1
|
Hasegawa D, Tsuji A, Greiner LC, Arichi N, Inuki S, Ohno H. Synthesis of Azocine-Fused Indoles via Gold(I)-Catalyzed Cyclization of Azido-alkynes. J Org Chem 2024. [PMID: 39740203 DOI: 10.1021/acs.joc.4c02704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Herein, we report a gold(I)-catalyzed cascade cyclization of azido-alkynes bearing an enol ester moiety, leading to indole-fused eight-membered rings. This method allows for the one-step construction of indole and tetrahydroazocin-4-one via an α-imino gold carbene intermediate. The resulting scaffold would be useful for accessing natural products with an eight-membered ring-fused indole moiety.
Collapse
Affiliation(s)
- Daiki Hasegawa
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Atsuhito Tsuji
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Luca C Greiner
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Shi CY, Wang X, Liu X, Ai ZH, Xiong S, Ye LW, Zhou B, Zhu XQ. Copper-Catalyzed [2,3]-Sigmatropic Rearrangement of Azide-Ynamides via Selenium Ylides. Org Lett 2024. [PMID: 39714429 DOI: 10.1021/acs.orglett.4c04444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A copper-catalyzed [2,3]-sigmatropic rearrangement of azide-ynamides via selenium ylides is disclosed, which leads to the practical and divergent synthesis of a variety of tricyclic heterocycles bearing a quaternary carbon stereocenter in generally moderate to excellent yields. Significantly, this method represents the first [2,3]-sigmatropic rearrangement of the selenium ylide based on alkynes and an unprecedented [2,3]-sigmatropic rearrangement via α-imino copper carbenes.
Collapse
Affiliation(s)
- Chong-Yang Shi
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Xuan Wang
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Liu
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zu-Hui Ai
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Shuai Xiong
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| | - Long-Wu Ye
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin-Qi Zhu
- Yunnan Key Laboratory of Modern Separation Analysis and Substance Transformation, College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
3
|
Zhang W, Yang XJ, Kirillov AM, Yang L, Fang R. Density Functional Theory Rationalization of the Mechanism, Selectivity, and Role of Substituents in Au(I)-Catalyzed Synthesis of Pyrazolines and Dihydropyridines. J Org Chem 2024; 89:18209-18217. [PMID: 39637310 DOI: 10.1021/acs.joc.4c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
A comprehensive theoretical investigation into the gold-catalyzed synthesis of polysubstituted pyrazolines and dihydropyridines from imines and methyl phenylpropiolate was conducted in this study. Three imines with distinct substituents were selected as model reactants. The computational outcomes reveal that four-membered intermediates generated from aza-enyne metathesis significantly affect the reaction selectivity. For nitrogen-centered NHCO2Me substituents (series A), an outward ring opening occurs during the metathesis of the aza-alkyne. This leads to the formation of Z-butadiene intermediates and ultimately to pyrazoline products. Conversely, with an aromatic substituent at the nitrogen site (series B and C), an inward ring opening takes place. This results in E-butadiene intermediates and the synthesis of dihydropyridine derivatives. The dihydropyridine product's configuration is determined by the aromatic ring's substituent. Electron-donating groups tend to directly form 1,4-dihydropyridine through a 6π electrocyclization (series B). In contrast, strong electron-withdrawing substituents initially undergo azayne metathesis, followed by 6π electrocyclization to produce 1,2-dihydropyridine products (series C). Furthermore, the distinctive selectivities were investigated in depth using global reactivity index and distortion/interaction methods. This research may contribute to the design of more effective and selective protocols to access pyrazolines, dihydropyridines, and related compounds.
Collapse
Affiliation(s)
- Wendi Zhang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiao-Jiao Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Alexander M Kirillov
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, Lisbon 1049-001, Portugal
| | - Lizi Yang
- State Key Laboratory of Applied Organic Chemistry and Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Ran Fang
- College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China
| |
Collapse
|
4
|
Roy DS, Tanwer YBS, Patra SR, Kumar S, Bhunia S, Das D. Gold-catalyzed fluorination of alkynes/allenes: mechanistic explanations and reaction scope. Org Biomol Chem 2024; 23:11-35. [PMID: 39513472 DOI: 10.1039/d4ob01579g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Since the beginning of this century, there has been a great deal of research on homogeneous gold-catalyzed alkyne fluorination due to the precious values of fluorinated scaffolds in many bioactive natural products, drugs, and agrochemicals. This area of research, which originally took advantage of gold's mild Lewis acidity and tendency to form π-complexes with alkynes, has gained new momentum after Sadighi's discovery in 2007 of Au-catalyzed hydrofluorination of internal alkynes. The methods have enabled direct access to valuable fluoroalkanes, fluoroalkenes, α-fluorocarbonyls, and fluorinated carbo- and hetero-cycles in one pot from readily available alkyne precursors. Both nucleophilic and electrophilic fluorination modes with versatile reactivity have been used to achieve several new cascade reactions. This study covers the literature reports published since 2007 and provides a comprehensive summary of the methods, applications, and mechanistic insights into gold-catalyzed alkyne fluorination using electrophilic and nucleophilic fluorinating reagents.
Collapse
Affiliation(s)
- Deblina Singha Roy
- Department of Chemistry, Central University of Jharkhand, Ranchi-835222, Jharkhand, India.
| | | | - Snigdha Rani Patra
- Department of Chemistry, Central University of Jharkhand, Ranchi-835222, Jharkhand, India.
| | - Shivam Kumar
- Department of Chemistry, Central University of Jharkhand, Ranchi-835222, Jharkhand, India.
| | - Sabyasachi Bhunia
- Department of Chemistry, Central University of Jharkhand, Ranchi-835222, Jharkhand, India.
| | - Debjit Das
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj-713347, India.
| |
Collapse
|
5
|
Wang YB, Liu W, Li T, Lu Y, Yu YT, Liu HT, Liu M, Li P, Qian PC, Tang H, Guan J, Ye LW, Li L. Gold/HNTf 2-Cocatalyzed Asymmetric Annulation of Diazo-Alkynes: Divergent Construction of Atropisomeric Biaryls and Arylquinones. J Am Chem Soc 2024; 146:33804-33816. [PMID: 39614810 DOI: 10.1021/jacs.4c12063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Due to the inherent challenges posed by the linear coordination of gold(I) complexes, asymmetric gold-catalyzed processes remain challenging, particularly in the atroposelective synthesis of axially chiral skeletons. Except for extremely few examples of intramolecular annulations, the construction of axial chirality via asymmetric gold-catalyzed intermolecular alkyne transformation is still undeveloped. Herein, a gold/HNTf2-cocatalyzed asymmetric diazo-alkyne annulation is developed, allowing the atroposelective and divergent synthesis of chiral non-C2-symmetric biaryls and arylquinones in generally good to excellent yield (up to 93% yield) and enantioselectivity (up to 99% ee), with broad substrate scope. Notably, this work represents the first gold-catalyzed atroposelective construction in an intermolecular manner. More interestingly, this strategy is successfully extended to the first asymmetric construction of seven-membered-ring atropisomers bearing one carbon-centered chirality in excellent diastereoselectivity and high enantioselectivity (up to 93% ee and 50:1 dr). Remarkably, the utility of this methodology is further illustrated by the successful application of a representative axially chiral ligand in a series of enantioselective reactions. Importantly, the Brønsted acid as a proton-shuttle cocatalyst significantly promotes this asymmetric annulation. Additionally, the origin of enantioselectivity of this annulation and the role of HNTf2 are disclosed by density functional calculations and control experiments.
