1
|
Kaboudi N, Asl SG, Nourani N, Shayanfar A. Solubilization of drugs using beta-cyclodextrin: Experimental data and modeling. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:663-672. [PMID: 38340807 DOI: 10.1016/j.pharma.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024]
Abstract
Many drug candidates fail to complete the entire drug development process because of poor physicochemical properties. Solubility is an important physicochemical property which plays a vital role in various stages of drug discovery and development. Several methods have been proposed to enhance the solubility of drugs, and complex formation with cyclodextrins is among them. Beta-cyclodextrin (βCD) is a common excipient for solubilization of drugs. The aim of this study is to develop the mechanistic QSPR models to predict the solubility enhancement of a drug in the presence of βCD. In this study, the solubility enhancement of some drugs in the presence of 10mM βCD at 25°C was experimentally determined or collected from the literature. Two different models to predict the solubilization by βCD were developed by binary logistic regression using structural properties of drugs with more than 80% accuracy. Polar surface area and excess molar refraction are the main parameters for estimating solubilization by βCD. Moreover, other descriptors related to hydrophobicity and the capability of hydrogen bonding formation of molecules could improve the accuracy of the established models.
Collapse
Affiliation(s)
- Navid Kaboudi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Ghasemi Asl
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Nourani
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Lombardo F, Bentzien J, Berellini G, Muegge I. Prediction of Human Clearance Using In Silico Models with Reduced Bias. Mol Pharm 2024; 21:1192-1203. [PMID: 38285644 DOI: 10.1021/acs.molpharmaceut.3c00812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Predicting human clearance with high accuracy from in silico-derived parameters alone is highly desirable, as it is fast, saves in vitro resources, and is animal-sparing. We derived random forest (RF) models from 1340 compounds with human intravenous pharmacokinetic (PK) data, the largest data set publicly available today. To assess the general applicability of the RF models, we systematically removed structural-therapeutic class analogues and other compounds with structural similarity from the training sets. For a quasi-prospective test set of 343 compounds, we show that RF models devoid of structurally similar compounds in the training set predict human clearance with a geometric mean fold error (GMFE) of 3.3. While the observed GMFE illustrates how difficult it is to generate a useful model that is broadly applicable, we posit that our RF models yield a more realistic assessment of how well human clearance can be predicted prospectively. We deployed the conformal prediction formalism to assess the model applicability and to determine the prediction confidence intervals for each prediction. We observed that clearance can be predicted better for renally cleared compounds than for other clearance mechanisms. We show that applying a classification model for predicting renal clearance identifies a subset of compounds for which clearance can be predicted with higher accuracy, yielding a GMFE of 2.3. In addition, our in silico RF human clearance models compared well to models derived from scaling human hepatocytes or preclinical in vivo data.
Collapse
Affiliation(s)
- Franco Lombardo
- CmaxDMPK, LLC, Framingham , Massachusetts 01701, United States
| | - Jörg Bentzien
- Alkermes Inc., 852 Winter Street, Waltham, Massachusetts 02451, United States
| | - Giuliano Berellini
- Alkermes Inc., 852 Winter Street, Waltham, Massachusetts 02451, United States
| | - Ingo Muegge
- Alkermes Inc., 852 Winter Street, Waltham, Massachusetts 02451, United States
| |
Collapse
|
3
|
Komura H, Watanabe R, Mizuguchi K. The Trends and Future Prospective of In Silico Models from the Viewpoint of ADME Evaluation in Drug Discovery. Pharmaceutics 2023; 15:2619. [PMID: 38004597 PMCID: PMC10675155 DOI: 10.3390/pharmaceutics15112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Drug discovery and development are aimed at identifying new chemical molecular entities (NCEs) with desirable pharmacokinetic profiles for high therapeutic efficacy. The plasma concentrations of NCEs are a biomarker of their efficacy and are governed by pharmacokinetic processes such as absorption, distribution, metabolism, and excretion (ADME). Poor ADME properties of NCEs are a major cause of attrition in drug development. ADME screening is used to identify and optimize lead compounds in the drug discovery process. Computational models predicting ADME properties have been developed with evolving model-building technologies from a simplified relationship between ADME endpoints and physicochemical properties to machine learning, including support vector machines, random forests, and convolution neural networks. Recently, in the field of in silico ADME research, there has been a shift toward evaluating the in vivo parameters or plasma concentrations of NCEs instead of using predictive results to guide chemical structure design. Another research hotspot is the establishment of a computational prediction platform to strengthen academic drug discovery. Bioinformatics projects have produced a series of in silico ADME models using free software and open-access databases. In this review, we introduce prediction models for various ADME parameters and discuss the currently available academic drug discovery platforms.
