1
|
Moon J, Lee Y, Ihee H. Time-resolved serial femtosecond crystallography for investigating structural dynamics of chemical systems. Chem Commun (Camb) 2024; 60:9472-9482. [PMID: 39118495 DOI: 10.1039/d4cc03185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Time-resolved serial femtosecond crystallography (TR-SFX) has emerged as a crucial tool for studying the structural dynamics of proteins. In principle, TR-SFX has the potential to be a powerful tool not only for studying proteins but also for investigating chemical reactions. However, non-protein systems generally face challenges in indexing due to sparse Bragg spots and encounter difficulties in effectively exciting target molecules. Nevertheless, successful TR-SFX studies on chemical systems have been recently reported in a few instances, boding well for the application of TR-SFX to study chemical reactions in the future. In this context, we review the static SFX and TR-SFX studies conducted on chemical systems reported to date and suggest prospects for future research directions.
Collapse
Affiliation(s)
- Jungho Moon
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yunbeom Lee
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Zhang X, Wang SQ, Zhang Q, Li H, Yu R. "On-On-Off" Recyclable Fluorescence Battery for Direct and Selective Detection of Glyphosate and Cu 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13256-13264. [PMID: 38860683 DOI: 10.1021/acs.langmuir.4c01436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Residues of environmental organophosphorus pesticides (OPs) will seriously endanger human health. Most reported OP sensors utilized the restrictions capacity of OPs on the catalytic capacity of acetylcholinesterase (AChE) to acetylthiocholine chloride (ATCh), which suffers from high costs, weak stability, long reaction time, and unrecyclable. Herein, a recyclable strategy was proposed for selective and sensitive detection of glyphosate (Gly). The weak fluorescence of UIO-66-NH2 at 450 nm was enhanced almost 10-fold after reacting with Gly because of the rotation-restricted emission enhancement mechanism. Moreover, inspired by the process of charging and discharging the batteries, we introduced Cu2+ to chelate with Gly. Because of the strong chelation between Cu2+ and Gly, the Gly was removed from UIO-66-NH2, which resulted in the quenching of fluorescence intensity and making UIO-66-NH2 recycle. This method proposed is fast, recyclable, easily conducted, and with a low 0.33 μM LOD in dd H2O based on 3σ/S. The recovery rates of Gly in tap water ranged from 93.07 to 104.35% within a satisfied 7.75% RSD. The Cu2+ LOD is 0.01 mM based on 3σ/S and 94.37-118.34% recovery rates within 6.48% RSD in tap water. We believe that the findings in this work provide a meaningful and promising strategy to detect Gly and Cu2+ in real samples. This sensor first successfully achieves the recycling use of the material in OP fluorescence detection, which greatly decreases the cost of the designed sensor and reduces the possibility of secondary pollution to the environment, broadens a new circulation dimension of fluorescence detection methods in detecting OPs, and has the potential to remove glyphosate from water. It also provides a method to utilize functionalized metal-organic frameworks to establish various sensors.
Collapse
Affiliation(s)
- Xinyi Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Su Qin Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Qianya Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Hongbo Li
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P.R. China
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, P.R. China
| |
Collapse
|
3
|
Yang M, Zhang Y, Zhu R, Tan J, Liu J, Zhang W, Zhou M, Meng Z. Two-Dimensional Conjugated Metal-Organic Frameworks with a Ring-in-Ring Topology and High Electrical Conductance. Angew Chem Int Ed Engl 2024; 63:e202405333. [PMID: 38623864 DOI: 10.1002/anie.202405333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/17/2024]
Abstract
Electrically conducting two-dimensional (2D) metal-organic frameworks (MOFs) have garnered significant interest due to their remarkable structural tunability and outstanding electrical properties. However, the design and synthesis of high-performance materials face challenges due to the limited availability of specific ligands and pore structures. In this study, we have employed a novel highly branched D3h symmetrical planar conjugated ligand, dodechydroxylhexabenzotrinaphthylene (DHHBTN) to fabricate a series of 2D conductive MOFs, named M-DHHBTN (M=Co, Ni, and Cu). This new family of MOFs offers two distinct types of pores, elevating the structural complexity of 2D conductive MOFs to a more advanced level. The intricate tessellation patterns of the M-DHHBTN are elucidated through comprehensive analyses involving powder X-ray diffraction, theoretical simulations, and high-resolution transmission electron microscope. Optical-pump terahertz-probe spectroscopic measurements unveiled carrier mobility in DHHBTN-based 2D MOFs spanning from 0.69 to 3.10 cm2 V-1 s-1. Among M-DHHBTN famility, Cu-DHHBTN displayed high electrical conductivity reaching 0.21 S cm-1 at 298 K with thermal activation behavior. This work leverages the "branched conjugation" of the ligand to encode heteroporosity into highly conductive 2D MOFs, underscoring the significant potential of heterogeneous double-pore structures for future applications.
