1
|
Ueki A, Harada S, Aoyagi M, Matsumoto H, Ueda R, Mizuguchi K, Méhes G, Nagamine K. Electric wiring of bacteria using redox polymers and selective measurement of metabolic activity in the presence of surrounding planktonic bacteria. Bioelectrochemistry 2024; 160:108779. [PMID: 39003947 DOI: 10.1016/j.bioelechem.2024.108779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Non-electroactive bacteria (n-EAB), constituting the majority of known bacteria to date, have been underutilized in electrochemical conversion technologies due to their lack of direct electron transfer to electrodes. In this study, we established an electric wiring between n-EAB (gram-positive Bacillus subtilis and gram-negative Escherichia coli) and an extracellular electrode via a ferrocene-polyethyleneimine-based redox polymer (Fc-PEI). Chronoamperometry recordings indicated that Fc-PEI can transfer intracellular electrons to the extracellular electrode regardless of the molecular organization of PEI (linear or branched) and the membrane structure of bacteria (gram-positive or -negative). As fluorescence staining suggested, Fc-PEI improves the permeability of the bacterial cell membrane, enabling electron carriers in the cell to react with Fc. In addition, experiments with Fc-immobilized electrodes without PEI suggested the existence of an alternative electron transfer pathway from B. subtilis to the extracellular Fc adsorbed onto the cell membrane. Furthermore, we proposed for the first time that the bacteria/Fc-linear PEI modified structure enables selective measurement of immobilized bacterial activity by physically blocking contact between the electrode surface and planktonic cells co-existing in the surrounding media. Such electrodes can be a powerful analytical tool for elucidating the metabolic activities of specific bacteria wired to the electrode even within complex bacterial communities.
Collapse
Affiliation(s)
- Aoba Ueki
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shoi Harada
- Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Marika Aoyagi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hirotaka Matsumoto
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Riku Ueda
- Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Kei Mizuguchi
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Gábor Méhes
- Graduate School of Information, Production and Systems, Waseda University, 2-7 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kuniaki Nagamine
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan; Faculty of Engineering, Department of Polymeric and Organic Materials Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
2
|
McCuskey SR, Quek G, Vázquez RJ, Kundukad B, Bin Ismail MH, Astorga SE, Jiang Y, Bazan GC. Evolving Synergy Between Synthetic and Biotic Elements in Conjugated Polyelectrolyte/Bacteria Composite Improves Charge Transport and Mechanical Properties. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405242. [PMID: 39262122 DOI: 10.1002/advs.202405242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Indexed: 09/13/2024]
Abstract
gLiving materials can achieve unprecedented function by combining synthetic materials with the wide range of cellular functions. Of interest are situations where the critical properties of individual abiotic and biotic elements improve via their combination. For example, integrating electroactive bacteria into conjugated polyelectrolyte (CPE) hydrogels increases biocurrent production. One observes more efficient electrical charge transport within the CPE matrix in the presence of Shewanella oneidensis MR-1 and more current per cell is extracted, compared to traditional biofilms. Here, the origin of these synergistic effects are examined. Transcriptomics reveals that genes in S. oneidensis MR-1 related to bacteriophages and energy metabolism are upregulated in the composite material. Fluorescent staining and rheological measurements before and after enzymatic treatment identified the importance of extracellular biomaterials in increasing matrix cohesion. The synergy between CPE and S. oneidensis MR-1 thus arises from initially unanticipated changes in matrix composition and bacteria adaption within the synthetic environment.