Collapse
Affiliation(s)
- Yi-Bo Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wei Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ting Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yazhu Lu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yi-Tian Yu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hai-Tao Liu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Meiwen Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Pengfei Li
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, College of Science, Southern University of Science and Technology Guangming Advanced Research Institute Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Peng-Cheng Qian
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Hao Tang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Jia Guan
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long Li
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Bhatti P, Gupta A, Chaudhari SB, Valmiki RK, Laha JK, Manna S. Skeletal Editing via Transition-Metal-Catalyzed Nitrene Insertion. CHEM REC 2024; 24:e202400184. [PMID: 39607383 DOI: 10.1002/tcr.202400184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/20/2024] [Indexed: 11/29/2024]
Abstract
Metal-nitrenes are valuable reactive intermediates for synthesis and are widely used to construct biologically relevant scaffolds, complexes and functionalized molecules. The ring expansion of cyclic molecules via single-nitrogen-atom insertion via nitrene or metal-nitrenoid intermediates has emerged as a promising modern strategy for driving advantageous nitrogen-rich compound synthesis. In recent years, the catalytic insertion of a single nitrogen atom into carbocycles, leading to N-heterocycles, has become an important focus of modern synthetic approaches with applications in medicinal chemistry, materials science, and industry. Catalytic single-nitrogen-atom insertions have been increasing in prominence in modern organic synthesis due to their capability to construct high-value added nitrogen-containing heterocycles from simple feedstocks. In this review, we will discuss the rapidly growing field of skeletal editing via single-nitrogen-atom insertion using transition metal catalysis to access nitrogen-containing heterocycles, with a focus on nitrogen insertion across a wide spectrum of carbocycles.
Collapse
Affiliation(s)
- Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Shubham B Chaudhari
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Rahul K Valmiki
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| | - Srimanta Manna
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S., 160062, Nagar, Punjab, India
| |
Collapse
|
7
|
Yan G, Ma J, Qi S, Kirillov AM, Yang L, Fang R. DFT rationalization of the mechanism and selectivity in a gold-catalyzed oxidative cyclization of diynones with alcohols. Phys Chem Chem Phys 2024; 26:28484-28494. [PMID: 39511988 DOI: 10.1039/d4cp01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The mechanism, regioselectivity, and chemoselectivity in a gold-catalyzed oxidative cyclization of diynones with alcohols to give furan-3-carboxylate derivatives were explored by density functional theory (DFT). The obtained results revealed that the first step of the global reaction involves a nucleophilic attack of a pyridine-N-oxide derivative on the catalyst-ligated diynone, forming a vinyl intermediate that can isomerize to an α,α'-dioxo gold carbene upon the cleavage of the N-O bond. In the second step, a nucleophilic addition is also completed via pyridine-N-oxide instead of an alcohol proposed in the experiment. In the following steps, the selective nucleophilic addition of alcohol, 1,2-alkynyl migration, five-membered cyclization, and protodeauration lead to the furan-based products with the regeneration of the gold catalyst. The unique features of regio- and chemoselectivity were investigated in detail by the global reactivity index (GRI) and distortion/interaction analyses. Apart from fully rationalizing the experimental data, the DFT results provide an important contribution to understanding, optimizing, and further developing the related types of organic transformations.
Collapse
Affiliation(s)
- Guowei Yan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Ji Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Simeng Qi
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| | - Alexander M Kirillov
- MINDlab: Molecular Design & Innovation Laboratory, Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lizi Yang
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ran Fang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, P. R. China.
| |
Collapse
|
8
|
Yuan H, Zhou Y, Xie X, Bao M, Chen K, Hong K, Yu Z, Xu X. Enantioselective Assembly of Fully Substituted α-Amino Allenoates Through a Mannich Addition and Stepwise [3,3]-σ Rearrangement Sequence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409334. [PMID: 39568322 DOI: 10.1002/advs.202409334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/27/2024] [Indexed: 11/22/2024]
Abstract
Chiral fully-substituted allenes are synthetically significant and pivotal building blocks that can engage in diverse transformations toward a variety of bioactive molecules. The enantioselective assembly of these skeletons using readily available reactants offers significant advantages but remains challenging. Herein, an asymmetric formal Michael-type addition of alkynyl imines with the key alkylgold intermediates derived in situ from N-propargylamides is accomplished under gold-complex and chiral quinine-derived squaramide (QN-SQA) synergetic catalysis. Control experiments and the density functional theory (DFT) calculations indicated that this cascade reaction involves a Mannich-type addition and stepwise [3,3]-σ rearrangement sequence, leading to the fully substituted α-amino allenoates, which are elusive and take multi-step to prepare with other methods, in high yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Haoxuan Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhixiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
9
|
Momoli C, Lamenta A, Chiarini M, Demitri N, Lamba D, Morlacci V, Palombi L, Arcadi A. Gold Salts as Alternative Catalysts in Promoting Cascade Condensation of 2-Aminobenzaldehydes with Alcohols and Amines. J Org Chem 2024; 89:16828-16837. [PMID: 39475546 DOI: 10.1021/acs.joc.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The distinctive features of gold self-relay catalysts were alternatively utilized in the intriguing cascade condensation of 2-aminobenzaldehydes with alcohols and amines. Using NaAuCl4·2H2O as a catalyst, a range of 13-alkyloxy-7,11b-dihydro-6H,13H-6,12-[1,2]benzenoquinazolino[3,4-a]quinazoline derivatives was produced in good to high yields through A3B condensation of various 2-aminobenzaldehydes with alcohols. By carefully choosing the reaction conditions, gold catalysis also proved effective for A2B condensation with primary aryl- and benzylamines, facilitating the synthesis of challenging McGeachin bisaminals, including a chiral nonracemic derivative of 2-(S)-methylbenzylamine. The mild conditions of this gold-catalyzed approach may lead to new advancements in the field.
Collapse
Affiliation(s)
- Caterina Momoli
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Astrid Lamenta
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
- Université Paris-Saclay, 3 rue Juliot Curie, Bâtiment Bréguet, Gif-sur-Yvette 91190, France
| | - Marco Chiarini
- Dipartimento di Bioscienze e Tecnologie Agroalimentari e Ambientali, Università degli Studi di Teramo, Via R. Balzarini, Teramo 64100, Italy
| | - Nicola Demitri
- Elettra Sincrotrone Trieste S.C.p.A, Area Science Park - Basovizza, Strada Statale n° 14 Km. 163.5, Trieste I-34149, Italy
| | - Doriano Lamba
- Istituto di Cristallografia - C.N.R., Sede Secondaria di Trieste, Area Science Park - Basovizza, Building Q1, Room 106, Strada Statale 14 - Km. 163.5, Trieste I-34149, Italy
| | - Valerio Morlacci
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Laura Palombi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| | - Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, Via Vetoio, 67100 Coppito, AQ, Italy
| |
Collapse
|
10
|
Yi W, Xu PC, He T, Shi S, Huang S. Organoelectrocatalytic cyclopropanation of alkenyl trifluoroborates with methylene compounds. Nat Commun 2024; 15:9645. [PMID: 39511173 PMCID: PMC11543836 DOI: 10.1038/s41467-024-54082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024] Open
Abstract
Cyclopropanes are not only privileged motifs in many natural products, agrochemicals, and pharmaceuticals, but also highly versatile intermediates in synthetic chemistry. As such, great effort has been devoted to the cyclopropane construction. However, novel catalytic methods for cyclopropanation with two abundant substrates, mild conditions, high functional group tolerance, and broad scope are still highly desirable. Herein, we report an intermolecular electrocatalytic cyclopropanation of alkenyl trifluoroborates with methylene compounds. The reaction uses simple diphenyl sulfide as the electrocatalyst under base-free conditions. And thus, a broad scope of various methylene compounds as well as vinyltrifluoroborates is demonstrated, including styrenyl, 1,3-dienyl, fluorosulfonyl, and base-sensitive substrates. Preliminary mechanistic studies are presented, revealing the critical role of the boryl substituent to facilitate the desired pathway and the role of water as the hydrogen atom source.
Collapse
Affiliation(s)
- Wei Yi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Peng-Cheng Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shuai Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education of China, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
11
|
Shen YT, Zhang Y, Ji CL, Zhang CY, Wang X, Tu MS, Jiang B, Hao WJ. Gold Self-Relay Catalysis Enabling Regioselective Bicyclization toward [5]Azahelicenes. J Org Chem 2024; 89:15447-15458. [PMID: 39411848 DOI: 10.1021/acs.joc.4c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A gold self-relay catalysis driving a double annulation cascade starting from soft electron-biased 1,2-di(o-aminoaryl)alkynes and aldehydes is reported, enabling regioselective access to produce a series of [5]azahelicenes depending on the substitution pattern in generally good yields under mild conditions. This protocol exploits and unifies the π- and σ-Lewis acid capability of gold catalysts, featuring high molecular convergence, broad substrate flexibility, and good functional group compatibility and regioselectivity.
