1
|
Yan Z, Li J, Zhang H, Zhang R. Direct Detection of Natural-Abundance Low-γ Nuclei NMR Signals of Minute Quantities of Organic Solids. Anal Chem 2025; 97:7242-7250. [PMID: 40152741 DOI: 10.1021/acs.analchem.4c06887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Low-γ nuclei signal enhancement in solid-state NMR spectroscopy is typically achieved via cross-polarization (CP) using abundant 1H polarization in organic solids. Nevertheless, direct low-γ nuclei signal detection via a single CP process is quite challenging with minute quantities of samples due to the extremely limited signal-to-noise ratio (SNR) of the acquired spectra. Herein, we demonstrated the robust performance of a multiple-contact CP experiment with multiple acquisition periods (MCP) in each transient scan, leading to several-fold SNR enhancement over a conventional single-CP experiment at fast MAS conditions with slightly increased experimental time. Spin thermodynamic analysis was further performed to achieve maximum SNR by adding the obtained Nmax CP spectra from each transient, where Nmax ∼ T1ρ/τcw. Here, T1ρ is the proton spin-lattice relaxation time in the rotating frame, and τcw is the total time of CP and a heteronuclear decoupling period. The theoretical analysis is in good agreement with experimental results, and more than 4.5-fold SNR enhancement can be achieved for the pharmaceutical danazol/vanillin cocrystals. Besides, MCP was also used for proton T1 and T1ρ measurement with high-resolution 13C detection, where both proton T1 and T1ρ can serve as the spectral-editing basis to identify different immiscible components in complex molecular systems.
Collapse
Affiliation(s)
- Zhiwei Yan
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
| | - Jiangying Li
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
| | - Hailu Zhang
- Laboratory of Pharmaceutical Solid-State Chemistry, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P.R. China
- Interdisciplinary Institute of NMR and Molecular Sciences (NMR-X), School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P.R. China
| | - Rongchun Zhang
- South China Advanced Institute for Soft Matter Science and Technology (AISMST), School of Emergent Soft Matter (SESM), South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
- Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
2
|
Angehrn FN, Duan P, Zhang JY, Hong M. Binding Sites of a PET Ligand in Tau Fibrils with the Alzheimer's Disease Fold from 19F and 13C Solid-State NMR. Biochemistry 2025; 64:1624-1635. [PMID: 40068133 DOI: 10.1021/acs.biochem.5c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025]
Abstract
Aggregation of the tau protein into cross-β amyloid fibrils is a hallmark of Alzheimer's disease (AD) and many other neurodegenerative disorders. Developing small molecules that bind these tau fibrils is important for the diagnosis and treatment of tauopathies. Here, we report the binding sites of a positron emission tomography (PET) ligand, PI-2620, to a recombinant tau construct that adopts the C-shaped AD fold. Using solid-state NMR 13C-19F rotational-echo double-resonance (REDOR) experiments, we measured the proximity of protein residues to the fluorine atom of the ligand. These data indicate that PI-2620 binds at two main locations in the concave interior of the C-shaped structure. Molecular docking simulations constrained by these REDOR data identified five binding poses at these two locations. In addition, 2D 13C-13C correlation NMR spectra indicate that PI-2620 decreased the intensities of residues at the protofilament interfaces, indicating that the ligand disordered the filament packing. Quantitative analysis of the 19F NMR spectra indicates that PI-2620 binds these AD-fold tau fibrils with a stoichiometry of ∼20 mol %, in which 10 mol % are immobilized and the rest are mobile. These results provide experimental constraints to the interaction of this second-generation PET tracer with tau fibrils adopting the AD fold and should be useful for the development of future imaging agents with improved stoichiometry and specificity for AD tau.