Collapse
Affiliation(s)
- Samantha R McCuskey
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Glenn Quek
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Ricardo Javier Vázquez
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
| | - Binu Kundukad
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Muhammad Hafiz Bin Ismail
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Solange E Astorga
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Yan Jiang
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Guillermo C Bazan
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, Singapore, 117544, Singapore
| |
Collapse
|
3
|
Paternò GM. Materials-driven strategies in bacterial engineering. MRS COMMUNICATIONS 2024; 14:1027-1036. [PMID: 39404665 PMCID: PMC7616573 DOI: 10.1557/s43579-024-00623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/23/2024] [Indexed: 11/01/2024]
Abstract
This perspective article focuses on the innovative field of materials-based bacterial engineering, highlighting interdisciplinary research that employs material science to study, augment, and exploit the attributes of living bacteria. By utilizing exogenous abiotic material interfaces, researchers can engineer bacteria to perform new functions, such as enhanced bioelectric capabilities and improved photosynthetic efficiency. Additionally, materials can modulate bacterial communities and transform bacteria into biohybrid microrobots, offering promising solutions for sustainable energy production, environmental remediation, and medical applications. Finally, the perspective discusses a general paradigm for engineering bacteria through the materials-driven modulation of their transmembrane potential. This parameter regulates their ion channel activity and ultimately their bioenergetics, suggesting that controlling it could allow scientists to hack the bioelectric language bacteria use for communication, task execution, and environmental response. Graphical abstract
Collapse
Affiliation(s)
- Giuseppe Maria Paternò
- Physics Department, Politecnico Di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
- Center for Nanoscience and Technology, Istituto Italiano Di Tecnologia, Via Rubattino 71, 20134 Milano, Italy
| |
Collapse
|
4
|
Jiang Y, Vázquez RJ, McCuskey SR, Yip BRP, Quek G, Ohayon D, Kundukad B, Wang X, Bazan GC. Recyclable Conjugated Polyelectrolyte Hydrogels for Pseudocapacitor Fabrication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38150629 DOI: 10.1021/acsami.3c13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In alignment with widespread interest in carbon neutralization and sustainable practices, we disclose that conjugated polyelectrolyte (CPE) hydrogels are a type of recyclable, electrochemically stable, and environmentally friendly pseudocapacitive material for energy storage applications. By leveraging ionic-electronic coupling in a relatively fluid medium, one finds that hydrogels prepared using a fresh batch of an anionic CPE, namely, Pris-CPE-K, exhibit a specific capacitance of 32.6 ± 6.6 F g-1 in 2 M NaCl and are capable of 80% (26.1 ± 6.5 F g-1) capacitance retention after 100,000 galvanostatic charge-discharge (GCD) cycles at a current density (J) of 10 A g-1. We note that equilibration under a constant potential prior to GCD analysis leads to the K+ counterions in the CPE exchanging with Na+ and, thus, the relevant active material Pris-CPE-Na. It is possible to remove the CPE material from the electrochemical cell via extraction with water and to carry out a simple purification through dialysis to produce a recycled material, namely Re-CPE-Na. The recycling workup has no significant detrimental impact on the electrochemical performance. Specifically, Re-CPE-Na hydrogels display an initial specific capacitance of 26.3 ± 1.2 F g-1 (at 10 A g-1) and retain 77% of the capacitance after a subsequent 100,000 GCD cycles. Characterization by NMR, FTIR, and Raman spectroscopies, together with XPS and GPC measurements, revealed no change in the structure of the backbone or side chains. However, rheological measurements gave evidence of a slight loss in G' and G''. Overall, that CPE hydrogels display recyclability argues in favor of considering them as a novel materials platform for energy storage applications within an economically viable circular recycling strategy.
Collapse
Affiliation(s)
- Yan Jiang
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Ricardo Javier Vázquez
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Samantha R McCuskey
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Benjamin Rui Peng Yip
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Glenn Quek
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - David Ohayon
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
| | - Binu Kundukad
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
| | - Xuehang Wang
- Department of Radiation Science and Technology, Delft University of Technology, Delft 2629 JB, Netherlands
| | - Guillermo C Bazan
- Departments of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, 119077, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 117544, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 639798, Singapore
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
5
|
Chen Z, Quek G, Zhu JY, Chan SJW, Cox-Vázquez SJ, Lopez-Garcia F, Bazan GC. A Broad Light-Harvesting Conjugated Oligoelectrolyte Enables Photocatalytic Nitrogen Fixation in a Bacterial Biohybrid. Angew Chem Int Ed Engl 2023; 62:e202307101. [PMID: 37438952 DOI: 10.1002/anie.202307101] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/27/2023] [Accepted: 07/12/2023] [Indexed: 07/14/2023]
Abstract
We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC, which endows aerobic N2 -fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC/A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15 N2 atmosphere led to the enrichment of 15 N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2 .
