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed A. Assiri
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Research Division, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
| | - Sardar Sindhu
- Immunology and Microbiology Department, Dasman Diabetes Institute, Dasman, Kuwait
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
8
|
Zhuchen HY, Wang JY, Liu XS, Shi YW. Research Progress on Neurodevelopmental Toxicity in Offspring after Indirect Exposure to PFASs in Early Life. TOXICS 2023; 11:571. [PMID: 37505537 PMCID: PMC10386615 DOI: 10.3390/toxics11070571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/17/2023] [Accepted: 06/18/2023] [Indexed: 07/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are widespread environmental pollutants. There is increasing evidence that PFASs have various adverse health effects, including renal toxicity, metabolic dysfunction, endocrine disruption, and developmental toxicity. PFASs have been found to accumulate in the placenta, and some PFASs can cross the placental barrier and subsequently accumulate in the fetus via the maternal-fetal circulation. An increasing number of studies have shown that early life exposure to PFASs can affect fetal neurodevelopment. This paper reviews the characteristics of indirect exposure to PFASs in early life, the effects on neurodevelopment in offspring, and the possible mechanisms of toxic effects.
Collapse
Affiliation(s)
- Huai-Yu Zhuchen
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Yu Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiao-Shan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Yan-Wei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Guangzhou 510000, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
9
|
Yu G, Wang J, Liu Y, Luo T, Meng X, Zhang R, Huang B, Sun Y, Zhang J. Metabolic perturbations in pregnant rats exposed to low-dose perfluorooctanesulfonic acid: An integrated multi-omics analysis. ENVIRONMENT INTERNATIONAL 2023; 173:107851. [PMID: 36863164 DOI: 10.1016/j.envint.2023.107851] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/22/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Emerging epidemiological evidence has linked per- and polyfluoroalkyl substances (PFAS) exposure could be linked to the disturbance of gestational glucolipid metabolism, but the toxicological mechanism is unclear, especially when the exposure is at a low level. This study examined the glucolipid metabolic changes in pregnant rats treated with relatively low dose perfluorooctanesulfonic acid (PFOS) through oral gavage during pregnancy [gestational day (GD): 1-18]. We explored the molecular mechanisms underlying the metabolic perturbation. Oral glucose tolerance test (OGTT) and biochemical tests were performed to assess the glucose homeostasis and serum lipid profiles in pregnant Sprague-Dawley (SD) rats randomly assigned to starch, 0.03 and 0.3 mg/kg·bw·d groups. Transcriptome sequencing combined with non-targeted metabolomic assays were further performed to identify differentially altered genes and metabolites in the liver of maternal rats, and to determine their correlation with the maternal metabolic phenotypes. Results of transcriptome showed that differentially expressed genes at 0.03 and 0.3 mg/kg·bw·d PFOS exposure were related to several metabolic pathways, such as peroxisome proliferator-activated receptors (PPARs) signaling, ovarian steroid synthesis, arachidonic acid metabolism, insulin resistance, cholesterol metabolism, unsaturated fatty acid synthesis, bile acid secretion. The untargeted metabolomics identified 164 and 158 differential metabolites in 0.03 and 0.3 mg/kg·bw·d exposure groups, respectively under negative ion mode of Electrospray Ionization (ESI-), which could be enriched in metabolic pathways such as α-linolenic acid metabolism, glycolysis/gluconeogenesis, glycerolipid metabolism, glucagon signaling pathway, glycine, serine and threonine metabolism. Co-enrichment analysis indicated that PFOS exposure may disturb the metabolism pathways of glycerolipid, glycolysis/gluconeogenesis, linoleic acid, steroid biosynthesis, glycine, serine and threonine. The key involved genes included down-regulated Ppp1r3c and Abcd2, and up-regulated Ogdhland Ppp1r3g, and the key metabolites such as increased glycerol 3-phosphate and lactosylceramide were further identified. Both of them were significantly associated with maternal fasting blood glucose (FBG) level. Our findings may provide mechanistic clues for clarifying metabolic toxicity of PFOS in human, especially for susceptible population such as pregnant women.