Collapse
Affiliation(s)
- Hiroshi Komura
- University Research Administration Center, Osaka Metropolitan University, 1-2-7 Asahimachi, Abeno-ku, Osaka 545-0051, Osaka, Japan
| | - Reiko Watanabe
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan; (R.W.); (K.M.)
- Artificial Intelligence Centre for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 3-17 Senrioka-shinmachi, Settu 566-0002, Osaka, Japan
| | - Kenji Mizuguchi
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Osaka, Japan; (R.W.); (K.M.)
- Artificial Intelligence Centre for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health, and Nutrition (NIBIOHN), 3-17 Senrioka-shinmachi, Settu 566-0002, Osaka, Japan
| |
Collapse
|
4
|
Fralish Z, Chen A, Skaluba P, Reker D. DeepDelta: predicting ADMET improvements of molecular derivatives with deep learning. J Cheminform 2023; 15:101. [PMID: 37885017 PMCID: PMC10605784 DOI: 10.1186/s13321-023-00769-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Established molecular machine learning models process individual molecules as inputs to predict their biological, chemical, or physical properties. However, such algorithms require large datasets and have not been optimized to predict property differences between molecules, limiting their ability to learn from smaller datasets and to directly compare the anticipated properties of two molecules. Many drug and material development tasks would benefit from an algorithm that can directly compare two molecules to guide molecular optimization and prioritization, especially for tasks with limited available data. Here, we develop DeepDelta, a pairwise deep learning approach that processes two molecules simultaneously and learns to predict property differences between two molecules from small datasets. On 10 ADMET benchmark tasks, our DeepDelta approach significantly outperforms two established molecular machine learning algorithms, the directed message passing neural network (D-MPNN) ChemProp and Random Forest using radial fingerprints, for 70% of benchmarks in terms of Pearson's r, 60% of benchmarks in terms of mean absolute error (MAE), and all external test sets for both Pearson's r and MAE. We further analyze our performance and find that DeepDelta is particularly outperforming established approaches at predicting large differences in molecular properties and can perform scaffold hopping. Furthermore, we derive mathematically fundamental computational tests of our models based on mathematical invariants and show that compliance to these tests correlates with overall model performance - providing an innovative, unsupervised, and easily computable measure of expected model performance and applicability. Taken together, DeepDelta provides an accurate approach to predict molecular property differences by directly training on molecular pairs and their property differences to further support fidelity and transparency in molecular optimization for drug development and the chemical sciences.
Collapse
Affiliation(s)
- Zachary Fralish
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Ashley Chen
- Department of Computer Science, Duke University, Durham, NC, 27708, USA
| | - Paul Skaluba
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Daniel Reker
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
5
|
Gomatam A, Joseph B, Advani P, Shaikh M, Iyer K, Coutinho E. How effective are ionization state-based QSPKR models at predicting pharmacokinetic parameters in humans? Mol Divers 2023; 27:1675-1687. [PMID: 36219381 DOI: 10.1007/s11030-022-10520-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022]
Abstract
Optimizing the pharmacokinetics (PK) of a drug candidate to support oral dosing is a key challenge in drug development. PK parameters are usually estimated from the concentration-time profile following intravenous administration; however, traditional methods are time-consuming and expensive. In recent years, quantitative structure-pharmacokinetic relationship (QSPKR), an in silico tool that aims to develop a mathematical relationship between the structure of a molecule and its PK properties, has emerged as a useful alternative to experimental testing. Due to the complex nature of the various processes involved in dictating the fate of a drug, the development of adequate QSPKR models that can be used in real-world pre-screening situations has proved challenging. Given the crucial role played by a molecule's ionization state in determining its PK properties, this work aims to build predictive QSPKR models for PK parameters in humans using an ionization state-based strategy. We divide a high-quality dataset into clusters based on ionization state at physiological pH and build global and ion subset-based 'local' models for three major PK parameters: plasma clearance (CL), steady-state volume of distribution (VDss), and half-life (t1/2). We use a robust methodology developed in our lab entitled 'EigenValue ANalySis' that accounts for the stereospecificity in drug disposition and use the support vector machine algorithm for model building. Our findings suggest that categorizing compounds in accordance with ionization state does not result in improved QSPKR models. The narrow ranges in the endpoints along with redundancies in the data adversely affect the ion subset-based QSPKR models. We suggest alternative approaches such as elimination route-based models that account for drug-transporter interactions for CL and chemotype-specific QSPKR for VDss.