Collapse
Affiliation(s)
- Zhongxin Chen
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Glenn Quek
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Ji-Yu Zhu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Samuel J W Chan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Sarah J Cox-Vázquez
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Fernando Lopez-Garcia
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, 117544, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
6
|
Wang Z, Lin H, Zhang M, Yu W, Zhu C, Wang P, Huang Y, Lv F, Bai H, Wang S. Water-soluble conjugated polymers for bioelectronic systems. MATERIALS HORIZONS 2023; 10:1210-1233. [PMID: 36752220 DOI: 10.1039/d2mh01520j] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Bioelectronics is an interdisciplinary field of research that aims to establish a synergy between electronics and biology. Contributing to a deeper understanding of bioelectronic processes and the built bioelectronic systems, a variety of new phenomena, mechanisms and concepts have been derived in the field of biology, medicine, energy, artificial intelligence science, etc. Organic semiconductors can promote the applications of bioelectronics in improving original performance and creating new features for organisms due to their excellent photoelectric and electrical properties. Recently, water-soluble conjugated polymers (WSCPs) have been employed as a class of ideal interface materials to regulate bioelectronic processes between biological systems and electronic systems, relying on their satisfying ionic conductivity, water-solubility, good biocompatibility and the additional mechanical and electrical properties. In this review, we summarize the prominent contributions of WSCPs in the aspect of the regulation of bioelectronic processes and highlight the latest advances in WSCPs for bioelectronic applications, involving biosynthetic systems, photosynthetic systems, biophotovoltaic systems, and bioelectronic devices. The challenges and outlooks of WSCPs in designing high-performance bioelectronic systems are also discussed.
Collapse
Affiliation(s)
- Zenghao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongrui Lin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Wen Yu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuanwei Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Pengcheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Yiming Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Haotian Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Shu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- College of Chemistry, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Wang G, Tang Z, Gao Y, Liu P, Li Y, Li A, Chen X. Phase Change Thermal Storage Materials for Interdisciplinary Applications. Chem Rev 2023. [PMID: 36946191 DOI: 10.1021/acs.chemrev.2c00572] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Functional phase change materials (PCMs) capable of reversibly storing and releasing tremendous thermal energy during the isothermal phase change process have recently received tremendous attention in interdisciplinary applications. The smart integration of PCMs with functional supporting materials enables multiple cutting-edge interdisciplinary applications, including optical, electrical, magnetic, acoustic, medical, mechanical, and catalytic disciplines etc. Herein, we systematically discuss thermal storage mechanism, thermal transfer mechanism, and energy conversion mechanism, and summarize the state-of-the-art advances in interdisciplinary applications of PCMs. In particular, the applications of PCMs in acoustic, mechanical, and catalytic disciplines are still in their infancy. Simultaneously, in-depth insights into the correlations between microscopic structures and thermophysical properties of composite PCMs are revealed. Finally, current challenges and future prospects are also highlighted according to the up-to-date interdisciplinary applications of PCMs. This review aims to arouse broad research interest in the interdisciplinary community and provide constructive references for exploring next generation advanced multifunctional PCMs for interdisciplinary applications, thereby facilitating their major breakthroughs in both fundamental researches and commercial applications.