Collapse
Affiliation(s)
- Mingyu Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Yi Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Renlong Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui, 230088, P.R. China
| | - Jinxin Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| | - Zheng Meng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
4
|
Bazazi S, Hashemi E, Mohammadjavadi M, Saeb MR, Liu Y, Huang Y, Xiao H, Seidi F. Metal-organic framework (MOF)/C-dots and covalent organic framework (COF)/C-dots hybrid nanocomposites: Fabrications and applications in sensing, medical, environmental, and energy sectors. Adv Colloid Interface Sci 2024; 328:103178. [PMID: 38735101 DOI: 10.1016/j.cis.2024.103178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/31/2024] [Accepted: 05/03/2024] [Indexed: 05/14/2024]
Abstract
Developing new hybrid materials is critical for addressing the current needs of the world in various fields, such as energy, sensing, health, hygiene, and others. C-dots are a member of the carbon nanomaterial family with numerous applications. Aggregation is one of the barriers to the performance of C-dots, which causes luminescence quenching, surface area decreases, etc. To improve the performance of C-dots, numerous matrices including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and polymers have been composited with C-dots. The porous crystalline structures, which are constituents of metal nodes and organic linkers (MOFs) or covalently attached organic units (COFs) provide privileged features such as high specific surface area, tunable structures, and pore diameters, modifiable surface, high thermal, mechanical, and chemical stabilities. Also, the MOFs and COFs protect the C-dots from the environment. Therefore, MOF/C-dots and COF/C-dots composites combine their features while retaining topological properties and improving performances. In this review, we first compare MOFs with COFs as matrices for C-dots. Then, the recent progress in developing hybrid MOFs/C-dots and COFs/C-dots composites has been discussed and their applications in various fields have been explained briefly.
Collapse
Affiliation(s)
- Sina Bazazi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Esmaeil Hashemi
- Department of Chemistry, Faculty of Science, University of Guilan, PO Box 41335-1914, Rasht, Iran
| | - Mahdi Mohammadjavadi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, 80-416 Gdańsk, Poland
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Kang J, Lee Y, Lee S, Ki H, Kim J, Gu J, Cha Y, Heo J, Lee KW, Kim SO, Park J, Park SY, Kim S, Ma R, Eom I, Kim M, Kim J, Lee JH, Ihee H. Dynamic three-dimensional structures of a metal-organic framework captured with femtosecond serial crystallography. Nat Chem 2024; 16:693-699. [PMID: 38528103 PMCID: PMC11087265 DOI: 10.1038/s41557-024-01460-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/25/2024] [Indexed: 03/27/2024]
Abstract
Crystalline systems consisting of small-molecule building blocks have emerged as promising materials with diverse applications. It is of great importance to characterize not only their static structures but also the conversion of their structures in response to external stimuli. Femtosecond time-resolved crystallography has the potential to probe the real-time dynamics of structural transitions, but, thus far, this has not been realized for chemical reactions in non-biological crystals. In this study, we applied time-resolved serial femtosecond crystallography (TR-SFX), a powerful technique for visualizing protein structural dynamics, to a metal-organic framework, consisting of Fe porphyrins and hexazirconium nodes, and elucidated its structural dynamics. The time-resolved electron density maps derived from the TR-SFX data unveil trifurcating structural pathways: coherent oscillatory movements of Zr and Fe atoms, a transient structure with the Fe porphyrins and Zr6 nodes undergoing doming and disordering movements, respectively, and a vibrationally hot structure with isotropic structural disorder. These findings demonstrate the feasibility of using TR-SFX to study chemical systems.