Collapse
Affiliation(s)
- Guoqi Yu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jinguo Wang
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Yongjie Liu
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Tingyu Luo
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Xi Meng
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ruiyuan Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Bo Huang
- School of Public Health, Guilin Medical University, Guilin 541001, China
| | - Yan Sun
- School of Public Health, Guilin Medical University, Guilin 541001, China.
| | - Jun Zhang
- Ministry of Education -Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
10
|
Wu X, Li P, Tao J, Chen X, Zhang A. Subchronic Low-Dose Methylmercury Exposure Accelerated Cerebral Telomere Shortening in Relevant with Declined Urinary aMT6s Level in Rats. TOXICS 2023; 11:191. [PMID: 36851065 PMCID: PMC9961034 DOI: 10.3390/toxics11020191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Methylmercury (MeHg) is a global pollutant with established toxic effects on the central nervous system (CNS). However, early events and early-warning biomarkers of CNS damage following exposure to low-dose MeHg are still lacking. This study aimed to investigate whether subchronic low-dose MeHg exposure had adverse effects on the cerebral telomere length, as well as serum melatonin and its urinary metabolite 6-sulfatoxymelatonin (aMT6s) in rats. Sixteen male Sprague Dawley rats were divided into two groups. Group I was the control group. In group II, rats were exposed to MeHg by gavage at a dose of 0.1 mg/kg/day for 3 months. This study revealed that MeHg exposure resulted in impairment of learning and memory ability, a slightly reduced number of neurons and an irregular arrangement of neurons in the hippocampus. It also significantly accelerated telomere shortening in the cerebral cortex, hippocampus and hypothalamus. Moreover, MeHg exposure decreased the levels of melatonin in serum and aMT6s in urine, partly by suppressing the synthesis of 5-hydroxytryptamine (5-HT) in the brain but promoted the expression of melatonin-catalyzing AANAT and ASMT. Importantly, cerebral telomere length was positively correlated with MT and aMT6s after MeHg exposure. These results suggested that the shortened telomere length in the brain may be an early event in MeHg-induced CNS toxicity, and the level of aMT6s in urine may serve as an early-warning biomarker for MeHg-induced CNS damage.
Collapse
Affiliation(s)
- Xi Wu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Junyan Tao
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Xiong Chen
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| |
Collapse
|
11
|
Yao H, Fu Y, Weng X, Zeng Z, Tan Y, Wu X, Zeng H, Yang Z, Li Y, Liang H, Wu Y, Wen L, Jing C. The Association between Prenatal Per- and Polyfluoroalkyl Substances Exposure and Neurobehavioral Problems in Offspring: A Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20031668. [PMID: 36767045 PMCID: PMC9914055 DOI: 10.3390/ijerph20031668] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 05/30/2023]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy has been suggested to be associated with neurobehavioral problems in offspring. However, current epidemiological studies on the association between prenatal PFAS exposure and neurobehavioral problems among offspring, especially attention deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD), are inconsistent. Therefore, we aimed to study the relationship between PFAS exposure during pregnancy and ADHD and ASD in offspring based on meta-analyses. Online databases, including PubMed, EMBASE, and Web of Science, were searched comprehensively for eligible studies conducted before July 2021. Eleven studies (up to 8493 participants) were included in this analysis. The pooled results demonstrated that exposure to perfluorooctanoate (PFOA) was positively associated with ADHD in the highest quartile group. Negative associations were observed between perfluorooctane sulfonate (PFOS) and ADHD/ASD, including between perfluorononanoate (PFNA) and ASD. There were no associations found between total PFAS concentration groups and neurobehavioral problems. The trial sequential analyses showed unstable results. Our findings indicated that PFOA and PFOS exposure during pregnancy might be associated with ADHD in offspring and that prenatal PFOS and PFNA exposure might be associated with ASD in offspring. According to the limited evidence obtained for most associations, additional studies are required to validate these findings.