Collapse
Affiliation(s)
- Ge Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhaodi Tang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yan Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory of Function Materials for Molecule & Structure Construction, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Panpan Liu
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| | - Ang Li
- School of Chemistry Biology and Materials Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiao Chen
- Institute of Advanced Materials, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
8
|
de Souza‐Guerreiro TC, Bondelli G, Grobas I, Donini S, Sesti V, Bertarelli C, Lanzani G, Asally M, Paternò GM. Membrane Targeted Azobenzene Drives Optical Modulation of Bacterial Membrane Potential. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205007. [PMID: 36710255 PMCID: PMC10015841 DOI: 10.1002/advs.202205007] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/17/2023] [Indexed: 05/29/2023]
Abstract
Recent studies have shown that bacterial membrane potential is dynamic and plays signaling roles. Yet, little is still known about the mechanisms of membrane potential dynamics regulation-owing to a scarcity of appropriate research tools. Optical modulation of bacterial membrane potential could fill this gap and provide a new approach for studying and controlling bacterial physiology and electrical signaling. Here, the authors show that a membrane-targeted azobenzene (Ziapin2) can be used to photo-modulate the membrane potential in cells of the Gram-positive bacterium Bacillus subtilis. It is found that upon exposure to blue-green light (λ = 470 nm), isomerization of Ziapin2 in the bacteria membrane induces hyperpolarization of the potential. To investigate the origin of this phenomenon, ion-channel-deletion strains and ion channel blockers are examined. The authors found that in presence of the chloride channel blocker idanyloxyacetic acid-94 (IAA-94) or in absence of KtrAB potassium transporter, the hyperpolarization response is attenuated. These results reveal that the Ziapin2 isomerization can induce ion channel opening in the bacterial membrane and suggest that Ziapin2 can be used for studying and controlling bacterial electrical signaling. This new optical tool could contribute to better understand various microbial phenomena, such as biofilm electric signaling and antimicrobial resistance.
Collapse
Affiliation(s)
| | - Gaia Bondelli
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Iago Grobas
- Physical and Theoretical Chemistry LaboratoryOxfordOX1 3QZUK
| | - Stefano Donini
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
| | - Valentina Sesti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Chiara Bertarelli
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta” Politecnico di MilanoMilano20133Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| | - Munehiro Asally
- School of Life SciencesUniversity of WarwickCoventryCV4 7ALUK
| | - Giuseppe Maria Paternò
- Center for Nanoscience and TechnologyIstituto Italiano di TeconologiaMilano20133Italy
- Department of PhysicsPolitecnico di MilanoMilano20133Italy
| |
Collapse
|
9
|
Alahmdi MI. Development of a push-π-pull phenothiazine-vinyl-isophorone fluorophore: a novel solvatochromic and pH indicator. LUMINESCENCE 2023; 38:372-378. [PMID: 36735840 DOI: 10.1002/bio.4451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Knoevenagel condensation of phenothiazine-3,7-dicarbaldehyde with an isophorone yielded a new phenothiazine derivative (PTZ-c) fluorophore. The solvatochromic and pH-sensing abilities of PTZ-c, an asymmetric fluorophore with a single isophorone molecule, were shown to be exceptional. PTZ-c produced very delicate absorbance and emission spectra. When the polarity of the solvent was increased, the PTZ-c emission spectra showed greater sensitivity than the absorption spectra. Multiple spectroscopic techniques, including Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectrometry, were used to characterize the manufactured PTZ-c sensor. To demonstrate the beneficial solvatochromic behaviour associated with intramolecular charge transfer, the absorption spectra of the synthesized DA PTZ-c dye were analyzed in different solvents of varying polarity. Band intensity and the wavelength of PTZ-c emission were also found to be highly solvent dependent. It was observed that when solvent polarity was increased to a maximum of 4122 cm-1 , Stokes' shift also increased. To analyze the Stokes' shift that depended on the solvent, a linear correlation between solvation and energy was used. An investigation of PTZ-c quantum yield (ф) was also conducted. Both the absorbance and fluorescence spectra of the sensor in dimethylformamide as a function of pH were studied. A fluorescence peak was seen at 562 nm, whereas the greatest absorption wavelengths were found at 403 and 317 nm. It was shown that the pH-sensing mechanism depended on protons removed from the PTZ-c chromophore, which caused a colour shift and variation in both emission and colorimetric properties.