Collapse
Affiliation(s)
- Yi-Ting Shen
- School of Chemistry & Materials Science and Analyzing and Test Center, Jiangsu Normal University, Xuzhou 221116, China
| | - Yan Zhang
- School of Chemistry & Materials Science and Analyzing and Test Center, Jiangsu Normal University, Xuzhou 221116, China
| | - Cheng-Long Ji
- School of Chemistry & Materials Science and Analyzing and Test Center, Jiangsu Normal University, Xuzhou 221116, China
- School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Cong-Yu Zhang
- School of Chemistry & Materials Science and Analyzing and Test Center, Jiangsu Normal University, Xuzhou 221116, China
| | - Xiang Wang
- School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Man-Su Tu
- School of Chemistry & Materials Science and Analyzing and Test Center, Jiangsu Normal University, Xuzhou 221116, China
| | - Bo Jiang
- School of Chemistry & Materials Science and Analyzing and Test Center, Jiangsu Normal University, Xuzhou 221116, China
| | - Wen-Juan Hao
- School of Chemistry & Materials Science and Analyzing and Test Center, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
12
|
Narode A, Barik D, Kuo PH, Cheng MJ, Liu RS. Ag(I)-Catalyzed Oxidative Cyclization of 1,4-Diynamide-3-ols with N-Oxide for Divergent Synthesis of 2-Substituted Furan-4-carboxamide Derivatives. J Org Chem 2024; 89:15924-15930. [PMID: 39437418 PMCID: PMC11536374 DOI: 10.1021/acs.joc.4c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/07/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
This work reports Ag(I)-catalyzed oxidative cyclizations of 1,4-diynamide-3-ols with 8-methylquinoline oxide to form 2-substituted furan-4-carboxamides. The reaction chemoselectivity is distinct from that reported in previous work by Hashmi. We performed density functional theory calculations to elucidate our proposed mechanism after evaluation of the energy profiles of two possible pathways. In this Ag(I) catalysis, the calculations suggest that the amide and alkyne groups of the 3,3-dicarbonyl-2-alkyne intermediates tend to chelate with the Ag(I) catalyst, further inducing a formyl attack at the Ag(I)-π-alkyne moiety to deliver the observed products.
Collapse
Affiliation(s)
| | - Debashis Barik
- Department
of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, ROC
| | - Ping-Hsun Kuo
- Department
of Chemistry, National Cheng-Kung University, Tainan 701, Taiwan, ROC
| | - Mu-Jeng Cheng
- Department
of Chemistry, National Cheng-Kung University, Tainan 701, Taiwan, ROC
| | - Rai-Shung Liu
- Department
of Chemistry, National Tsing-Hua University, Hsinchu, Taiwan 30013, ROC
| |
Collapse
|
13
|
Lu F, Li Z, Wang Y, Liu G, Niu G, Wang G, Zhao X. Facile access to α-silylmethylamidines by BF 3-catalyzed hydroamination of silylynamides with amines. Org Biomol Chem 2024; 22:8097-8101. [PMID: 39290038 DOI: 10.1039/d4ob01314j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The metal-free BF3-catalyzed hydroamination of silylynamides with amines allows facile and efficient synthesis of α-silylmethylamidines in moderate to excellent yields (up to 99%) with a broad substrate scope and excellent functional group compatibility under mild reaction conditions. This protocol offers the first synthetic route to silyl-incorporated amidine compounds, which features the use of Lewis acid BF3 as the catalyst and easily available silylynamides as the silicon source. Considering the biological importance of amidine scaffolds and silyl groups, the easy incorporation of these two structural units should make great sense for medicinal chemistry. Notably, with this strategy, the installation of amidine scaffolds to drug-like molecules celecoxib and estrone is realized for the first time. A plausible mechanism involves the formation of vinyl-boron intermediates from BF3-activated ynamides, which after protodeboronation and tautomerization afford the desired products.
Collapse
Affiliation(s)
- Fei Lu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Zengzeng Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Yulu Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Guoliang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Guangguo Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Guanghui Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Ximei Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| |
Collapse
|
14
|
Gupta A, Bhatti P, Laha JK, Manna S. Skeletal Editing by Hypervalent Iodine Mediated Nitrogen Insertion. Chemistry 2024; 30:e202401993. [PMID: 39046292 DOI: 10.1002/chem.202401993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Hypervalent iodine reagents are versatile and readily accessible reagents that have been extensively applied in contemporary synthesis in modern organic chemistry. Among them, iodonitrene (ArI=NR), is a powerful reactive species, widely used for a single-nitrogen-atom insertion reaction, and skeletal editing to construct N-heterocycles. Skeletal editing with reactive iodonitrene components has recently emerged as an exciting approach in modern chemical transformation. These reagents have been extensively used to produce biologically relevant heterocycles and functionalized molecular architectures. Recently, the insertion of a nitrogen-atom into hydrocarbons to generate N-heterocyclic compounds using hypervalent iodine reagents has been a significant focus in the field of molecular editing reactions. In this review, we discuss the rapidly emerging field of nitrene insertion, including skeletal editing and nitrogen insertion, using hypervalent iodine reagents to access nitrogen-containing heterocycles, and the current mechanistic understanding of these processes.
Collapse
Affiliation(s)
- Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Pratibha Bhatti
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Joydev K Laha
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| | - Srimanta Manna
- Department of Pharmaceutical Technology (Process Chemistry), National Institute of Pharmaceutical Education and Research, Sector-67, S. A. S. Nagar, Punjab, 160062, India
| |
Collapse
|
15
|
Chen Y, Zhu S. Recent advances in metal carbene-induced semipinacol rearrangements. Chem Commun (Camb) 2024; 60:11253-11266. [PMID: 39258409 DOI: 10.1039/d4cc03252g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
As has been well-recognized, the semipinacol rearrangements (SPRs) function as a powerful and versatile tool for the construction of all-carbon and heteroatom-containing quaternary stereocenters, which are present in various natural products and bioactive molecules. In recent years, considerable attention has been paid to exploring the metal carbene-induced semipinacol rearrangements, providing an attractive and powerful strategy for obtaining various important carbonyl compounds. However, to date, no review has been published that summarizes the significant advances in the preparation of functionalized carbonyl compounds using these migration rearrangement reactions. In this review article, we have summarised the recent advances in the field of metal carbene-induced SPR reactions according to different metal classifications. Mechanistic insights, synthetic applications, and their limitations are discussed. The challenges and opportunities in this field are also outlined.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
16
|
Chen K, Li C, Dong S, Hong K, Huang J, Xu X. Gold-Catalyzed Alkyne Oxidative Cyclization/Mannich-Type Addition Cascade Reaction of Ynamides with 1,3,5-Triazinanes. J Org Chem 2024; 89:13623-13628. [PMID: 39238209 DOI: 10.1021/acs.joc.4c01784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Herein, a gold-catalyzed alkyne oxidative cyclization/Mannich-type addition cascade reaction of ynamides with 1,3,5-triazinanes in the presence of a Brønsted acid has been presented. A class of functionalized fluorenes bearing a quaternary carbon center was synthesized directly with moderate to excellent yields via in situ formed α-oxo carbenes using quinoline N-oxide as the oxidant under mild reaction conditions.
Collapse
Affiliation(s)
- Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Shanliang Dong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingjing Huang
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, Guangdong, China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
17
|
Wu Y, Zang S, Ren H, Wang L, Kong L, Zheng J, Li J. Highly Efficient One-Pot Synthesis of 2,4,5-Trisubstituted 3(2 H)-Furanones Utilizing a Au(I)-Catalyzed Oxidation/Pinacol Rearrangement/ anti-Michael Cascade. Org Lett 2024; 26:7656-7660. [PMID: 39226141 DOI: 10.1021/acs.orglett.4c02760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A highly efficient Au(I)-catalyzed cascade reaction between bispropargylic alcohols and pyridine-N-oxides has been realized. The reaction process involved a gold(I)-catalyzed sequential oxidation/Pinacol rearrangement/oxacyclization. Moreover, 1,2-aryl, 1,2-alkyl, or 1,2-vinyl migration was favored over 1,2-alkynyl in the crucial gold(I)-catalyzed Pinacol rearrangement step. A range of 2,4,5-trisubstituted 3(2H)-furanones were synthesized in high yields (up to 88%) with excellent regioselectivities (up to >19:1) under mild reaction conditions.