Collapse
Affiliation(s)
- Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingyin Fu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xueqiong Weng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zurui Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yuxuan Tan
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Huixian Zeng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Zhiyu Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No. 601 Huangpu Ave West, Guangzhou 510632, China
- Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou 510632, China
| |
Collapse
|
12
|
Yaqoob A, Rehman K, Akash MSH, Alvi M, Shoaib SM. Biochemical profiling of metabolomics in heavy metal-intoxicated impaired metabolism and its amelioration using plant-based bioactive compound. Front Mol Biosci 2022; 9:1029729. [PMID: 36330218 PMCID: PMC9623090 DOI: 10.3389/fmolb.2022.1029729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/28/2022] [Indexed: 07/25/2023] Open
Abstract
Exposure to Pb is widely spreading and has far-reaching negative effects on living systems. This study aimed to investigate the toxic effects of Pb, through biochemical profiling and the ameliorative effects of quercetin against Pb-toxicity. Twenty-five male Wistar albino mice were divided into the following five groups. The CON-group received normal saline; the Pb-group received PbAc; the Pb + Q-CRN group received lead acetate followed by quercetin; the Q-CRN group received quercetin; and the CRN group received corn oil. After 4 weeks, the mice were euthanized. It was speculated that Pb significantly increased the levels of serine, threonine, and asparagine and decreased the levels of valine, lysine, and glutamic acid in the plasma of Pb-group, thus impairing amino acid metabolism. However, in the Pb + Q-CRN group, the level of these six amino acids was restored significantly due to the ameliorative effect of quercetin. The presence of lipid metabolites (L-carnitine, sphinganine, phytosphingosine, and lysophosphatidylcholine) in mice serum was confirmed by ESI/MS. The GPx, SOD, GSH, and CAT levels were significantly decreased, and the MDA level was significantly increased, thus confirming the oxidative stress and lipid peroxidation in the Pb group. The antioxidant effect of quercetin was elucidated in the Pb + Q-CRN group. Expression of CPT-I, CPT-II, LCAT, CROT, CACT, and MTR genes was significantly upregulated in the liver of Pb goup mice. Hence, the findings of this study proved that Pb exposure induced oxidative stress, upregulated gene expression, and impaired the lipid and amino acid metabolism in mice.
Collapse
Affiliation(s)
- Azka Yaqoob
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Kanwal Rehman
- Department of Pharmacy, The University Multan, Multan, Pakistan
| | | | - Maria Alvi
- Department of Pharmaceutical Chemistry, Government College University, Faisalabad, Pakistan
| | - Syed Muhammad Shoaib
- Drugs Testing Laboratory, Faisalabad, Primary & Secondary Healthcare Department, Government of the Punjab, Faisalabad, Pakistan
| |
Collapse
|
13
|
Brown-Leung JM, Cannon JR. Neurotransmission Targets of Per- and Polyfluoroalkyl Substance Neurotoxicity: Mechanisms and Potential Implications for Adverse Neurological Outcomes. Chem Res Toxicol 2022; 35:1312-1333. [PMID: 35921496 PMCID: PMC10446502 DOI: 10.1021/acs.chemrestox.2c00072] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of persistent environmental pollutants that are ubiquitously found in the environment and virtually in all living organisms, including humans. PFAS cross the blood-brain barrier and accumulate in the brain. Thus, PFAS are a likely risk for neurotoxicity. Studies that measured PFAS levels in the brains of humans, polar bears, and rats have demonstrated that some areas of the brain accumulate greater amounts of PFAS. Moreover, in humans, there is evidence that PFAS exposure is associated with attention-deficit/hyperactivity disorder (ADHD) in children and an increased cause of death from Parkinson's disease and Alzheimer's disease in elderly populations. Given possible links to neurological disease, critical analyses of possible mechanisms of neurotoxic action are necessary to advance the field. This paper critically reviews studies that investigated potential mechanistic causes for neurotoxicity including (1) a change in neurotransmitter levels, (2) dysfunction of synaptic calcium homeostasis, and (3) alteration of synaptic and neuronal protein expression and function. We found growing evidence that PFAS exposure causes neurotoxicity through the disruption of neurotransmission, particularly the dopamine and glutamate systems, which are implicated in age-related psychiatric illnesses and neurodegenerative diseases. Evaluated research has shown there are highly reproduced increased glutamate levels in the hippocampus and catecholamine levels in the hypothalamus and decreased dopamine in the whole brain after PFAS exposure. There are significant gaps in the literature relative to the assessment of the nigrostriatal system (striatum and ventral midbrain) among other regions associated with PFAS-associated neurologic dysfunction observed in humans. In conclusion, evidence suggests that PFAS may be neurotoxic and associated with chronic and age-related psychiatric illnesses and neurodegenerative diseases. Thus, it is imperative that future mechanistic studies assess the impact of PFAS and PFAS mixtures on the mechanism of neurotransmission and the consequential functional effects.