Collapse
Affiliation(s)
- Frida N Angehrn
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Jia Yi Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Vaz RF, Brown LS, Ladizhansky V. Membrane protein structure determination from Paramagnetic Relaxation Enhancement and internuclear distance restraints. JOURNAL OF BIOMOLECULAR NMR 2025:10.1007/s10858-025-00467-w. [PMID: 40156665 DOI: 10.1007/s10858-025-00467-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/21/2025] [Indexed: 04/01/2025]
Abstract
Magic angle spinning nuclear magnetic resonance (MAS NMR) is well suited for the determination of protein structure. The key structural information is obtained in the form of spectral cross peaks between spatially close nuclear spins, but assigning these cross peaks unambiguously to unique spin pairs is often a tedious task because of spectral overlap. Here, we use a seven-helical membrane protein Anabaena Sensory Rhodopsin (ASR) as a model system to demonstrate that transverse Paramagnetic Relaxation Enhancements (PRE) extracted from 2D MAS NMR spectra could be used to obtain a protein structural model. Starting with near complete assignments (93%) of ASR residues, TALOS + predicted backbone dihedral angles and secondary structure restraints in the form of backbone hydrogen bonds are combined with PRE-based restraints and used to generate a coarse model. This model is subsequently utilized as a template reference to facilitate automated assignments of highly ambiguous internuclear correlations. The template is used in an iterative cross peak assignment process and is progressively improved through the inclusion of disambiguated restraints, thereby converging to a low root-mean-square-deviation structural model. In addition to improving structure calculation conversion, the inclusion of PREs also improves packing between helices within an alpha-helical bundle.
Collapse
Affiliation(s)
- Raoul F Vaz
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Leonid S Brown
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada
| | - Vlad Ladizhansky
- Department of Physics and Biophysics Interdepartmental Group, University of Guelph, 50 Stone Rd. E., Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Hong M. Solid-State NMR of Virus Membrane Proteins. Acc Chem Res 2025; 58:847-860. [PMID: 40019485 DOI: 10.1021/acs.accounts.4c00800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Enveloped viruses encode ion-conducting pores that permeabilize the host cell membranes and mediate the budding of new viruses. These viroporins are some of the essential membrane proteins of viruses, and have high sequence conservation, making them important targets of antiviral drugs. High-resolution structures of viroporins are challenging to determine by X-ray crystallography and cryoelectron microscopy, because these proteins are small, hydrophobic, and prone to induce membrane curvature. Solid-state NMR (ssNMR) spectroscopy is an ideal method for elucidating the structure, dynamics, and mechanism of action of viroporins in phospholipid membranes. This Account describes our investigations of influenza M2 proteins and the SARS-CoV-2 E protein using solid-state NMR.M2 proteins form acid-activated tetrameric proton channels that initiate influenza uncoating in the cell. 15N and 13C exchange NMR revealed that M2 shuttles protons into the virion using a crucial histidine, whose imidazole nitrogens pick up and release protons on the microsecond time scale at acidic pH. This proton exchange is synchronized with and facilitated by imidazole reorientation, which is observed in NMR spectra. Quantitative 15N NMR spectra yielded the populations of neutral and cationic histidines as a function of pH, giving four proton dissociation constants (pKa's). The pKa's of influenza AM2 indicate that the +3 charged channel has the highest time-averaged single-channel conductance; thus the third protonation event defines channel activation. In comparison, influenza BM2 exhibits lower pKa's due to a second, peripheral histidine, which accelerates proton dissociation from the central proton-selective histidine. Amantadine binding to AM2 suppressed proton exchange and imidazole reorientation, indicating that this antiviral drug acts by inhibiting proton shuttling. Solid-state NMR 13C-2H distance measurements revealed that amantadine binds the N-terminal pore of the channel near a crucial Ser31, whose mutation to asparagine causes amantadine resistance in circulating influenza A viruses. A second binding site, on the lipid-facing surface of the protein, only occurs when amantadine is in large excess in lipid bilayers. M2 not only functions as a proton channel but also conducts membrane scission during influenza budding in a cholesterol-dependent manner. Solid-state NMR distance experiments revealed that two cholesterol molecules bind asymmetrically to the surface of the tetrameric channel, thus recruiting the protein to the cholesterol-rich budding region of the cell membrane to cause membrane scission.To accelerate full structure determination of viroporins, we developed a suite of 19F solid-state NMR techniques that measure interatomic distances to 1-2 nm. Using this approach, we determined the atomic structures of influenza BM2, SARS-CoV-2 E, and EmrE, a multidrug-resistance bacterial transporter. pH-induced structural changes of these proteins gave detailed insights into the activation mechanisms of BM2 and E and the proton-coupled substrate transport mechanism of EmrE. The SARS-CoV-2 E protein forms pentameric helical bundles whose structures are distinct between the closed state at neutral pH and the open state at acidic pH. These 19F-enabled distance NMR experiments are also instrumental for identifying the binding mode and binding site of hexamethylene amiloride in E, paving the way for developing new antiviral drugs that target these pathogenic virus ion channels.