Collapse
Affiliation(s)
- Yanbin Wu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, People's Republic of China
| | - Shuang Zang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, People's Republic of China
| | - Hang Ren
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, People's Republic of China
| | - Lingyao Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, People's Republic of China
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, People's Republic of China
| | - Jianfeng Zheng
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan 610031, People's Republic of China
| | - Jun Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang 321004, People's Republic of China
| |
Collapse
|
18
|
Chen J, Feng X, He Q, Fan R. Electrochemical C-H Azidation and Diazidation of Anilines for the Synthesis of Aryl Azides and Diazides. J Org Chem 2024; 89:12326-12330. [PMID: 39177449 DOI: 10.1021/acs.joc.4c01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The increasing importance and need in many aspects have driven the rapid development of synthetic studies toward aryl azides. In this paper, electrochemical C-H azidation and diazidation of anilines have been developed using TMSN3 as an azide source. A range of functional groups can be tolerated under the optimized reaction conditions.
Collapse
Affiliation(s)
- Juan Chen
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Xin Feng
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
- Xinjiang University of Science and Technology, Korla, Xinjiang 84100, China
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
19
|
Bao M, Zhou Y, Yuan H, Dong G, Li C, Xie X, Chen K, Hong K, Yu ZX, Xu X. Catalytic (4+2) Annulation via Regio- and Enantioselective Interception of in-situ Generated Alkylgold Intermediate. Angew Chem Int Ed Engl 2024; 63:e202401557. [PMID: 38775225 DOI: 10.1002/anie.202401557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Indexed: 07/02/2024]
Abstract
A regio- and stereoselective stepwise (4+2) annulation of N-propargylamides and α,β-unsaturated imines/ketones has been accomplished with synergetic catalysis by a combination of a gold-complex and a chiral quinine-derived squaramide (QN-SQA), leading to highly functionalized chiral tetrahydropyridines/dihydropyrans in good to high yields with generally excellent enantioselectivity. Mechanistic studies and DFT calculations indicate that the in situ formed alkylgold species is the key intermediate in this transformation, and the amide group served as a traceless directing group in this highly selective transformation. This method complements the enantioselective (4+2) annulation of allene reagents, providing the formal internal C-C π-bond cycloaddition products, which is challenging and remains elusive.
Collapse
Affiliation(s)
- Ming Bao
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Yuan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Guizhi Dong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Chao Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xiongda Xie
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kewei Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Kemiao Hong
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing, 100871, P. R. China
| | - Xinfang Xu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
20
|
Yang JM, Feng GC, Huang X, Wang YL, Wei QY, Wu B. Rhodium(III)-Catalyzed Intramolecular Cyclization and Sequential Aromatization of Ynamides with Propargyl Esters: Access to 2,5-Dihydropyrroles and Pyrroles. Org Lett 2024; 26:6191-6196. [PMID: 39007534 DOI: 10.1021/acs.orglett.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Disclosed herein is a rhodium(III)-catalyzed intramolecular cyclization of ynamides with propargyl esters. A variety of highly functionalized 2,5-dihydropyrroles were obtained in moderate to good yields with high E/Z selectivities. Subsequent oxidation of the products gave valuable pyrrole derivatives. Additionally, scale-up reactions and late-stage derivatizations highlight the potential synthetic utility of this methodology.
Collapse
Affiliation(s)
- Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Guang-Chao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Xiang Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Yi-Lin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Qing-Yi Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
21
|
Zhang C, Cummins CC, Gilliard RJ. Synthesis and reactivity of an N-heterocyclic carbene-stabilized diazoborane. Science 2024; 385:327-331. [PMID: 39024440 DOI: 10.1126/science.adp5749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024]
Abstract
Diazo compounds and organic azides are widely used as reagents for accessing valuable molecules in multiple areas of fundamental and applied chemistry. Their capacity to undergo versatile chemical transformations arises from the reactive nature of an incipient dinitrogen molecule at the terminal position. In this work, we report the synthesis and characterization of an N-heterocyclic carbene (NHC)-stabilized diazoborane-a boron-centered analog of organic azides and diazoalkanes. The diazoborane displays a strong tendency to release dinitrogen, thus serving as a borylene source, in analogy to organic azides and diazoalkanes serving as nitrene and carbene sources, respectively. Also reminiscent of diazoalkane and organic azide reactivity, the diazoborane serves as a 1,3-dipole that undergoes uncatalyzed [3+2] cycloaddition with an unactivated terminal alkyne, affording a five-membered heterocycle after a two-step rearrangement.
Collapse
Affiliation(s)
- Chonghe Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Christopher C Cummins
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
22
|
Lin B, Liu T, Luo T. Gold-catalyzed cyclization and cycloaddition in natural product synthesis. Nat Prod Rep 2024; 41:1091-1112. [PMID: 38456472 DOI: 10.1039/d3np00056g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Covering: 2016 to mid 2023Transition metal catalysis, known for its remarkable capacity to expedite the assembly of molecular complexity from readily available starting materials in a single operation, occupies a central position in contemporary chemical synthesis. Within this landscape, gold-catalyzed reactions present a novel and versatile paradigm, offering robust frameworks for accessing diverse structural motifs. In this review, we highlighted a curated selection of publications in the past 8 years, focusing on the deployment of homogeneous gold catalysis in the ring-forming step for the total synthesis of natural products. These investigations are categorized based on the specific ring formations they engender, accentuating the prevailing gold-catalyzed methodologies applied to surmount intricate challenges in natural products synthesis.
Collapse
Affiliation(s)
- Boxu Lin
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tianran Liu
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Tuoping Luo
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering, Ministry of Education, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, China
| |
Collapse
|
23
|
Sekar P, Gupta A, English LE, Rabbitt CE, Male L, Jupp AR, Davies PW. Regiodivergent Synthesis of 4- and 5-Sulfenyl Oxazoles from Alkynyl Thioethers. Chemistry 2024; 30:e202401465. [PMID: 38743746 DOI: 10.1002/chem.202401465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
The regiodivergent synthesis of 4- and 5-sulfenyl oxazoles from 1,4,2-dioxazoles and alkynyl thioethers has been achieved. Gold-catalysed conditions are used to favour the formation of 5-sulfenyl oxazoles via β-selective attack of the nitrenoid relative to the sulfenyl group. In contrast, 4-sulfenyl oxazoles are formed by α-selective reaction under Brønsted acid conditions from the same substrates. The nature of stabilising gold-sulfur interactions have been investigated by natural bond orbital analysis, showing that the S→Au interactions are significantly stronger in the intermediate that favours the 5-sulfenyl oxazoles. A kinetic survey identifies catalyst inhibition processes. This study into the regiodivergent methods includes the development of telescoped annulation-oxidation protocols for regioselective access to oxazole sulfoxides and sulfones.
Collapse
Affiliation(s)
- Prakash Sekar
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Aniket Gupta
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Laura E English
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Clare E Rabbitt
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Louise Male
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrew R Jupp
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paul W Davies
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
24
|
Lu M, Liu Y. Gold-Catalyzed Regio- and Stereoselective Alkenylation of Quinoline N-Oxides with Allenamides. Org Lett 2024; 26:5493-5499. [PMID: 38905136 DOI: 10.1021/acs.orglett.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
A gold-catalyzed cycloaddition/ring opening of allenamides with quinoline N-oxides has been developed, which provides C2-alkenylated quinolines with high E selectivity in moderate to high yields. It is noted that quinoline N-oxides with a C8 or C7 substituent are crucial for this catalytic reaction.