Collapse
Affiliation(s)
- Josephine M Brown-Leung
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jason R Cannon
- School of Health Sciences, Purdue University, West Lafayette, Indiana 47907, United States
- Purdue Institute for Integrative Neurosciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Starnes HM, Rock KD, Jackson TW, Belcher SM. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. FRONTIERS IN TOXICOLOGY 2022; 4:881584. [PMID: 35480070 PMCID: PMC9035516 DOI: 10.3389/ftox.2022.881584] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.
Collapse
|
15
|
Crépet A, Vasseur P, Jean J, Badot PM, Nesslany F, Vernoux JP, Feidt C, Mhaouty-Kodja S. Integrating Selection and Risk Assessment of Chemical Mixtures: A Novel Approach Applied to a Breast Milk Survey. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:35001. [PMID: 35238606 PMCID: PMC8893236 DOI: 10.1289/ehp8262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND One of the main challenges of modern risk assessment is to account for combined exposure to the multitude of various substances present in food and the environment. OBJECTIVE The present work proposes a methodological approach to perform chemical risk assessment of contaminant mixtures across regulatory silos regarding an extensive range of substances and to do so when comprehensive relevant data concerning the specific effects and modes of action of the mixture components are not available. METHODS We developed a complete step-by-step approach using statistical methods to prioritize substances involved in combined exposure, and we used a component-based approach to cumulate the risk using dose additivity. The most relevant toxicological end point and the associated reference point were selected from the literature to construct a toxicological threshold for each substance. DISCUSSION By applying the proposed method to contaminants in breast milk, we observed that among the 19 substances comprising the selected mixture, ∑DDT, ∑PCBi, and arsenic were main joint contributors to the risk of neurodevelopmental and thyroid effects for infants. In addition, ∑PCCD/F contributed to the thyroid effect and ∑aldrin-dieldrin to the neurodevelopmental effect. Our case study on contaminants in breast milk demonstrated the importance of crossing regulatory silos when studying mixtures and the importance of identifying risk drivers to regulate the risk related to environmental contamination. Applying this method to another set of data, such as human biomonitoring or in ecotoxicology, will reinforce its relevance for risk assessment. https://doi.org/10.1289/EHP8262.
Collapse
Affiliation(s)
- Amélie Crépet
- Methodology and Studies Unit, Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France
| | - Paule Vasseur
- Université de Lorraine, Centre national de la recherche scientifique (CNRS), Laboratoire Interdisciplinaire des Environnements Continentaux, Metz, France
| | - Julien Jean
- Methodology and Studies Unit, Risk Assessment Department, French Agency for Food, Environmental and Occupational Health and Safety, Maisons-Alfort, France
| | - Pierre-Marie Badot
- Chrono-Environment Department, Franche-Comté University, CNRS, Besançon, France
| | - Fabrice Nesslany
- Université de Lille, Centre Hospitalier Universitaire de Lille, Institut Pasteur de Lille, EA4483-IMPacts de l’Environnement Chimique sur la Santé Humaine, Lille, France
- Laboratoire de Toxicologie Génétique, Institut Pasteur de Lille, Lille, France
| | - Jean-Paul Vernoux
- Université de Caen Normandie, Unité de Recherche Aliments Bioprocédés Toxicologie Environnements, EA4651, Caen, France
| | - Cyril Feidt
- Université de Lorraine, Unité de Recherche Animal et Fonctionnalités des Produits Animaux, Nancy, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université, CNRS, Institut national de la santé et de la recherche médicale, Neuroscience Paris Seine—Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
16
|
Sun J, Fang R, Wang H, Xu DX, Yang J, Huang X, Cozzolino D, Fang M, Huang Y. A review of environmental metabolism disrupting chemicals and effect biomarkers associating disease risks: Where exposomics meets metabolomics. ENVIRONMENT INTERNATIONAL 2022; 158:106941. [PMID: 34689039 DOI: 10.1016/j.envint.2021.106941] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/03/2021] [Accepted: 10/12/2021] [Indexed: 05/27/2023]