Collapse
Affiliation(s)
- Mohammed Issa Alahmdi
- Faculty of Science, Department of Chemistry, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
10
|
Huang JD, Ma H. Quantitative Prediction of Charge Mobilities and Theoretical Insight into the Regulation of Site-Specific Trifluoromethylethynyl Substitution to Electronic and Charge Transport Properties of 9,10-Anthraquinone. ACS OMEGA 2022; 7:48391-48402. [PMID: 36591146 PMCID: PMC9798492 DOI: 10.1021/acsomega.2c06591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Herein, we systematically studied the electronic and conducting properties of 9,10-anthraquinone (AQ) and its derivatives and discussed the substitute-site effects on their organic field-effect transistor (OFET) properties in detail. Our calculation results show the influence of different substitute sites on the ionization potential (IP), electronic affinity (EA), reorganization energy (λ), electronic couplings (V), and anisotropic mobility (μ) of semiconducting materials, which mainly originates from the variations of the frontier molecular orbital charge distributions, the steric hindrance, and the conjugate degree. Combining quantum-chemical calculations with charge transfer theory, we simulated the intermolecular hopping rate in the organic crystals of AQ derivatives and predicted the fluctuation range of three-dimensional (3D) anisotropic charge carrier mobility for the first time. Our calculation results well reproduced the experimental observations and provided evidence for the determination of the optimal OFET conduction plane and channel direction relative to the crystal axis.
Collapse
Affiliation(s)
- Jin-Dou Huang
- School
of Physics and Materials Engineering, Dalian
Nationalities University, Dalian116600, China
- State
Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian116023, China
| | - Huipeng Ma
- College
of Medical Laboratory Science, Dalian Medical
University, Dalian116044, China
| |
Collapse
|
11
|
Liu S, Zhao K, Huang M, Zeng M, Deng Y, Li S, Chen H, Li W, Chen Z. Research progress on detection techniques for point-of-care testing of foodborne pathogens. Front Bioeng Biotechnol 2022; 10:958134. [PMID: 36003541 PMCID: PMC9393618 DOI: 10.3389/fbioe.2022.958134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022] Open
Abstract
The global burden of foodborne disease is enormous and foodborne pathogens are the leading cause of human illnesses. The detection of foodborne pathogenic bacteria has become a research hotspot in recent years. Rapid detection methods based on immunoassay, molecular biology, microfluidic chip, metabolism, biosensor, and mass spectrometry have developed rapidly and become the main methods for the detection of foodborne pathogens. This study reviewed a variety of rapid detection methods in recent years. The research advances are introduced based on the above technical methods for the rapid detection of foodborne pathogenic bacteria. The study also discusses the limitations of existing methods and their advantages and future development direction, to form an overall understanding of the detection methods, and for point-of-care testing (POCT) applications to accurately and rapidly diagnose and control diseases.
Collapse
Affiliation(s)
- Sha Liu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Kaixuan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Meiyuan Huang
- Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Department of Pathology, Central South University, Zhuzhou, China
| | - Meimei Zeng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Yan Deng
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Song Li
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Hui Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| | - Wen Li
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhu Chen
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
12
|
Fang C, Li J, Feng Z, Li X, Cheng M, Qiao Y, Hu W. Spatiotemporal Mapping of Extracellular Electron Transfer Flux in a Microbial Fuel Cell Using an Oblique Incident Reflectivity Difference Technique. Anal Chem 2022; 94:10841-10849. [PMID: 35863931 DOI: 10.1021/acs.analchem.2c01912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extracellular electron transfer (EET) is a critical process involved in microbial fuel cells. Spatially resolved mapping of EET flux is of essential significance due to the inevitable spatial inhomogeneity over the bacteria/electrode interface. In this work, EET flux of a typical bioanode constructed by inhabiting Shewanella putrefaciens CN32 on a porous polyaniline (PANI) film was successfully mapped using a newly established oblique incident reflectivity difference (OIRD) technique. In the open-circuit state, the PANI film was reduced by the electrons released from the bacteria via the EET process, and the resultant redox state change of PANI was sensitively imaged by OIRD in a real-time and noninvasive manner. Due to the strong correlation between the EET flux and OIRD signal, the OIRD differential image represents spatially resolved EET flux, and the in situ OIRD signal reveals the dynamic behavior during the EET process, thus providing important spatiotemporal information complementary to the bulky electrochemical data.