Collapse
Affiliation(s)
- Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
25
|
Zhao X, Wang G, Hashmi ASK. Gold catalysis in quinoline synthesis. Chem Commun (Camb) 2024; 60:6999-7016. [PMID: 38904196 DOI: 10.1039/d4cc01915f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Quinolines are biologically and pharmaceutically important N-heterocyclic aromatic compounds, which have broad applications in medicinal chemistry. Thus, their efficient synthesis has attracted extensive attention, and a broad range of synthetic strategies have been established. Of note, gold-catalyzed methodologies for the synthesis of quinolines have greatly advanced this field. Various gold-catalyzed intermolecular annulation reactions, such as annulations of aniline derivatives with carbonyl compounds or alkynes, annulations of anthranils with alkynes, and annulations based on A3-coupling reactions, as well as intramolecular cyclization reactions of azide-tethered alkynes, 1,2-diphenylethynes, and 2-ethynyl N-aryl indoles, have been developed. This review provides an overview of this exciting research area. Typical achievements in reaction methodologies and plausible reaction mechanisms are summarized.
Collapse
Affiliation(s)
- Ximei Zhao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - Guanghui Wang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China.
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Heidelberg 69120, Germany.
| |
Collapse
|
26
|
Majeed A, Zafar A, Mushtaq Z, Iqbal MA. Advances in gold catalyzed synthesis of quinoid heteroaryls. RSC Adv 2024; 14:21047-21064. [PMID: 38962094 PMCID: PMC11220603 DOI: 10.1039/d4ra03368j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
This review explores recent advancements in synthesizing quinoid heteroaryls, namely quinazoline and quinoline, vital in chemistry due to their prevalence in natural products and pharmaceuticals. It emphasizes the rapid, highly efficient, and economically viable synthesis achieved through gold-catalyzed cascade protocols. By investigating methodologies and reaction pathways, the review underscores exceptional yields attainable in the synthesis of quinoid heteroaryls. It offers valuable insights into accessing these complex structures through efficient synthetic routes. Various strategies, including cyclization, heteroarylation, cycloisomerization, cyclo-condensation, intermolecular and intramolecular cascade reactions, are covered, highlighting the versatility of gold-catalyzed approaches. The comprehensive compilation of different synthetic approaches and elucidation of reaction mechanisms contribute to a deeper understanding of the field. This review paves the way for future advancements in synthesizing quinoid heteroaryls and their applications in drug discovery and materials science.
Collapse
Affiliation(s)
- Adnan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ayesha Zafar
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zanira Mushtaq
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| |
Collapse
|
27
|
Wang X, Lv R, Li X. Kinetic resolution of 1-(1-alkynyl)cyclopropyl ketones via gold-catalyzed divergent (4 + 4) cycloadditions: stereoselective access to furan fused eight-membered heterocycles. Chem Sci 2024; 15:9361-9368. [PMID: 38903218 PMCID: PMC11186327 DOI: 10.1039/d4sc02763a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 06/22/2024] Open
Abstract
Chiral eight-membered heterocycles comprise a diverse array of natural products and bioactive compounds, yet accessing them poses significant challenges. Here we report a gold-catalyzed stereoselective (4 + 4) cycloaddition as a reliable and divergent strategy, enabling readily accessible precursors (anthranils and ortho-quinone methides) to be intercepted by in situ generated gold-furyl 1,4-dipoles, delivering previously inaccessible chiral furan/pyrrole-containing eight-membered heterocycles with good results (56 examples, all >20 : 1 dr, up to 99% ee). Moreover, we achieve a remarkably efficient kinetic resolution (KR) process (s factor up to 747). The scale-up synthesis and diversified transformations of cycloadducts highlight the synthetic potential of this protocol. Computational calculations provide an in-depth understanding of the stereoselective cycloaddition process.
Collapse
Affiliation(s)
- Xunhua Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Ruifeng Lv
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
| | - Xiaoxun Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University Jinan Shandong 250012 China
- Suzhou Research Institute of Shandong University NO. 388 Ruoshui Road, SIP Suzhou Jiangsu 215123 China
| |
Collapse
|
28
|
Snabilié DD, Ham R, Reek JNH, de Bruin B. Light Induced Cobalt(III) Carbene Radical Formation from Dimethyl Malonate As Carbene Precursor. Organometallics 2024; 43:1299-1307. [PMID: 38873572 PMCID: PMC11167645 DOI: 10.1021/acs.organomet.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024]
Abstract
Radical-type carbene transfer catalysis is an efficient method for the direct functionalization of C-H and C=C bonds. However, carbene radical complexes are currently formed via high-energy carbene precursors, such as diazo compounds or iodonium ylides. Many of these carbene precursors require additional synthetic steps, have an explosive nature, or generate halogenated waste. Consequently, the utilization of carbene radical catalysis is limited by specific carbene precursors that access the carbene radical intermediate. In this study, we generate a cobalt(III) carbene radical complex from dimethyl malonate, which is commercially available and bench-stable. EPR and NMR spectroscopy were used to identify the intermediates and showed that the cobalt(III) carbene radical complex is formed upon light irradiation. In the presence of styrene, carbene transfer occurred, forming cyclopropane as the product. With this photochemical method, we demonstrate that dimethyl malonate can be used as an alternative carbene precursor in the formation of a cobalt(III) carbene radical complex.
Collapse
Affiliation(s)
- Demi D. Snabilié
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Rens Ham
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Joost N. H. Reek
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Bas de Bruin
- Van ‘t Hoff Institute
for Molecular Sciences, University of Amsterdam,
Science Park 904, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
29
|
Liu LC, Lin S, Xu K, Qian J, Wu R, Li Q, Wang H. NHC-Au-Catalyzed Isomerization of Propargylic B(MIDA)s to Allenes and Double Isomerization of Alkynes to 1,3-Dienes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308710. [PMID: 38477453 DOI: 10.1002/advs.202308710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 03/14/2024]
Abstract
The synthesis of allenyl boronates is an important yet challenging topic in organic synthesis. Reported herein is an NHC-gold-catalyzed 1,3-H shift toward allenyl boronates synthesis from simple propargylic B(MIDA)s. Mechanistic studies suggest dual roles of the boryl moiety in the reaction: to activate the substrate for isomerization and at the same time, to prevent the allene product from further isomerization. These effects should be a result of α-anion stabilization and α-cation destabilization conferred by the B(MIDA) moiety, respectively. The NHC-Au catalyst, which is commercially available, is also found to be reactive in alkyne-to-1,3-diene isomerization reactions in an atom-economic and base-free manner.
Collapse
Affiliation(s)
- Li-Cai Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shuang Lin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Kangwei Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiasheng Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ruibo Wu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qingjiang Li
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Honggen Wang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
30
|
Zhao H, Yao L, Gu Y, Niu Y, Han B, Huang W, Zhan G. Cooperative Gold(I)/DMAP Catalysis Enabled (2 + 3) Cycloadditions of Yne-Enones with Oxindole-Derived MBH Carbonates. Org Lett 2024; 26:3790-3795. [PMID: 38666755 DOI: 10.1021/acs.orglett.4c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
A cooperative gold(I)/DMAP system catalyzes the (2 + 3) cycloadditions of yne-enones with oxindole-derived Morita-Baylis-Hillman (MBH) carbonates, yielding diverse bispiro-cyclopentene oxindole products. The mild, scalable protocol demonstrates broad substrate scope and excellent chemo- and diastereoselectivity. Mechanistic study reveals pivotal roles of both catalysts in the unique (2 + 3) cycloaddition. This strategy showcases superiority in achieving transformation with unique chemoselectivity and excellent diastereoselectivity, unattainable through traditional monocatalytic methodologies.
Collapse
Affiliation(s)
- Hongli Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Laiping Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Yiqiao Gu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Yadi Niu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, P.R. China
| |
Collapse
|
31
|
Zhang W, Ling B, Bi S. Gold-Catalyzed Oxidation Reactions of Thioalkynes with Quinoline N-Oxides: A DFT Study. J Org Chem 2024; 89:5546-5554. [PMID: 38593403 DOI: 10.1021/acs.joc.4c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Mechanistic investigation of the gold-catalyzed oxidative reactions of thioalkynes with quinoline N-oxides was performed using density functional theory (DFT) calculations. For the oxidative rearrangement of thioalkynes with quinoline N-oxide to yield the same products, the Cβ-oxidation of thioalkynes was predicted to be competitive with Cα-oxidation, with the Cβ-oxidative process slightly more favorable. However, for the oxidative alkenylation of propargyl aryl thioethers with quinoline N-oxides, the Cβ-oxidation of thioether by quinoline N-oxide generated the product 3-hydroxy-1-alkylidene phenylthiopropan-2-one. Moreover, the ring opening of the four-membered sulfonium intermediate was achieved by the nucleophilic attack of quinoline N-oxide rather than a water molecule.