Abstract
Humans are exposed to an ever-increasing number of environmental toxicants, some of which have gradually been elucidated to be important risk factors for metabolic diseases, such as diabetes and obesity. These metabolism-sensitive diseases typically occur when key metabolic and signaling pathways were disrupted, which can be influenced by the exposure to contaminants such as endocrine disrupting chemicals (EDCs), along with genetic and lifestyle factors. This promotes the concept and research on environmental metabolism disrupting chemicals (MDCs). In addition, identifying endogenous biochemical markers of effect linked to disease states is becoming an important tool to screen the biological targets following environmental contaminant exposure, as well as to provide an overview of toxicity risk assessment. As such, the current review aims to contribute to the further understanding of exposome and human health and disease by characterizing environmental exposure and effect metabolic biomarkers. We summarized MDC-associated metabolic biomarkers in laboratory animal and human cohort studies using high throughput targeted and nontargeted metabolomics techniques. Contaminants including heavy metals and organohalogen compounds, especially EDCs, have been repetitively associated with metabolic disorders, whereas emerging contaminants such as perfluoroalkyl substances and microplastics have also been found to disrupt metabolism. In addition, we found major limitations in the effective identification of metabolic biomarkers especially in human studies, toxicological research on the mixed effect of environmental exposure has also been insufficient compared to the research on single chemicals. Thus, it is timely to call for research efforts dedicated to the study of combined effect and metabolic alterations for the better assessment of exposomic toxicology and health risks. Moreover, advanced computational and prediction tools, further validation of metabolic biomarkers, as well as systematic and integrative investigations are also needed in order to reliably identify novel biomarkers and elucidate toxicity mechanisms, and to further utilize exposome and metabolome profiling in public health and safety management.
Collapse
Affiliation(s)
- Jiachen Sun
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Runcheng Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Quality Control in Environmental, Monitoring, China National Environmental Monitoring Center, Beijing, China
| | - Xiaochen Huang
- School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Daniel Cozzolino
- ARC Industrial Transformation Training Centre for Uniquely Australian Foods, Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Coopers Plans, Australia
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Yichao Huang
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Hefei, China.
| |
Collapse
|
17
|
Aghaei Z, Steeves KL, Jobst KJ, Cahill LS. The impact of perfluoroalkyl substances on pregnancy, birth outcomes and offspring development: A review of data from mouse models1. Biol Reprod 2021; 106:397-407. [PMID: 34875017 DOI: 10.1093/biolre/ioab223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 11/12/2022] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) are persistent in the environment and bioaccumulate in wildlife and humans, potentially causing adverse health effects at all stages of life. Studies from human pregnancy have shown that exposure to these contaminants are associated with placental dysfunction and fetal growth restriction; however, studies in humans are confounded by genetic and environmental factors. Here, we synthesize the available results from mouse models of pregnancy to show the causal effects of prenatal exposure to PFOA and PFOS on placental and fetal development and on neurocognitive function and metabolic disorders in offspring. We also propose gaps in the present knowledge and provide suggestions for future research studies.