Collapse
Affiliation(s)
- Jaedong Kang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seonggon Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jain Gu
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Yongjun Cha
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jun Heo
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Kyung Won Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seong Ok Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jaehyun Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Sang-Youn Park
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Sangsoo Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Rory Ma
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon, Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| |
Collapse
|
6
|
Xiao Y, Sun Q, Leng J, Jin S. Time-Resolved Spectroscopy for Dynamic Investigation of Photoresponsive Metal-Organic Frameworks. J Phys Chem Lett 2024:3390-3403. [PMID: 38501970 DOI: 10.1021/acs.jpclett.4c00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photoresponsive MOFs with precise and adjustable reticular structures are attractive for light conversion applications. Uncovering the photoinduced carrier dynamics lays the essential foundation for the further development and optimization of the MOF material. With the application of time-resolved spectroscopy, photophysical processes including excimer formation, energy transfer/migration, and charge transfer/separation have been widely investigated. However, the identification of distinct photophysical processes in real experimental MOF spectra still remains difficult due to the spectral and dynamic complexity of MOFs. In this Perspective, we summarize the typical spectral features of these photophysical processes and the related analysis methods for dynamic studies performed by time-resolved photoluminescence (TR-PL) and transient absorption (TA) spectroscopy. Based on the recent understanding of excited-state properties of photoresponsive MOFs and the discussion of challenges and future outlooks, this Perspective aims to provide convenience for MOF kinetic analysis and contribute to the further development of photoresponsive MOF material.
Collapse
Affiliation(s)
- Yejun Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jing Leng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
7
|
Obeso JL, López-Cervantes VB, Flores CV, Martínez A, Amador-Sánchez YA, Portillo-Velez NS, Lara-García HA, Leyva C, Solis-Ibarra D, Peralta RA. CYCU-3: an Al(III)-based MOF for SO 2 capture and detection. Dalton Trans 2024; 53:4790-4796. [PMID: 38372055 DOI: 10.1039/d3dt04073a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The Al(III)-based MOF CYCU-3 exhibits a relevant SO2 adsorption performance with a total uptake of 11.03 mmol g-1 at 1 bar and 298 K. CYCU-3 displays high chemical stability towards dry and wet SO2 exposure. DRIFTS experiments and computational calculations demonstrated that hydrogen bonding between SO2 molecules and bridging Al(III)-OH groups are the preferential adsorption sites. In addition, photoluminescence experiments demonstrated the relevance of CYCU-3 for application in SO2 detection with good selectivity for SO2 over CO2 and H2O. The change in fluorescence performance demonstrates a clear turn-on effect after SO2 interaction. Finally, the suppression of ligand-metal energy transfer along with the enhancement of ligand-centered π* → π electronic transition was proposed as a plausible fluorescence mechanism.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Valeria B López-Cervantes
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ana Martínez
- Departamento de Materiales de baja Dimensionalidad. Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Interior SN, Ciudad Universitaria, CP 04510, Coyoacán, CDMX, Mexico
| | - Yoarhy A Amador-Sánchez
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - N S Portillo-Velez
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| | - Hugo A Lara-García
- Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Mexico City 0100, Mexico
| | - Carolina Leyva
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico.
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería. Universidad Autónoma Metropolitana (UAM-I), 09340, Mexico.
| |
Collapse
|
8
|
Wang D, Ostresh S, Streater D, He P, Nyakuchena J, Ma Q, Zhang X, Neu J, Brudvig GW, Huang J. Dominant Role of Hole Transport Pathway in Achieving Record High Photoconductivity in Two-Dimensional Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202309505. [PMID: 37872121 DOI: 10.1002/anie.202309505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/25/2023]
Abstract
Metal-organic frameworks (MOFs) with mobile charges have attracted significant attention due to their potential applications in photoelectric devices, chemical resistance sensors, and catalysis. However, fundamental understanding of the charge transport pathway within the framework and the key properties that determine the performance of conductive MOFs in photoelectric devices remain underexplored. Herein, we report the mechanisms of photoinduced charge transport and electron dynamics in the conductive 2D M-HHTP (M=Cu, Zn or Cu/Zn mixed; HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) MOFs and their correlation with photoconductivity using the combination of time-resolved terahertz spectroscopy, optical transient absorption spectroscopy, X-ray transient absorption spectroscopy, and density functional theory (DFT) calculations. We identify the through-space hole transport mechanism through the interlayer sheet π-π interaction, where photoinduced hole state resides in HHTP ligand and electronic state is localized at the metal center. Moreover, the photoconductivity of the Cu-HHTP MOF is found to be 65.5 S m-1 , which represents the record high photoconductivity for porous MOF materials based on catecholate ligands.