Collapse
Affiliation(s)
- Wanying Zhang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
- GRINM (Guangdong) Institute for Advanced Materials and Technology, Foshan 528000, Guangdong, People's Republic of China
| | - Baoping Ling
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, People's Republic of China
| |
Collapse
|
32
|
Sadaphal VA, Wu TL, Liu RS. Synthesis of two nitrogen-containing polyaromatic compounds through gold catalysis/DBU-promoted cyclizations. Chem Commun (Camb) 2024; 60:4294-4297. [PMID: 38546213 DOI: 10.1039/d4cc00113c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
This work reports an efficient synthesis of novel benzo[7,8]indolizino[2,3,4,5-ija]quinazoline derivatives between 2-(2-ethynylaryl)acetonitriles 1 and anthranils 2. The synthetic approach involves the initial formation of 7-formylindole intermediates that can be implemented by DBU to activate a novel indole-nitrile-aldehyde cyclization.
Collapse
Affiliation(s)
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| | - Rai-Shung Liu
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.
| |
Collapse
|
33
|
Wang X, Zhou AH, Hu TQ, Xu Z, Zhou B, Ye LW. Gold Catalysis, Asymmetric Friedel-Crafts Alkylation Cascade for One-Pot Synthesis of Chiral Dihydrocarbazoles and Dihydrodibenzofurans. Org Lett 2024; 26:2051-2056. [PMID: 38436250 DOI: 10.1021/acs.orglett.4c00311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
A one-pot gold-catalyzed acyl migration followed by ytterbium-catalyzed asymmetric Friedel-Crafts alkylation is disclosed, leading to the rapid synthesis of chiral dihydrocarbazoles and dihydrodibenzofuran in generally moderate to good overall yields with good to excellent enantioselectivities. The gold-catalyzed acyl migration of propargyl acetates generates α-ylidene-β-diketones with high E/Z ratios, which are then subjected to the ytterbium-catalyzed asymmetric Friedel-Crafts alkylation without any purification. Importantly, this protocol provides a new type of substrate for asymmetric Friedel-Crafts alkylation.
Collapse
Affiliation(s)
- Xuan Wang
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Ai-Hua Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tian-Qi Hu
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhou
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
34
|
Wang WB, Lu JC, Bai H, Fu YM, Cheng LJ, Zhu CF, Li YG, Wu X. Gold/Chiral Amine Relay Catalysis Enables Asymmetric Synthesis of C2-Quaternary Indolin-3-ones. Org Lett 2024; 26:1792-1796. [PMID: 38415597 DOI: 10.1021/acs.orglett.3c04285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A mild and effective strategy for the asymmetric synthesis of C2-quaternary indolin-3-ones from 2-alkynyl arylazides and ketones by gold/chiral amine relay catalysis is described. In this reaction, 2-alkynyl arylazides undergo gold-catalyzed cyclization, nucleophilic attack, and oxidation to form intermediate 2-phenyl-3H-indol-3-ones, followed by an l-proline-catalyzed asymmetric Mannich reaction with ketones, to afford corresponding products in satisfactory yields with excellent enantio- and diastereoselectivities.
Collapse
Affiliation(s)
- Wen-Bin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Ji-Chao Lu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Hao Bai
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yan-Ming Fu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Lan-Jun Cheng
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Cheng-Feng Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - You-Gui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Xiang Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| |
Collapse
|
35
|
Wang JL, Wu GY, Luo JN, Liu JL, Zhuo CX. Catalytic Intermolecular Deoxygenative Coupling of Carbonyl Compounds with Alkynes by a Cp*Mo(II)-Catalyst. J Am Chem Soc 2024; 146:5605-5613. [PMID: 38351743 DOI: 10.1021/jacs.3c14195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Carbonyl is highly accessible and acts as an essential functional group in chemical synthesis. However, the direct catalytic deoxygenative functionalization of carbonyl compounds via a putative metal carbene intermediate is a formidable challenge due to the requirement of a high activation energy for the cleavage of strong C═O double bonds. Here, we report a class of bench stable and readily available Cp*Mo(II)-complexes as efficient deoxygenation catalysts that could catalyze the direct intermolecular deoxygenative coupling of carbonyl compounds with alkynes. Enabled by this powerful Cp*Mo(II)-catalyst, various valuable heteroarenes (10 different classes) were obtained in generally good yields and remarkable chemo- and regioselectivities. Mechanistic studies suggested that this reaction might proceed via a sequence of C═O double bonds cleavage, carbene-alkyne metathesis, cyclization, and aromatization processes. This strategy not only provided a general catalytic platform for the rapid preparation of heteroarenes but also opened a new window for the applications of Cp*Mo(II)-catalysts in organic synthesis.
Collapse
Affiliation(s)
- Jia-Le Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Guan-Yu Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jian-Nan Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Jun-Long Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Chun-Xiang Zhuo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
36
|
Zhu YL, Dong YF, Wang SR, Li YG, Wu X, Ye LW. Nucleophile-Controlled Trapping of Gold Carbene by Nitriles and Water: Synthesis of 5 H-Pyrimido[5,4- b]indoles and 2-Benzylidene-3-indolinones. Org Lett 2024; 26:631-635. [PMID: 38214532 DOI: 10.1021/acs.orglett.3c03856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
A gold-catalyzed, nucleophile-controlled cascade reaction of N-(2-azidophenyl-ynyl)methanesulfonamides with nitriles and water is described that provides structurally diverse 5H-pyrimido[5,4-b]indoles and 2-benzylidene-3-indolinones in good to excellent yields. Mechanistic studies indicate that the β-sulfonamido-α-imino gold carbene is the key intermediate which is generated through the gold-catalyzed cyclization of N-(2-azidophenyl-ynyl)methanesulfonamides and undergoes formal [4 + 2] cascade annulation with nitriles and intramolecular SN2' type reaction with water, respectively.
Collapse
Affiliation(s)
- Yun-Long Zhu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yi-Fan Dong
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Si-Ru Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - You-Gui Li
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Xiang Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
37
|
Feng GC, Li JC, Huang X, Liu JK, Wu B, Yang JM. Cascade hydroarylation/Diels-Alder cycloaddition of alkynylindoles with electron-deficient alkynes and alkenes. Chem Commun (Camb) 2024; 60:328-331. [PMID: 38063477 DOI: 10.1039/d3cc05210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Herein, a novel cascade gold(I)-catalyzed hydroarylation of alkynylindoles and subsequent Diels-Alder cycloaddition with electron-deficient alkynes and alkenes is described. A variety of azepino-fused hydrocarbazoles and carbazoles were obtained in moderate to excellent yields. Key features of this methodology are low catalyst loadings, high regioselectivity, broad functional group tolerances, access to important heterocycles, and 100% atom economy.
Collapse
Affiliation(s)
- Guang-Chao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Jun-Chi Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Xiang Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| | - Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, People's Republic of China.
| |
Collapse
|
38
|
Du J, Cobb PJ, Ding J, Mills DP, Liddle ST. f-Element heavy pnictogen chemistry. Chem Sci 2023; 15:13-45. [PMID: 38131077 PMCID: PMC10732230 DOI: 10.1039/d3sc05056d] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The coordination and organometallic chemistry of the f-elements, that is group 3, lanthanide, and actinide ions, supported by nitrogen ligands, e.g. amides, imides, and nitrides, has become well developed over many decades. In contrast, the corresponding f-element chemisty with the heavier pnictogen analogues phosphorus, arsenic, antimony, and bismuth has remained significantly underdeveloped, due largely to a lack of suitable synthetic methodologies and also the inherent hard(f-element)-soft(heavier pnictogen) acid-base mismatch, but has begun to flourish in recent years. Here, we review complexes containing chemical bonds between the f-elements and heavy pnictogens from phosphorus to bismuth that spans five decades of endeavour. We focus on complexes whose identity has been unambiguously established by structural authentication by single-crystal X-ray diffraction with respect to their synthesis, characterisation, bonding, and reactivity, in order to provide a representative overview of this burgeoning area. By highlighting that much has been achieved but that there is still much to do this review aims to inspire, focus and guide future efforts in this area.