Collapse
Affiliation(s)
- Anish Gomatam
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, India
| | - Blessy Joseph
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, India
| | - Poonam Advani
- Mumbai Educational Trust's Institute of Pharmacy, Mumbai, India
| | - Mushtaque Shaikh
- Department of Pharmaceutical Chemistry, Vivekanand Education Society's College of Pharmacy, Mumbai, India
| | - Krishna Iyer
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, India
| | - Evans Coutinho
- Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Mumbai, India.
| |
Collapse
|
6
|
Tran TTV, Tayara H, Chong KT. Artificial Intelligence in Drug Metabolism and Excretion Prediction: Recent Advances, Challenges, and Future Perspectives. Pharmaceutics 2023; 15:1260. [PMID: 37111744 PMCID: PMC10143484 DOI: 10.3390/pharmaceutics15041260] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/07/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Drug metabolism and excretion play crucial roles in determining the efficacy and safety of drug candidates, and predicting these processes is an essential part of drug discovery and development. In recent years, artificial intelligence (AI) has emerged as a powerful tool for predicting drug metabolism and excretion, offering the potential to speed up drug development and improve clinical success rates. This review highlights recent advances in AI-based drug metabolism and excretion prediction, including deep learning and machine learning algorithms. We provide a list of public data sources and free prediction tools for the research community. We also discuss the challenges associated with the development of AI models for drug metabolism and excretion prediction and explore future perspectives in the field. We hope this will be a helpful resource for anyone who is researching in silico drug metabolism, excretion, and pharmacokinetic properties.
Collapse
Affiliation(s)
- Thi Tuyet Van Tran
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea;
- Faculty of Information Technology, An Giang University, Long Xuyen 880000, Vietnam
- Vietnam National University—Ho Chi Minh City, Ho Chi Minh 700000, Vietnam
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Kil To Chong
- Advances Electronics and Information Research Center, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
7
|
Lai Y, Chu X, Di L, Gao W, Guo Y, Liu X, Lu C, Mao J, Shen H, Tang H, Xia CQ, Zhang L, Ding X. Recent advances in the translation of drug metabolism and pharmacokinetics science for drug discovery and development. Acta Pharm Sin B 2022; 12:2751-2777. [PMID: 35755285 PMCID: PMC9214059 DOI: 10.1016/j.apsb.2022.03.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Drug metabolism and pharmacokinetics (DMPK) is an important branch of pharmaceutical sciences. The nature of ADME (absorption, distribution, metabolism, excretion) and PK (pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems. Tremendous progress has been made in the past decade, not only in the characterization of physiochemical properties of drugs that influence their ADME, target organ exposure, and toxicity, but also in the identification of design principles that can minimize drug-drug interaction (DDI) potentials and reduce the attritions. The importance of membrane transporters in drug disposition, efficacy, and safety, as well as the interplay with metabolic processes, has been increasingly recognized. Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs, such as peptides, oligonucleotides, and antibody-drug conjugates, necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties. In this review, we highlight some of the most notable advances in the last decade, and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.
Collapse
Affiliation(s)
- Yurong Lai
- Drug Metabolism, Gilead Sciences Inc., Foster City, CA 94404, USA
| | - Xiaoyan Chu
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Wei Gao
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Kenilworth, NJ 07033, USA
| | - Yingying Guo
- Eli Lilly and Company, Indianapolis, IN 46221, USA
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, Cambridge, MA 02142, USA
| | - Chuang Lu
- Drug Metabolism and Pharmacokinetics, Accent Therapeutics, Inc. Lexington, MA 02421, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech, A Member of the Roche Group, South San Francisco, CA 94080, USA
| | - Hong Shen
- Drug Metabolism and Pharmacokinetics Department, Bristol-Myers Squibb Company, Princeton, NJ 08540, USA
| | - Huaping Tang
- Bioanalysis and Biomarkers, Glaxo Smith Kline, King of the Prussia, PA 19406, USA
| | - Cindy Q. Xia
- Department of Drug Metabolism and Pharmacokinetics, Takeda Pharmaceuticals International Co., Cambridge, MA 02139, USA
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, CDER, FDA, Silver Spring, MD 20993, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Lou C, Yang H, Wang J, Huang M, Li W, Liu G, Lee PW, Tang Y. IDL-PPBopt: A Strategy for Prediction and Optimization of Human Plasma Protein Binding of Compounds via an Interpretable Deep Learning Method. J Chem Inf Model 2022; 62:2788-2799. [PMID: 35607907 DOI: 10.1021/acs.jcim.2c00297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prediction and optimization of pharmacokinetic properties are essential in lead optimization. Traditional strategies mainly depend on the empirical chemical rules from medicinal chemists. However, with the rising amount of data, it is getting more difficult to manually extract useful medicinal chemistry knowledge. To this end, we introduced IDL-PPBopt, a computational strategy for predicting and optimizing the plasma protein binding (PPB) property based on an interpretable deep learning method. At first, a curated PPB data set was used to construct an interpretable deep learning model, which showed excellent predictive performance with a root mean squared error of 0.112 for the entire test set. Then, we designed a detection protocol based on the model and Wilcoxon test to identify the PPB-related substructures (named privileged substructures, PSubs) for each molecule. In total, 22 general privileged substructures (GPSubs) were identified, which shared some common features such as nitrogen-containing groups, diamines with two carbon units, and azetidine. Furthermore, a series of second-level chemical rules for each GPSub were derived through a statistical test and then summarized into substructure pairs. We demonstrated that these substructure pairs were equally applicable outside the training set and accordingly customized the structural modification schemes for each GPSub, which provided alternatives for the optimization of the PPB property. Therefore, IDL-PPBopt provides a promising scheme for the prediction and optimization of the PPB property and would be helpful for lead optimization of other pharmacokinetic properties.