Collapse
Affiliation(s)
- Denan Wang
- Department of Chemistry, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA 02467, USA
| | - Sarah Ostresh
- Department of Chemistry and Yale Energy Science Institute, Yale University, New Haven, CT 06520-8107, USA
| | - Daniel Streater
- Department of Chemistry, Marquette University, Milwaukee, WI 53201, USA
| | - Peilei He
- Department of Chemistry, Marquette University, Milwaukee, WI 53201, USA
| | - James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, WI 53201, USA
| | - Qiushi Ma
- Department of Chemistry, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA 02467, USA
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, Argonne, IL 60349, USA
| | - Jens Neu
- Department of Physics, University of North Texas, Denton, TX 76205, USA
| | - Gary W Brudvig
- Department of Chemistry and Yale Energy Science Institute, Yale University, New Haven, CT 06520-8107, USA
| | - Jier Huang
- Department of Chemistry, Schiller Institute for Integrated Science and Society, Boston College, Chestnut Hill, MA 02467, USA
| |
Collapse
|
9
|
Yang R, Fan Y, Hu J, Chen Z, Shin HS, Voiry D, Wang Q, Lu Q, Yu JC, Zeng Z. Photocatalysis with atomically thin sheets. Chem Soc Rev 2023; 52:7687-7706. [PMID: 37877319 DOI: 10.1039/d2cs00205a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Atomically thin sheets (e.g., graphene and monolayer molybdenum disulfide) are ideal optical and reaction platforms. They provide opportunities for deciphering some important and often elusive photocatalytic phenomena related to electronic band structures and photo-charges. In parallel, in such thin sheets, fine tuning of photocatalytic properties can be achieved. These include atomic-level regulation of electronic band structures and atomic-level steering of charge separation and transfer. Herein, we review the physics and chemistry of electronic band structures and photo-charges, as well as their state-of-the-art characterization techniques, before delving into their atomic-level deciphering and mastery on the platform of atomically thin sheets.
Collapse
Affiliation(s)
- Ruijie Yang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Yingying Fan
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Zhangxin Chen
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
- Eastern Institute for Advanced Study, Ningbo, China
| | - Hyeon Suk Shin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 612022, South Korea
| | - Damien Voiry
- Institut Européen des Membranes, IEM, UMR 5635, Université Montpellier, ENSCM, CNRS, Montpellier, France
| | - Qian Wang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Qingye Lu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW, Calgary, Alberta, T2N 1N4, Canada.
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P. R. China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
10
|
Xu X, Gao L, Yuan S. Stepwise construction of multi-component metal-organic frameworks. Dalton Trans 2023; 52:15233-15252. [PMID: 37555272 DOI: 10.1039/d3dt01668d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Multi-component metal-organic frameworks (MC-MOFs) are crystalline porous materials containing multiple organic ligands or mixed metals, which manifest new properties beyond the linear combination of the single component. However, the traditional one-pot synthesis method for MOFs is not always applicable for synthesizing MC-MOFs due to the competitive coordination of multiple ligands and metals. Therefore, the stepwise construction of MC-MOFs has been explored, which enables more precise control of the heterogeneity within the ordered MC-MOFs. This review provides a summary of the synthesis strategies, namely, ligand exchange, coordinative modification, covalent modification, ligand metalation, cluster metalation, and use of mixed-metal precursors, for the stepwise construction of MC-MOFs. Furthermore, we discuss the applications of MC-MOFs with ordered arrangements of multiple functionalities, focusing on gas adsorption and separation, water remediation, heterogeneous catalysis, luminescence, and chemical sensing.