Collapse
Affiliation(s)
- Jingzhen Du
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J Cobb
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Junru Ding
- College of Chemistry, Zhengzhou University Zhengzhou 450001 China
| | - David P Mills
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T Liddle
- Department of Chemistry and Centre for Radiochemistry Research, The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
39
|
Lu B, Zeng X. Phosphinidenes: Fundamental Properties and Reactivity. Chemistry 2023:e202303283. [PMID: 38108540 DOI: 10.1002/chem.202303283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Phosphinidenes are heavy congeners of nitrenes that have been broadly used as in situ reagents in synthetic phosphorus chemistry and also serve as versatile ligands in coordination with transition metals. However, the detection of free phosphinidenes is largely challenged by their high reactivity and also the lack of suitable synthetic methods, rendering the knowledge about the fundamental properties of this class of low-valent phosphorus compounds limited. Recently, an increasing number of free phosphinidenes bearing prototype structural and bonding properties have been prepared for the first time, thus enabling the exploration of their distinct reactivity from the nitrene analogues. This Concept article will discuss the experimental approaches for the generation of the highly unstable phosphinidenes and highlight their distinct reactivity from the nitrogen analogues so as to stimuate future studies about their potential applications in phosphorus chemistry.
Collapse
Affiliation(s)
- Bo Lu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaoqing Zeng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| |
Collapse
|
40
|
Tong Z, Smith PJ, Pickford HD, Christensen KE, Anderson EA. Gold-Catalyzed Cyclization of Yndiamides with Isoxazoles via α-Imino Gold Fischer Carbenes. Chemistry 2023; 29:e202302821. [PMID: 37767940 PMCID: PMC10947298 DOI: 10.1002/chem.202302821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
Gold catalysis is an important method for alkyne functionalization. Here we report the gold-catalyzed formal [3+2] aminative cyclization of yndiamides and isoxazoles in a direct synthesis of polysubstituted diaminopyrroles, which are important motifs in drug discovery. Key to this process is the formation, and subsequent cyclization, of an α-imino gold Fischer carbene, which represents a new type of gold carbene intermediate. The reaction proceeds rapidly under mild conditions, with high regioselectivity being achieved by introducing a subtle steric bias between the nitrogen substituents on the yndiamide. DFT calculations revealed that the key to this regioselectivity was the interconversion of isomeric gold keteniminiun ions via a low-barrier π-complex transition state, which establishes a Curtin-Hammett scenario for isoxazole addition. By using benzisoxazoles as substrates, the reaction outcome could be switched to a formal [5+2] cyclization, leading to 1,4-oxazepines.
Collapse
Affiliation(s)
- Zixuan Tong
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Philip J. Smith
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Helena D. Pickford
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Kirsten E. Christensen
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Edward A. Anderson
- Chemistry Research LaboratoryDepartment of ChemistryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
41
|
Zhou J, Wang W, Zuo F, Liu S, Mosim Amin P, Zhong K, Bai R, Wang Y. Catalyst-Controlled Divergent Generations and Transformations of α-Carbonyl Cations from Alkynes. Angew Chem Int Ed Engl 2023; 62:e202302545. [PMID: 37856619 DOI: 10.1002/anie.202302545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
α-Carbonyl cations are the umpolung forms of the synthetically fundamental α-carbonyl carbanions. They are highly reactive yet rarely studied and utilized species and their precursors were rather limited. Herein, we report the catalyst-controlled divergent generations of α-carbonyl cations from single alkyne functionalities and the interception of them via Wagner-Meerwein rearrangement. Two chemodivergent catalytic systems have been established, leading to two different types of α-carbonyl cations and, eventually, two different types of products, i.e. the α,β- and β,γ-unsaturated carbonyl compounds. Broad spectrum of alkynes including aryl alkyne, ynamide, alkynyl ether, and alkynyl sulfide could be utilized and the migration priorities of different groups in the Wagner-Meerwein rearrangement step was elucidated. Density functional theory calculations further supported the intermediacy of α-carbonyl cations via the N-O bond cleavage in both the two catalytic systems. Another key feature of this methodology was the fragmentation of synthetically inert tert-butyl groups into readily transformable olefin functionalities. The synthetic potential was highlighted by the scale-up reactions and the downstream diversifications including the formal synthesis of nicotlactone B and galbacin.
Collapse
Affiliation(s)
- Junrui Zhou
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Weilin Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Fenfang Zuo
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Shupeng Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Pathan Mosim Amin
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 400030, China
| | - Youliang Wang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University (XJTU), Xi'an, 710049, P. R. China
| |
Collapse
|
42
|
Wang ZS, Xu HJ, Chen YB, Ye LW, Zhou B, Qian PC. Copper-catalyzed atroposelective formal [4+1] annulation of 1,2-diketones with vinyl cations. Chem Commun (Camb) 2023. [PMID: 38013471 DOI: 10.1039/d3cc04817a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The enantioselective transformation of easily accessible 1,2-diketones represents a quick pathway towards enantioenriched molecules. Herein, we disclose a copper-catalyzed atroposelective formal [4+1] annulation of 1,2-diketones with vinyl cations, enabling the efficient and atom-economical construction of axially chiral arylpyrroles bearing 1,3-dioxole moieties with good to excellent enantioselectivities under mild reaction conditions. Importantly, this methodology constitutes the first enantioselective formal [4+1] annulation of 1,2-diketones.
Collapse
Affiliation(s)
- Ze-Shu Wang
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hao-Jin Xu
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Yang-Bo Chen
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Long-Wu Ye
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bo Zhou
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Peng-Cheng Qian
- Institute of New Materials & Industry Technology, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China.
- Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
43
|
Su Z, Amin PM, Wang S. Gold(I)-Catalyzed Ring-Closing Alkyne-Carbonyl Metathesis for the Synthesis of Butenolides. Chemistry 2023; 29:e202302044. [PMID: 37652895 DOI: 10.1002/chem.202302044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Alkyne-carbonyl metathesis is a type of carbon-carbon forming reaction involving the construction a carbon-carbon double bond and a carbonyl group in one transformation. Herein, a Au(I)-catalyzed ring-closing alkyne-carbonyl metathesis protocol has been developed to make densely substituted γ-butenolides from propargyl α-ketoesters. It features 100 % atom economy, excellent substrate flexibility and benign functional group tolerance. Mechanistic studies demonstrate that the coordinative interaction between the gold catalyst and the alkyne might initiate the transfer of an oxygen atom and the formation of the carbon-carbon double bond. By using this gold-catalyzed ring-closing alkyne-carbonyl metathesis as a key step reaction, four naturally occurring butenolide-type compounds including decumbic acid (45 % yield for 3 steps), deoxyisosporothric acid (32 % yield for 5 steps), lichesterinic acid (34 % yield for 5 steps) and isomuronic acid (6 % yield for 8 steps) have been synthesized starting from commercially available starting materials.
Collapse
Affiliation(s)
- Zhenjie Su
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Pathan Mosim Amin
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
44
|
Lu M, Liu Y. Gold-Catalyzed Oxidative Cyclization/C-C Bond Cleavage of Ynones with External Nucleophiles: Synthesis of Linear Functionalized N-Tosylamides. Org Lett 2023; 25:8105-8109. [PMID: 37916839 DOI: 10.1021/acs.orglett.3c03188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A gold-catalyzed oxidative cyclization/nucleophilic addition/C-C bond cleavage reaction of ynones with various nucleophiles has been developed. This methodology allows for the formation of highly functionalized linear N-Ts amides with broad substrate scope, high efficiency, and general tolerance of functional groups. A wide range of nucleophiles such as alcohols, water, and amines including aryl and alkyl amines are compatible with the current method. The C-C triple bond cleavage of the ynone substrate was observed during the process.
Collapse
Affiliation(s)
- Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
45
|
Qi Z, Wang S. Construction of Cyclic Nitrones Enabled by Photodriven and Gold-Catalyzed 1,3-Azaprotio Transfer of Allenyloximes. J Org Chem 2023; 88:15395-15403. [PMID: 37874944 DOI: 10.1021/acs.joc.3c01937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
A protocol was developed to construct five- to seven-membered cyclic nitrones through the gold-catalyzed 1,3-azaprotio transfer of allenyloximes under photoirradiation. The photoisomerization of oximes was suggested to convert the inert stereoisomer to a reactive one. This photodriven and gold-catalyzed ring formation could be further extended to the thermodynamically stable aryl ketoximes with an E-configuration, which previously displayed chemical inertness in the absence of light irradiation.