Collapse
Affiliation(s)
- Changxiang Fang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Junying Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Zhihao Feng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Xiaoyi Li
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Min Cheng
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Yan Qiao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
13
|
Photocatalytic Material-Microorganism Hybrid System and Its Application—A Review. MICROMACHINES 2022; 13:mi13060861. [PMID: 35744475 PMCID: PMC9230708 DOI: 10.3390/mi13060861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023]
Abstract
The photocatalytic material-microorganism hybrid system is an interdisciplinary research field. It has the potential to synthesize various biocompounds by using solar energy, which brings new hope for sustainable green energy development. Many valuable reviews have been published in this field. However, few reviews have comprehensively summarized the combination methods of various photocatalytic materials and microorganisms. In this critical review, we classified the biohybrid designs of photocatalytic materials and microorganisms, and we summarized the advantages and disadvantages of various photocatalytic material/microorganism combination systems. Moreover, we introduced their possible applications, future challenges, and an outlook for future developments.
Collapse
|
14
|
Vázquez RJ, McCuskey SR, Quek G, Su Y, Llanes L, Hinks J, Bazan GC. Conjugated Polyelectrolyte/Bacteria Living Composites in Carbon Paper for Biocurrent Generation. Macromol Rapid Commun 2022; 43:e2100840. [PMID: 35075724 DOI: 10.1002/marc.202100840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/05/2022] [Indexed: 11/08/2022]
Abstract
Successful practical implementation of bioelectrochemical systems requires developing affordable electrode structures that promote efficient electrical communication with microbes. Recent efforts have centered on immobilizing bacteria with organic semiconducting polymers on electrodes via electrochemical methods. This approach creates a fixed biocomposite that takes advantage of the increased electrode's electroactive surface area (EASA). Here, we demonstrate that a biocomposite comprising the water-soluble conjugated polyelectrolyte CPE-K and electrogenic Shewanella oneidensis MR-1 can self-assemble with carbon paper electrodes, thereby increasing its biocurrent extraction by ∼ 6-fold over control biofilms. A ∼ 1.5-fold increment in biocurrent extraction was obtained for the biocomposite on carbon paper relative to the biocurrent extracted from gold-coated counterparts. Electrochemical characterization revealed that the biocomposite stabilized with the carbon paper more quickly than atop flat gold electrodes. Cross-sectional images show that the biocomposite infiltrates inhomogeneously into the porous carbon structure. Despite an incomplete penetration, the biocomposite can take advantage of the large EASA of the electrode via long-range electron transport. These results show that previous success on gold electrode platforms can be improved when using more commercially viable and easily manipulated electrode materials. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ricardo Javier Vázquez
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Samantha R McCuskey
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Glenn Quek
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| | - Yude Su
- Suzhou Institute of Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Luana Llanes
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| | - Jamie Hinks
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore, 637551, Singapore
| | - Guillermo C Bazan
- Department of Chemistry and Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 119077, Singapore
| |
Collapse
|
15
|
Gan L, Velásquez-Hernández MDJ, Emmerstorfer-Augustin A, Wied P, Wolinski H, Zilio SD, Solomon M, Liang W, Doonan C, Falcaro P. Multi-layered ZIF-coated cells for the release of bioactive molecules in hostile environments. Chem Commun (Camb) 2022; 58:10004-10007. [PMID: 35942713 PMCID: PMC9453912 DOI: 10.1039/d2cc03072a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic framework (MOF) coatings on cells enhance viability in cytotoxic environments. Here, we show how protective multi-layered MOF bio-composite shells on a model cell system (yeast) enhance the proliferation of...
Collapse
Affiliation(s)
- Lei Gan
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | | | - Anita Emmerstorfer-Augustin
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, BioTechMed-Graz,, Petergasse 14, Graz, 8010, Austria
| | - Peter Wied
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | - Heimo Wolinski
- Institute of Molecular Biosciences, BioTechMed-Graz, University of Graz, Graz, Austria
| | - Simone Dal Zilio
- Istituto Officina dei Materiali CNR, Basovizza, Edificio MM-SS, Trieste, Italy
| | - Marcello Solomon
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| | - Weibin Liang
- School of Physical Sciences, Faculty of Sciences, University of Adelaide, South Australia, 5005, Australia.
| | - Christian Doonan
- School of Physical Sciences, Faculty of Sciences, University of Adelaide, South Australia, 5005, Australia.
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9, Graz, 8010, Austria.
| |
Collapse
|