Collapse
Affiliation(s)
- Xinyu Xu
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Lei Gao
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
11
|
Kulachenkov NK, Orlioglo B, Vasilyev ES, Povarov SA, Agafontsev AM, Bachinin S, Shipilovskikh S, Lunev A, Samsonenko DG, Fedin VP, Kovalenko KA, Milichko VA. Metal-mediated tunability of MOF-based optical modulators. Chem Commun (Camb) 2023; 59:9964-9967. [PMID: 37501597 DOI: 10.1039/d3cc02180g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
We report on the design of 1D MOFs based on a nopinane-annelated organic ligand and Co(II) or Ni(II), the variation of which allows tuning the optical modulation bandwidth. Structural and time-resolved analysis revealed the optical modulation mechanism, the rates and its endurance, thereby enriching the list of sustainable MOFs for tunable optical modulators.
Collapse
Affiliation(s)
- Nikita K Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Bogdan Orlioglo
- Chemical Science Program, KAUST Catalysis Center, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Eugene S Vasilyev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Svyatoslav A Povarov
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Alexander M Agafontsev
- Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 9 Acad. Lavrentiev Ave., Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Denis G Samsonenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry SB RAS, 3 Akad. Lavrentiev Ave., Novosibirsk 630090, Russia.
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
- Universit de Lorraine, UMR CNRS 7198, Nancy 54011, France.
| |
Collapse
|
12
|
Krause S, Milić JV. Functional dynamics in framework materials. Commun Chem 2023; 6:151. [PMID: 37452112 PMCID: PMC10349092 DOI: 10.1038/s42004-023-00945-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/29/2023] [Indexed: 07/18/2023] Open
Abstract
Dynamic crystalline materials have emerged as a unique category of condensed phase matter that combines crystalline lattice with components that display dynamic behavior in the solid state. This has involved a range of materials incorporating dynamic functional units in the form of stimuli-responsive molecular switches and machines, among others. In particular, it has been possible by relying on framework materials, such as porous molecular frameworks and other hybrid organic-inorganic systems that demonstrated potential for serving as scaffolds for dynamic molecular functions. As functional dynamics increase the level of complexity, the associated phenomena are often overlooked and need to be explored. In this perspective, we discuss a selection of recent developments of dynamic solid-state materials across material classes, outlining opportunities and fundamental and methodological challenges for their advancement toward innovative functionality and applications.
Collapse
Affiliation(s)
- Simon Krause
- Max Planck Institute for Solid-State Research, Stuttgart, Germany.
| | - Jovana V Milić
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
| |
Collapse
|
13
|
Glotz G, Püschmann S, Haas M, Gescheidt G. Direct detection of photo-induced reactions by IR: from Brook rearrangement to photo-catalysis. Photochem Photobiol Sci 2023:10.1007/s43630-023-00406-4. [PMID: 36933157 DOI: 10.1007/s43630-023-00406-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
In situ IR detection of photoreactions induced by the light of LEDs at appropriate wavelengths provides a simple, cost-effective, and versatile method to get insight into mechanistic details. In particular, conversions of functional groups can be selectively followed. Overlapping UV-Vis bands or fluorescence from the reactants and products and the incident light do not obstruct IR detection. Compared with in situ photo-NMR, our setup does not require tedious sample preparation (optical fibers) and offers a selective detection of reactions, even at positions where 1H-NMR lines overlap or 1H resonances are not clear-cut. We illustrate the applicability of our setup following the photo-Brook rearrangement of (adamant-1-yl-carbonyl)-tris(trimethylsilyl)silane, address photo-induced α-bond cleavage (1-hydroxycyclohexyl phenyl ketone), study photoreduction using tris(bipyridine)ruthenium(II), investigate photo-oxygenation of double bonds with molecular oxygen and the fluorescent 2,4,6-triphenylpyrylium photocatalyst, and address photo-polymerization. With the LED/FT-IR combination, reactions can be qualitatively followed in fluid solution, (highly) viscous environments, and in the solid state. Viscosity changes during the reaction (e.g., during a polymerization) do not obstruct the method.