Collapse
Affiliation(s)
- Chaofeng Lou
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Hongbin Yang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiye Wang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mengting Huang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weihua Li
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Guixia Liu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Philip W Lee
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yun Tang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
9
|
Frlan R. An Evolutionary Conservation and Druggability Analysis of Enzymes Belonging to the Bacterial Shikimate Pathway. Antibiotics (Basel) 2022; 11:antibiotics11050675. [PMID: 35625318 PMCID: PMC9137983 DOI: 10.3390/antibiotics11050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Enzymes belonging to the shikimate pathway have long been considered promising targets for antibacterial drugs because they have no counterpart in mammals and are essential for bacterial growth and virulence. However, despite decades of research, there are currently no clinically relevant antibacterial drugs targeting any of these enzymes, and there are legitimate concerns about whether they are sufficiently druggable, i.e., whether they can be adequately modulated by small and potent drug-like molecules. In the present work, in silico analyses combining evolutionary conservation and druggability are performed to determine whether these enzymes are candidates for broad-spectrum antibacterial therapy. The results presented here indicate that the substrate-binding sites of most enzymes in this pathway are suitable drug targets because of their reasonable conservation and druggability scores. An exception was the substrate-binding site of 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, which was found to be undruggable because of its high content of charged residues and extremely high overall polarity. Although the presented study was designed from the perspective of broad-spectrum antibacterial drug development, this workflow can be readily applied to any antimicrobial target analysis, whether narrow- or broad-spectrum. Moreover, this research also contributes to a deeper understanding of these enzymes and provides valuable insights into their properties.
Collapse
Affiliation(s)
- Rok Frlan
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
10
|
Kaboudi N, Alizadeh AA, Shayanfar A. In silico models to predict tubular secretion or reabsorption clearance pathway using physicochemical properties and structural characteristics. Xenobiotica 2022; 52:346-352. [PMID: 35543185 DOI: 10.1080/00498254.2022.2076632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
1. Renal clearance is one of the main pathways for a drug to be cleared from plasma. The aim of this study is to develop in-silico models to find out the relationship between the type of renal clearance, and structural parameters.2. Literature data were used to categorize the drugs into those that undergo tubular secretion and those that undergo reabsorption. Different structural descriptors (VolSurf descriptors, Abraham solvation parameters, data warrior descriptors, logarithm of distribution coefficient at pH =7.4 (logD7.4)) were applied to develop a mechanistic model for estimating renal clearance class whether its secretion or reabsorption.3. The results of this study show that logD7.4, and the number of hydrogen bond donors as well as available uncharged species (AUS7.4) are the most effective descriptors to establish mechanistic models for predicting renal clearance class. The classification models were established with a level of accuracy of more than 75%.4. Developed models of this study can be helpful to predict renal clearance class for new drug candidates with an acceptable error. Hydrophilicity and hydrogen bond formation ability of drugs are among the main descriptors.