Collapse
Affiliation(s)
- Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Chin SY, Zhao L, Chen Y, Zhai Z, Shi X, Xue K. Nanosecond Molecular Motion in pHP1α Liquid-Liquid Phase Separation Captured by Solid-State NMR. J Phys Chem Lett 2025; 16:1150-1156. [PMID: 39846510 DOI: 10.1021/acs.jpclett.4c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The relationship among protein structure, function, and dynamics is fundamental to biological activity, particularly in more complex biomolecular systems. Solid-state and solution-state NMR techniques offer powerful means to probe these dynamics across various time scales. However, standard assumptions about molecular motion are often challenged in phase-separated systems like phosphorylated heterochromatin protein 1 alpha (pHP1α), which exhibit both solid- and solution-like characteristics. This study investigates the nanosecond molecular motions in pHP1α liquid-liquid phase separation (LLPS) using relaxation in hetNOE-filtered HSQC signals. By systematically analyzing motions captured by hetNOE-filtered HSQC and conventional HSQC, we characterize the global dynamics site-specifically in pHP1α LLPS. Our findings reveal ∼15 ns motion in the pHP1α LLPS system, suggesting the coexistence of different dynamic phases, and support previous observations on its role in chromatin organization. This work contributes to the expanding literature on phase-separated biomolecular behavior, with implications for understanding the molecular basis of chromatin compaction and genomic stability.
Collapse
Affiliation(s)
- Sze Yuet Chin
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| | - Lei Zhao
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, P. R. China 518172
| | - Yinglu Chen
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, P. R. China 518172
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| | - Ziwei Zhai
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, P. R. China 518172
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia 119234
| | - Xiangyan Shi
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, Guangdong Province, P. R. China 518172
| | - Kai Xue
- Centre of High Field NMR Spectroscopy and Imaging, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
- School of Physical and Mathematical Science, Nanyang Technological University, 21 Nanyang Link, Singapore 637371
| |
Collapse
|
6
|
Borcik CG, DeZonia B, Ravula T, Harding BD, Garg R, Rienstra CM. OPTO: Automated Optimization for Solid-State NMR Spectroscopy. J Am Chem Soc 2025; 147:3293-3303. [PMID: 39814553 PMCID: PMC11808819 DOI: 10.1021/jacs.4c13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
NMR spectroscopy presents boundless opportunities for understanding the structure, dynamics, and function for a broad range of scientific applications. Solid-state NMR (SSNMR), in particular, provides novel insights into biological and material systems that are not amenable to other approaches. However, a major bottleneck is the extent of user training and the difficulty of obtaining reproducible, high-quality experimental results, especially for the sophisticated multidimensional pulse sequences that are essential to provide site-resolved measurements in large biomolecules. Here, we present OPTO, a software operating environment that addresses these challenges and enhances the performance of many types of commonly utilized SSNMR experiments. OPTO is compatible with Varian OpenVnmrJ and Bruker Topspin, with a front-end graphical user interface that presents the instrument operator with access to powerful underlying optimization algorithms, including simplex and grid searches of the dozens of parameter settings required for optimal performance. Therefore, OPTO efficiently leverages instrument time and enables instrument operators to find optimal experimental conditions reliably. We demonstrate examples including improvements in (1) resolution, with an automated, global search of 21 shimming parameters to achieve a 12 parts per billion line width; (2) sensitivity, with searches and refinements of several cross-polarization conditions dependent on 16 parameters in triple resonance experiments; and (3) robustness, with results from protein samples on several spectrometers operating at different magnetic field strengths and magic-angle spinning rates.