Collapse
Affiliation(s)
- Zhenjie Qi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaozhong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
46
|
Solas M, Muñoz-Torres MA, Martínez-Lara F, Renedo L, Suárez-Pantiga S, Sanz R. Catalyst- and Substrate-Controlled Regiodivergent Synthesis of Carbazoles through Gold-Catalyzed Cyclizations of Indole-Functionalized Alkynols. Chempluschem 2023; 88:e202300382. [PMID: 37773019 DOI: 10.1002/cplu.202300382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 09/30/2023]
Abstract
A wide variety of regioselectively substituted carbazole derivatives can be synthesized by the gold-catalyzed cyclization of alkynols bearing an indol-3-yl and an additional group at the homopropargylic positions. The regioselectivity of the process can be controlled by both the oxidation state of the gold catalyst and the electronic nature of the substituents of the alkynol moiety. The 1,2-alkyl migration in the spiroindoleninium intermediate, generated after indole attack to the activated alkyne, is favored with gold(I) complexes and for electron-rich aromatic substituents at the homopropargylic position, whereas the 1,2-alkenyl shift is preferred when using gold(III) salts and for alkyl or non-electron-rich aromatic groups.
Collapse
Affiliation(s)
- Marta Solas
- Área de Química Orgánica. Departamento de Química., Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001-, Burgos, Spain
| | - Miguel A Muñoz-Torres
- Área de Química Orgánica. Departamento de Química., Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001-, Burgos, Spain
| | - Fernando Martínez-Lara
- Área de Química Orgánica. Departamento de Química., Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001-, Burgos, Spain
| | - Lorena Renedo
- Área de Química Orgánica. Departamento de Química., Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001-, Burgos, Spain
| | - Samuel Suárez-Pantiga
- Área de Química Orgánica. Departamento de Química., Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001-, Burgos, Spain
| | - Roberto Sanz
- Área de Química Orgánica. Departamento de Química., Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos, s/n, 09001-, Burgos, Spain
| |
Collapse
|
47
|
Liu DY, Han J, Liu K, Cheng Y, Tan H, Yang X, Li W, Xie J. Dinuclear Gold-Catalyzed para-Selective C-H Arylation of Undirected Arenes by Noncovalent Interactions. Angew Chem Int Ed Engl 2023; 62:e202313122. [PMID: 37707123 DOI: 10.1002/anie.202313122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
The regioselectivity of C-H functionalization is commonly achieved by directing groups, electronic factors, or steric hindrance, which facilitate the identification of reaction sites. However, such strategies are less effective for reactants such as simple monofluoroarenes due to their relatively low reactivity and the modest steric demands of the fluorine atom. Herein, we present an undirected gold-catalyzed para-C-H arylation of a wide array of monofluoroarenes using air-stable aryl silanes and germanes at room temperature. A high para-regioselectivity (up to 98 : 2) can be realized by utilizing a dinuclear dppm(AuOTs)2 (dppm=bis(diphenylphosphino)methane) as the catalyst and hexafluorobenzene as the solvent. This provides a general and practical protocol for the concise construction of structurally diverse para-arylated monofluoroarenes through C-H activation manner. It features excellent functional group tolerance and a broad substrate scope (>80 examples). Besides, this strategy is also robust for other simple monosubstituted arenes and heteroarenes. Our mechanistic studies and theoretical calculations suggest that para-C-H selectivity arises from highly electrophilic and structurally flexible dinuclear Ar-Au(III)-Au(I) species, coupled with noncovalent interaction induced by hexafluorobenzene.
Collapse
Affiliation(s)
- Duan-Yang Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Kai Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yaohang Cheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Weipeng Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jin Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
48
|
Sun Q, Hüßler C, Kahle J, Mackenroth AV, Rudolph M, Krämer P, Oeser T, Hashmi ASK. Cascade Reactions of Aryl-Substituted Terminal Alkynes Involving in Situ-Generated α-Imino Gold Carbenes. Angew Chem Int Ed Engl 2023:e202313738. [PMID: 37882411 DOI: 10.1002/anie.202313738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
An efficient, highly selective and divergent synthetic method to construct 2-substituted indoles and aryl-annulated carbazoles via the intermolecular generation of α-imino gold carbenes from terminal alkynes or diynes in combination with sulfilimines is disclosed. Importantly, the tandem reaction is proposed to proceed through an intermolecular gold carbene generation/C-H annulation followed by the activation of a second alkyne leading to 6-endo-dig cyclization, which is significantly different from previous dual activation or 1,6-carbene shift approaches for diyne systems. In the case of ortho-alkynylaniline as starting material, an unexpected regioselective formation of the indole moiety via the intermolecular path, instead of intramolecular hydroamination was discovered. This reactivity paved the way for a one-pot synthesis of the 11H-indolo [3,2-c] quinoline scaffold by exploiting the formed amino indole for a subsequent Pictet-Spengler reaction with aldehydes. The photophysical properties of the carbazoles indicated good violet-blue emission with quantum yields up to 40 %.
Collapse
Affiliation(s)
- Qiaoying Sun
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Christopher Hüßler
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Justin Kahle
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Alexandra V Mackenroth
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Matthias Rudolph
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Petra Krämer
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Thomas Oeser
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - A Stephen K Hashmi
- Institut für Organische Chemie, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
49
|
Gayyur, Choudhary S, Kant R, Ghosh N. Twofold Heteroannulation Reactions Enabled by Gold(I)/Zinc(II) Catalysts: Synthesis of Amine-Substituted Diaryl[ c, h][1,6]naphthyridines. Org Lett 2023; 25:7400-7405. [PMID: 37787541 DOI: 10.1021/acs.orglett.3c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
A straightforward and atom-economical one-pot protocol catalyzed by gold(I) and zinc(II) for the synthesis of amine-substituted diaryl[c,h][1,6]naphthyridines from two different aromatic nitriles has been showcased. This dual-catalytic strategy is highly efficient, offering an array of tetracyclic heteroaromatic products in good to excellent yields. Furthermore, the base can efficiently catalyze the second annulation step, yielding structurally unique thiophene-fused [1,6]naphthyridines in good yields.
Collapse
Affiliation(s)
- Gayyur
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Shivani Choudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Nayan Ghosh
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
50
|
Hong K, Zhou Y, Yuan H, Zhang Z, Huang J, Dong S, Hu W, Yu ZX, Xu X. Catalytic 4-exo-dig carbocyclization for the construction of furan-fused cyclobutanones and synthetic applications. Nat Commun 2023; 14:6378. [PMID: 37821471 PMCID: PMC10567718 DOI: 10.1038/s41467-023-42032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Cyclobutanone is a strained motif with broad applications, while direct assembly of the aromatic ring fused cyclobutanones beyond benzocyclobutenone (BCB) skeletons remains challenging. Herein, we report a Rh-catalyzed formal [3+2] annulation of diazo group tethered alkynes involving a 4-exo-dig carbocyclization process, providing a straightforward access to furan-fused cyclobutanones. DFT calculations disclose that, by comparison to the competitive 5-endo-dig process, 4-exo-dig carbocyclization is mainly due to lower angle strain of the key sp-hybridized vinyl cationic transition state in the cyclization step. Using less reactive catalysts Rh2(carboxylate)4 is critical for high selectivity, which is explained as catalyst-substrate hydrogen bonding interaction. This method is proved successful to direct access previously inaccessible and unknown furan-fused cyclobutanone scaffolds, which can participate in a variety of post-functionalization reactions as versatile synthetic blocks. In addition, preliminary antitumor activity study of these products indicates that some molecules exhibite significant anticancer potency against different human cancer cell lines.
Collapse
Affiliation(s)
- Kemiao Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Yi Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China
| | - Haoxuan Yuan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Zhijing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Jingjing Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Shanliang Dong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China
| | - Zhi-Xiang Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, 100871, Beijing, China.
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|