Collapse
Affiliation(s)
- Navid Kaboudi
- Student Research Committee, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Alizadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Editorial Office of Pharmaceutical Sciences Journal, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Kaboudi N, Shayanfar A. Predicting the Drug Clearance Pathway with Structural Descriptors. Eur J Drug Metab Pharmacokinet 2022; 47:363-369. [PMID: 35147854 DOI: 10.1007/s13318-021-00748-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE The clearance, by renal elimination or hepatic metabolism, is one of the most important pharmacokinetic parameters of a drug. It allows the half-life, bioavailability, and drug-drug interactions to be predicted, and it can also affect the dose regimen of a drug. Predicting the clearance pathways of new chemical candidates during drug development is vital in order to minimize the risks of possible side effects and drug interactions. Many in vivo methods have been established to predict drug clearance in humans, and these mainly rely on data from in vivo studies in preclinical species-mainly rats, dogs, and monkeys. They are also time consuming and expensive. The aim of this study was to find the relationship between structural parameters of drugs and their clearance pathways. METHODS The clearance pathway of each drug was obtained from the literature. Various structural descriptors [Abraham solvation parameters, topological polar surface area, numbers of hydrogen-bond donors and acceptors, number of rotatable bonds, molecular weight, logarithm of the partition coefficient (logP), and logarithm of the distribution coefficient at pH 7.4 (logD7.4)] were applied to develop a mechanistic model for predicting clearance pathways. RESULTS The results of this study indicate that compounds with logD7.4 > 1 or with zero or one hydrogen-bond donor undergo hepatic metabolism, whereas the clearance pathway for chemicals with logD7.4 < - 2 is renal elimination. Furthermore, models established using logistic regression based on five structural parameters for compounds with - 2 < logD7.4 < 1 could be used in a clearance pathway prediction tool. The overall prediction accuracies of the first and second models were 84.8% and 84.4%, respectively. CONCLUSION The developed model can be used to find the clearance pathways of new drug candidates with acceptable accuracy. The main descriptors that are used to evaluate this parameter are the hydrophobicity and the number of hydrogen-bonding functional groups of the compound.
Collapse
Affiliation(s)
- Navid Kaboudi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Shayanfar
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Editorial Office of Pharmaceutical Sciences Journal, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Venkatraman V. FP-ADMET: a compendium of fingerprint-based ADMET prediction models. J Cheminform 2021; 13:75. [PMID: 34583740 PMCID: PMC8479898 DOI: 10.1186/s13321-021-00557-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 12/11/2022] Open
Abstract
MOTIVATION The absorption, distribution, metabolism, excretion, and toxicity (ADMET) of drugs plays a key role in determining which among the potential candidates are to be prioritized. In silico approaches based on machine learning methods are becoming increasing popular, but are nonetheless limited by the availability of data. With a view to making both data and models available to the scientific community, we have developed FPADMET which is a repository of molecular fingerprint-based predictive models for ADMET properties. In this article, we have examined the efficacy of fingerprint-based machine learning models for a large number of ADMET-related properties. The predictive ability of a set of 20 different binary fingerprints (based on substructure keys, atom pairs, local path environments, as well as custom fingerprints such as all-shortest paths) for over 50 ADMET and ADMET-related endpoints have been evaluated as part of the study. We find that for a majority of the properties, fingerprint-based random forest models yield comparable or better performance compared with traditional 2D/3D molecular descriptors. AVAILABILITY The models are made available as part of open access software that can be downloaded from https://gitlab.com/vishsoft/fpadmet .
Collapse
Affiliation(s)
- Vishwesh Venkatraman
- Norwegian University of Science and Technology, Realfagbygget, Gløshaugen, Høgskoleringen, 7491, Trondheim, Norway.
| |
Collapse
|
13
|
Kim H, Kim E, Lee I, Bae B, Park M, Nam H. Artificial Intelligence in Drug Discovery: A Comprehensive Review of Data-driven and Machine Learning Approaches. BIOTECHNOL BIOPROC E 2021; 25:895-930. [PMID: 33437151 PMCID: PMC7790479 DOI: 10.1007/s12257-020-0049-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
As expenditure on drug development increases exponentially, the overall drug discovery process requires a sustainable revolution. Since artificial intelligence (AI) is leading the fourth industrial revolution, AI can be considered as a viable solution for unstable drug research and development. Generally, AI is applied to fields with sufficient data such as computer vision and natural language processing, but there are many efforts to revolutionize the existing drug discovery process by applying AI. This review provides a comprehensive, organized summary of the recent research trends in AI-guided drug discovery process including target identification, hit identification, ADMET prediction, lead optimization, and drug repositioning. The main data sources in each field are also summarized in this review. In addition, an in-depth analysis of the remaining challenges and limitations will be provided, and proposals for promising future directions in each of the aforementioned areas.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Eunyoung Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Ingoo Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Bongsung Bae
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Minsu Park
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| | - Hojung Nam
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 Korea
| |
Collapse
|