Collapse
Affiliation(s)
- Collin G. Borcik
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Barry DeZonia
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Thirupathi Ravula
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Benjamin D. Harding
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Rajat Garg
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
| | - Chad M. Rienstra
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706 USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706 USA
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI, 53706 USA
| |
Collapse
|
7
|
Liang L, Chen K, Hou G. Highly efficient heteronuclear polarization transfer using dipolar-echo edited R-symmetry sequences in solid-state NMR. Chem Sci 2025; 16:2251-2257. [PMID: 39759930 PMCID: PMC11698051 DOI: 10.1039/d4sc07965e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
In solid-state NMR, dipolar-based heteronuclear polarization transfer has been extensively used for sensitivity enhancement and multidimensional correlations, but its efficiency often suffers from undesired spin interactions and hardware limitations. Herein, we propose a novel dipolar-echo edited R-symmetry (DEER) sequence, which is further incorporated into the INEPT-type scheme, dubbed DEER-INEPT, for achieving highly efficient heteronuclear polarization transfer. Numerical simulations and NMR experiments demonstrate that DEER-INEPT offers significantly improved robustness, enabling efficient polarization transfer under a wide range of MAS conditions, from slow to ultrafast rates, outperforming existing methods. Its high efficiency leads to noticeably enhanced sensitivity in both 1H → X and X → 1H transfers, applicable to both spin-1/2 and spin-half-integer quadrupolar nuclei. DEER-INEPT is expected to be widely used in various systems, offering advantages in both sensitivity enhancement and structural analysis.
Collapse
Affiliation(s)
- Lixin Liang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Kuizhi Chen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Zhongshan Road 457 Dalian 116023 China
| |
Collapse
|
8
|
Kehl A, Sielaff L, Remmel L, Rämisch ML, Bennati M, Meyer A. Frequency and time domain 19F ENDOR spectroscopy: role of nuclear dipolar couplings to determine distance distributions. Phys Chem Chem Phys 2025; 27:1415-1425. [PMID: 39696963 PMCID: PMC11656155 DOI: 10.1039/d4cp04443f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
19F electron-nuclear double resonance (ENDOR) spectroscopy is emerging as a method of choice to determine molecular distances in biomolecules in the angstrom to nanometer range. However, line broadening mechanisms in 19F ENDOR spectra can obscure the detected spin-dipolar coupling that encodes the distance information, thus limiting the resolution and accessible distance range. So far, the origin of these mechanisms has not been understood. Here, we employ a combined approach of rational molecular design, frequency and time domain ENDOR methods as well as quantum mechanical spin dynamics simulations to analyze these mechanisms. We present the first application of Fourier transform ENDOR to remove power broadening and measure T2n of the 19F nucleus. We identify nuclear dipolar couplings between the fluorine and protons up to 14 kHz as a major source of spectral broadening. When removing these interactions by H/D exchange, an unprecedented spectral width of 9 kHz was observed suggesting that, generally, the accessible distance range can be extended. In a spin labeled RNA duplex we were able to predict the spectral ENDOR line width, which in turn enabled us to extract a distance distribution. This study represents a first step towards a quantitative determination of distance distributions in biomolecules from 19F ENDOR.
Collapse
Affiliation(s)
- Annemarie Kehl
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Lucca Sielaff
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Laura Remmel
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
| | - Maya L Rämisch
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Marina Bennati
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| | - Andreas Meyer
- Research Group ESR Spectroscopy, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
- Georg-August-Universität Göttingen, Institute of Physical Chemistry, Tammannstr. 6, Göttingen, Germany
| |
Collapse
|
9
|
Nimerovsky E, Stampolaki M, Varkey AC, Becker S, Andreas LB. Analysis of the MODIST Sequence for Selective Proton-Proton Recoupling. J Phys Chem A 2025; 129:317-329. [PMID: 39710965 PMCID: PMC11726629 DOI: 10.1021/acs.jpca.4c05102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024]
Abstract
Theoretical and simulated analyses of selective homonuclear dipolar recoupling sequences serve as primary tools for understanding and determining the robustness of these sequences under various conditions. In this article, we investigate the recently proposed first-order dipolar recoupling sequence known as MODIST (Modest Offset Difference Internuclear Selective Transfer). We evaluate the MODIST transfer efficiency, assessing its dependence on rf-field strengths and the number of simulated spins, extending up to 10 spins. This helps to identify conditions that enhance polarization transfer among spins that are nearby in frequency, particularly among aliphatic protons. The exploration uncovers a novel effect for first-order selective recoupling sequences that we term "facilitated dipolar recoupling". This effect amplifies the recoupled dipolar interaction between distant spins due to the presence of additional strongly dipolar-coupled spins. Unlike the third spin-assisted recoupling mechanism, facilitated dipolar recoupling only requires a coupling to one of the two distant spins of interest. Experimental demonstration of MODIST, including at different rf-field strengths, was carried out with the membrane protein influenza A M2 in lipid bilayers using 55 kHz magic-angle spinning (MAS). Reducing MODIST rf-field strength by a factor of 2 unveils possibilities for detecting Hα-Hα and HMeth-HMeth correlations with a 3D (H)C(H)(H)CH experiment under fast MAS rates, all achievable without specific spin labeling.