Collapse
Affiliation(s)
- Zahra Aghaei
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Katherine L Steeves
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Karl J Jobst
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Lindsay S Cahill
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
18
|
Zhang P, Carlsten C, Chaleckis R, Hanhineva K, Huang M, Isobe T, Koistinen VM, Meister I, Papazian S, Sdougkou K, Xie H, Martin JW, Rappaport SM, Tsugawa H, Walker DI, Woodruff TJ, Wright RO, Wheelock CE. Defining the Scope of Exposome Studies and Research Needs from a Multidisciplinary Perspective. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:839-852. [PMID: 34660833 PMCID: PMC8515788 DOI: 10.1021/acs.estlett.1c00648] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 05/02/2023]
Abstract
The concept of the exposome was introduced over 15 years ago to reflect the important role that the environment exerts on health and disease. While originally viewed as a call-to-arms to develop more comprehensive exposure assessment methods applicable at the individual level and throughout the life course, the scope of the exposome has now expanded to include the associated biological response. In order to explore these concepts, a workshop was hosted by the Gunma University Initiative for Advanced Research (GIAR, Japan) to discuss the scope of exposomics from an international and multidisciplinary perspective. This Global Perspective is a summary of the discussions with emphasis on (1) top-down, bottom-up, and functional approaches to exposomics, (2) the need for integration and standardization of LC- and GC-based high-resolution mass spectrometry methods for untargeted exposome analyses, (3) the design of an exposomics study, (4) the requirement for open science workflows including mass spectral libraries and public databases, (5) the necessity for large investments in mass spectrometry infrastructure in order to sequence the exposome, and (6) the role of the exposome in precision medicine and nutrition to create personalized environmental exposure profiles. Recommendations are made on key issues to encourage continued advancement and cooperation in exposomics.
Collapse
Affiliation(s)
- Pei Zhang
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Key
Laboratory of Drug Quality Control and Pharmacovigilance (Ministry
of Education), State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Christopher Carlsten
- Air
Pollution Exposure Laboratory, Division of Respiratory Medicine, Department
of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada
| | - Romanas Chaleckis
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Kati Hanhineva
- Department
of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku 20014, Finland
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-412 96, Sweden
- Department
of Clinical Nutrition and Public Health, University of Eastern Finland, Kuopio 70210, Finland
| | - Mengna Huang
- Channing
Division of Network Medicine, Brigham and
Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tomohiko Isobe
- The
Japan Environment and Children’s Study Programme Office, National Institute for Environmental Sciences, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Ville M. Koistinen
- Department
of Life Technologies, Food Chemistry and Food Development Unit, University of Turku, Turku 20014, Finland
- Department
of Clinical Nutrition and Public Health, University of Eastern Finland, Kuopio 70210, Finland
| | - Isabel Meister
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
| | - Stefano Papazian
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Kalliroi Sdougkou
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Hongyu Xie
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Jonathan W. Martin
- Science
for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm SE-114 18, Sweden
| | - Stephen M. Rappaport
- Division
of Environmental Health Sciences, School of Public Health, University of California, Berkeley, California 94720-7360, United States
| | - Hiroshi Tsugawa
- RIKEN Center
for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- RIKEN Center
for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
- Department
of Biotechnology and Life Science, Tokyo
University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei, Tokyo 184-8588 Japan
- Graduate
School of Medical life Science, Yokohama
City University, 1-7-22
Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Douglas I. Walker
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York10029-5674, United States
| | - Tracey J. Woodruff
- Program
on Reproductive Health and the Environment, University of California San Francisco, San Francisco, California 94143, United States
| | - Robert O. Wright
- Department
of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York10029-5674, United States
| | - Craig E. Wheelock
- Gunma
University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Gunma 371-8511, Japan
- Division
of Physiological Chemistry 2, Department of Medical Biochemistry and
Biophysics, Karolinska Institutet, Stockholm SE-171 77, Sweden
- Department
of Respiratory Medicine and Allergy, Karolinska
University Hospital, Stockholm SE-141-86, Sweden
| |
Collapse
|
19
|