Collapse
Affiliation(s)
- Gabriel Glotz
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria.
| | - Sabrina Püschmann
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Michael Haas
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/IV, 8010, Graz, Austria
| | - Georg Gescheidt
- Institute of Physical and Theoretical Chemistry, Graz University of Technology, Stremayrgasse 9/II, 8010, Graz, Austria
| |
Collapse
|
14
|
Halder A, Bain DC, Oktawiec J, Addicoat MA, Tsangari S, Fuentes-Rivera JJ, Pitt TA, Musser AJ, Milner PJ. Enhancing Dynamic Spectral Diffusion in Metal-Organic Frameworks through Defect Engineering. J Am Chem Soc 2023; 145:1072-1082. [PMID: 36595477 PMCID: PMC10022273 DOI: 10.1021/jacs.2c10672] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The crystal packing of organic chromophores has a profound impact on their photophysical properties. Molecular crystal engineering is generally incapable of producing precisely spaced arrays of molecules for use in photovoltaics, light-emitting diodes, and sensors. A promising alternative strategy is the incorporation of chromophores into crystalline metal-organic frameworks (MOFs), leading to matrix coordination-induced emission (MCIE) upon confinement. However, it remains unclear how the precise arrangement of chromophores and defects dictates photophysical properties in these systems, limiting the rational design of well-defined photoluminescent materials. Herein, we report new, robust Zr-based MOFs constructed from the linker tetrakis(4-carboxyphenyl)ethylene (TCPE4-) that exhibit an unexpected structural transition in combination with a prominent shift from green to blue photoluminescence (PL) as a function of the amount of acid modulator (benzoic, formic, or acetic acid) used during synthesis. Time-resolved PL (TRPL) measurements provide full spectral information and reveal that the observed hypsochromic shift arises due to a higher concentration of linker substitution defects at higher modulator concentrations, leading to broader excitation transfer-induced spectral diffusion. Spectral diffusion of this type has not been reported in a MOF to date, and its observation provides structural information that is otherwise unobtainable using traditional crystallographic techniques. Our findings suggest that defects have a profound impact on the photophysical properties of MOFs and that their presence can be readily tuned to modify energy transfer processes within these materials.
Collapse
Affiliation(s)
- Arjun Halder
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - David C. Bain
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Julia Oktawiec
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Matthew A. Addicoat
- School of Science and Technology, Nottingham Trent University, Clifton Lane, NG11 8NS, Nottingham, United Kingdom
| | - Stavrini Tsangari
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - José J. Fuentes-Rivera
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Tristan A. Pitt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Andrew J. Musser
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14850, United States
| |
Collapse
|
15
|
Klokic S, Naumenko D, Marmiroli B, Carraro F, Linares-Moreau M, Zilio SD, Birarda G, Kargl R, Falcaro P, Amenitsch H. Unraveling the timescale of the structural photo-response within oriented metal-organic framework films. Chem Sci 2022; 13:11869-11877. [PMID: 36320901 PMCID: PMC9580475 DOI: 10.1039/d2sc02405e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/09/2022] [Indexed: 08/10/2023] Open
Abstract
Fundamental knowledge on the intrinsic timescale of structural transformations in photo-switchable metal-organic framework films is crucial to tune their switching performance and to facilitate their applicability as stimuli-responsive materials. In this work, for the first time, an integrated approach to study and quantify the temporal evolution of structural transformations is demonstrated on an epitaxially oriented DMOF-1-on-MOF film system comprising azobenzene in the DMOF-1 pores (DMOF-1/AB). We employed time-resolved Grazing Incidence Wide-Angle X-Ray Scattering measurements to track the structural response of the DMOF-1/AB film upon altering the length of the azobenzene molecule by photo-isomerization (trans-to-cis, 343 nm; cis-to-trans, 450 nm). Within seconds, the DMOF-1/AB response occurred fully reversible and over several switching cycles by cooperative photo-switching of the oriented DMOF-1/AB crystallites as confirmed further by infrared measurements. Our work thereby suggests a new avenue to elucidate the timescales and photo-switching characteristics in structurally responsive MOF film systems.