Collapse
Affiliation(s)
- Evgeny Nimerovsky
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Faßberg 11, Göttingen 37077, Germany
| | - Marianna Stampolaki
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Faßberg 11, Göttingen 37077, Germany
| | - Abel Cherian Varkey
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Faßberg 11, Göttingen 37077, Germany
| | - Stefan Becker
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Faßberg 11, Göttingen 37077, Germany
| | - Loren B. Andreas
- Department of NMR based Structural
Biology, Max Planck Institute for Multidisciplinary
Sciences, Am Faßberg 11, Göttingen 37077, Germany
| |
Collapse
|
10
|
Ladizhansky V, Palani RS, Mardini M, Griffin RG. Dipolar Recoupling in Rotating Solids. Chem Rev 2024; 124:12844-12917. [PMID: 39504237 DOI: 10.1021/acs.chemrev.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Magic angle spinning (MAS) nuclear magnetic resonance (NMR) has evolved significantly over the past three decades and established itself as a vital tool for the structural analysis of biological macromolecules and materials. This review delves into the development and application of dipolar recoupling techniques in MAS NMR, which are crucial for obtaining detailed structural and dynamic information. We discuss a variety of homonuclear and heteronuclear recoupling methods which are essential for measuring spatial restraints and explain in detail the spin dynamics that these sequences generate. We also explore recent developments in high spinning frequency MAS, proton detection, and dynamic nuclear polarization, underscoring their importance in advancing biomolecular NMR. Our aim is to provide a comprehensive account of contemporary dipolar recoupling methods, their principles, and their application to structural biology and materials, highlighting significant contributions to the field and emerging techniques that enhance resolution and sensitivity in MAS NMR spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ladizhansky
- Biophysics Interdepartmental Group and Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Ravi Shankar Palani
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Mardini
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert G Griffin
- Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
11
|
Steinberg Y, Sebti E, Moroz IB, Zohar A, Jardón-Álvarez D, Bendikov T, Maity A, Carmieli R, Clément RJ, Leskes M. Composition and Structure of the solid electrolyte interphase on Na-Ion Anodes Revealed by Exo- and Endogenous Dynamic Nuclear Polarization─NMR Spectroscopy. J Am Chem Soc 2024; 146:24476-24492. [PMID: 39169891 PMCID: PMC11378293 DOI: 10.1021/jacs.4c06823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Sodium ion batteries (SIB) are among the most promising devices for large scale energy storage. Their stable and long-term performance depends on the formation of the solid electrolyte interphase (SEI), a nanosized, heterogeneous and disordered layer, formed due to degradation of the electrolyte at the anode surface. The chemical and structural properties of the SEI control the charge transfer process at the electrode-electrolyte interface, thus, there is great interest in determining these properties for understanding, and ultimately controlling, SEI functionality. However, the study of the SEI is notoriously challenging due to its heterogeneous nature and minute quantity. In this work, we present a powerful approach for probing the SEI based on solid state NMR spectroscopy with increased sensitivity from dynamic nuclear polarization (DNP). Utilizing exogenous (organic radicals) and endogenous (paramagnetic metal ion dopants) DNP sources, we obtain not only a detailed compositional map of the SEI but also, for the first time for the native SEI, determine the spatial distribution of its constituent phases. Using this approach, we perform a thorough investigation of the SEI formed on Li4Ti5O12 used as a SIB anode. We identify a compositional gradient, from organic phases at the electrolyte interface to inorganic phases toward the anode surface. We find that the use of fluoroethylene carbonate as an electrolyte additive leads to performance degradation which can be attributed to formation of a thicker SEI, rich in NaF and carbonates. We expect that this methodology can be extended to examine other titanate anodes and new electrolyte compositions, offering a unique tool for SEI investigations to enable the development of effective and long-lasting SIBs.