O'Shaughnessy KL, Fischer F, Zenclussen AC. Perinatal exposure to endocrine disrupting chemicals and neurodevelopment: How articles of daily use influence the development of our children. Best Pract Res Clin Endocrinol Metab 2021; 35:101568. [PMID: 34565681 PMCID: PMC10111869 DOI: 10.1016/j.beem.2021.101568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substances that interfere with the body's hormonal balance or their function are called endocrine disrupting chemicals (EDCs). Many EDCs are ubiquitous in the environment and are an unavoidable aspect of daily life, including during early embryogenesis. Developmental exposure to these chemicals is of critical relevance, as EDCs can permanently alter developmental programs, including those that pattern and wire the brain. Of emerging interest is how these chemicals may also affect the immune response, given the cross-talk between the endocrine and immune systems. As brain development is strongly dependent on hormones including thyroid, androgens, and estrogens, and can also be affected by immunomodulation, this complicated interplay may have long-lasting neurodevelopmental consequences. This review focuses on data available from human cohorts, in vivo models, and in vitro assays regarding the impact of EDCs after a gestational and/or lactational exposure, and how they may impact the immune system and/or neurodevelopment.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
20
|
Martin JW. Revisiting old lessons from classic literature on persistent global pollutants : This article belongs to Ambio's 50th Anniversary Collection. Theme: Environmental contaminants. AMBIO 2021; 50:534-538. [PMID: 33464461 PMCID: PMC7814521 DOI: 10.1007/s13280-020-01413-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/14/2020] [Accepted: 10/08/2020] [Indexed: 05/06/2023]
Abstract
Looking back 50 years at classic literature was a reminder of inspiring discoveries and clever theories that were formative to the field of environmental chemistry, but also of the irreparable costs that persistent global pollutants have had on ecosystems and human society. In my view, these three papers have greatly impacted contemporary science and influenced development of policies that have limited the spread of hazardous contaminants. At the same time, a sobering reality is that reversing decades of past pollution has proven impossible in our lifetime, and global trends are dire for both legacy and emerging contaminants. Lessons in these papers are clear to most environmental scientists, but I argue have not resulted in adequate investment in infrastructure or manpower to enable systematic unbiased searching for pollutants as proposed by Sören Jensen in 1972. Acknowledging that the costs of new global contaminants will be too high, we must incentivize safer chemicals and their sustainable use, increase international exchange of lists of chemicals in commerce, and coordinate international efforts in nontarget screening to identify new contaminants before they circulate the world.
Collapse
Affiliation(s)
- Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, 106 91, Stockholm, Sweden.
| |
Collapse
|
21
|
Dangudubiyyam SV, Mishra JS, Zhao H, Kumar S. Perfluorooctane sulfonic acid (PFOS) exposure during pregnancy increases blood pressure and impairs vascular relaxation mechanisms in the adult offspring. Reprod Toxicol 2020; 98:165-173. [PMID: 32980420 DOI: 10.1016/j.reprotox.2020.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/21/2022]
Abstract
Perfluorooctanesulfonate (PFOS) is a persistent environmental agent. We examined whether PFOS exposure during pregnancy alters blood pressure in male and female offspring, and if this is related to sex-specific changes in vascular mechanisms. PFOS was administered through drinking water (50 μg/mL) to pregnant Sprague-Dawley rats from gestational day 4 until delivery. PFOS-exposure decreased maternal weight gain but did not significantly alter feed and water intake in dams. The male and female pups born to PFOS mothers were smaller in weight by 29 % and 27 %, respectively. The male PFOS offspring remained smaller through adulthood, but the female PFOS offspring exhibited catch-up growth. The blood pressure at 12 and 16 weeks of age was elevated at similar magnitude in PFOS males and females than controls. Mesenteric arterial relaxation to acetylcholine was reduced in both PFOS males and females, but the extent of decrease was greater in females. Relaxation to sodium-nitroprusside was reduced in PFOS females but unaffected in PFOS males. Vascular eNOS expression was not changed, but phospho(Ser1177)-eNOS was decreased in PFOS males. In PFOS females, both total eNOS and phospho(Ser1177)-eNOS expression were reduced. In conclusion, PFOS exposure during prenatal life (1) caused low birth weight followed by catch-up growth only in females (2) lead to hypertension of similar magnitude in both males and females; (2) decreased endothelium-dependent vascular relaxation in males but suppressed both endothelium-dependent and -independent relaxation in females. The endothelial dysfunction is associated with reduced activity of eNOS in males and decreased expression and activity of eNOS in females.
Collapse
Affiliation(s)
- Sri Vidya Dangudubiyyam
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA.
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | - Hanjie Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA.
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53706, USA; Endocrinology-Reproductive Physiology Program, University of Wisconsin, Madison, WI 53715, USA; Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| |
Collapse
|