Collapse
Affiliation(s)
- Sumea Klokic
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Denys Naumenko
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| | - Francesco Carraro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Mercedes Linares-Moreau
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Simone Dal Zilio
- IOM-CNR, Laboratorio TASC S.S. 14, 163.5 km, Basovizza Trieste 34149 Italy
| | - Giovanni Birarda
- Elettra Sincrotrone Trieste - SISSI Bio Beamline S.S. 14, 163.5 km, Basovizza Trieste 34149 Italy
| | - Rupert Kargl
- Institute of Chemistry and Technology of Bio-Based Systems, Graz University of Technology 8010 Graz Austria
| | - Paolo Falcaro
- Institute of Physical and Theoretical Chemistry, Graz University of Technology 8010 Graz Austria
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology 8010 Graz Austria
| |
Collapse
|
16
|
Kulachenkov N, Barsukova M, Alekseevskiy P, Sapianik AA, Sergeev M, Yankin A, Krasilin AA, Bachinin S, Shipilovskikh S, Poturaev P, Medvedeva N, Denislamova E, Zelenovskiy PS, Shilovskikh VV, Kenzhebayeva Y, Efimova A, Novikov AS, Lunev A, Fedin VP, Milichko VA. Dimensionality Mediated Highly Repeatable and Fast Transformation of Coordination Polymer Single Crystals for All-Optical Data Processing. NANO LETTERS 2022; 22:6972-6981. [PMID: 36018814 DOI: 10.1021/acs.nanolett.2c01770] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A family of coordination polymers (CPs) based on dynamic structural elements are of great fundamental and commercial interest addressing modern problems in controlled molecular separation, catalysis, and even data processing. Herein, the endurance and fast structural dynamics of such materials at ambient conditions are still a fundamental challenge. Here, we report on the design of a series of Cu-based CPs [Cu(bImB)Cl2] and [Cu(bImB)2Cl2] with flexible ligand bImB (1,4-bis(imidazol-1-yl)butane) packed into one- and two-dimensional (1D, 2D) structures demonstrating dimensionality mediated flexibility and reversible structural transformations. Using the laser pulses as a fast source of activation energy, we initiate CP heating followed by anisotropic thermal expansion and 0.2-0.8% volume changes with the record transformation rates from 2220 to 1640 s-1 for 1D and 2D CPs, respectively. The endurance over 103 cycles of structural transformations, achieved for the CPs at ambient conditions, allows demonstrating optical fiber integrated all-optical data processing.
Collapse
Affiliation(s)
- Nikita Kulachenkov
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Marina Barsukova
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Pavel Alekseevskiy
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Aleksandr A Sapianik
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Maxim Sergeev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei Yankin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Andrei A Krasilin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Ioffe Institute, St. Petersburg 194021, Russia
| | - Semyon Bachinin
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Sergei Shipilovskikh
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Petr Poturaev
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | - Natalia Medvedeva
- Department of Chemistry, Perm State University, Perm, 614990, Russia
| | | | - Pavel S Zelenovskiy
- Institute of Natural Sciences and Mathematics, Ural Federal University, Yekaterinburg 620000, Russia
| | | | - Yuliya Kenzhebayeva
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Anastasiia Efimova
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Alexander S Novikov
- Saint Petersburg State University, Saint Petersburg 198504, Russia
- Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Artem Lunev
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Vladimir P Fedin
- Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090, Russia
| | - Valentin A Milichko
- School of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
- Institut Jean Lamour, Universit de Lorraine, UMR CNRS 7198, 54011 Nancy, France
| |
Collapse
|
17
|
Zhou J, Zhou Q, Chu C. Dyes-modified metal − organic frameworks composite as a sensitive, reversible and ratiometric fluorescent probe for the rapid detection of malachite green. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Ma J, Lu Z, Li C, Luo Y, Shi YE, Alam P, Lam JW, Wang Z, Tang BZ. Fluorescence ratiometric assay for discriminating GSH and Cys based on the composites of UiO-66-NH2 and Cu nanoclusters. Biosens Bioelectron 2022; 215:114582. [DOI: 10.1016/j.bios.2022.114582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/02/2022] [Accepted: 07/18/2022] [Indexed: 11/02/2022]
|