Collapse
Affiliation(s)
- Yuval Steinberg
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Elias Sebti
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Ilia B Moroz
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Arava Zohar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Daniel Jardón-Álvarez
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Tatyana Bendikov
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Ayan Maity
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Raanan Carmieli
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Raphaële J Clément
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| |
Collapse
|
12
|
Somberg NH, Sučec I, Medeiros-Silva J, Jo H, Beresis R, Syed AM, Doudna JA, Hong M. Oligomeric State and Drug Binding of the SARS-CoV-2 Envelope Protein Are Sensitive to the Ectodomain. J Am Chem Soc 2024; 146:24537-24552. [PMID: 39167680 DOI: 10.1021/jacs.4c07686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The envelope (E) protein of SARS-CoV-2 is the smallest of the three structural membrane proteins of the virus. E mediates budding of the progeny virus in the endoplasmic reticulum Golgi intermediate compartment of the cell. It also conducts ions, and this channel activity is associated with the pathogenicity of SARS-CoV-2. The structural basis for these functions is still poorly understood. Biochemical studies of E in detergent micelles found a variety of oligomeric states, but recent 19F solid-state NMR data indicated that the transmembrane domain (ETM, residues 8-38) forms pentamers in lipid bilayers. Hexamethylene amiloride (HMA), an E inhibitor, binds the pentameric ETM at the lipid-exposed helix-helix interface. Here, we investigate the oligomeric structure and drug interaction of an ectodomain-containing E construct, ENTM (residues 1-41). Unexpectedly, 19F spin diffusion NMR data reveal that ENTM adopts an average oligomeric state of dimers instead of pentamers in lipid bilayers. A new amiloride inhibitor, AV-352, shows stronger inhibitory activity than HMA in virus-like particle assays. Distance measurements between 13C-labeled protein and a trifluoromethyl group of AV-352 indicate that the drug binds ENTM with a higher stoichiometry than ETM. We measured protein-drug contacts using a sensitivity-enhanced two-dimensional 13C-19F distance NMR technique. The results indicate that AV-352 binds the C-terminal half of the TM domain, similar to the binding region of HMA. These data provide evidence for the existence of multiple oligomeric states of E in lipid bilayers, which may carry out distinct functions and may be differentially targeted by antiviral drugs.
Collapse
Affiliation(s)
- Noah H Somberg
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - João Medeiros-Silva
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Richard Beresis
- Department of Pharmaceutical Chemistry, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Abdullah M Syed
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
| | - Jennifer A Doudna
- Gladstone Institute of Data Science and Biotechnology, San Francisco, California 94158, United States
- Innovative Genomics Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California Berkeley, Berkeley, California 94720, United States
- California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, California 94158, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
13
|
Fu R, Ramamoortha A. 17O Solid-State NMR Spectroscopy of Lipid Membranes. J Phys Chem B 2024; 128:3527-3537. [PMID: 38568422 PMCID: PMC11688154 DOI: 10.1021/acs.jpcb.4c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Despite the limitations posed by poor sensitivity, studies have reported the unique advantages of 17O based NMR spectroscopy to study systems existing in liquid, solid, or semisolid states. 17O NMR studies have exploited the remarkable sensitivity of quadrupole coupling and chemical shift anisotropy tensors to the local environment in the characterization of a variety of intra- and intermolecular interactions and motion. Recent studies have considerably expanded the use of 17O NMR to study dynamic intermolecular interactions associated with some of the challenging biological systems under magic angle spinning (MAS) and aligned conditions. The very fast relaxing nature of 17O has been well utilized in cellular and in vivo MRS (magnetic resonance spectroscopy) and MRI (magnetic resonance imaging) applications. The main focus of this Review is to highlight the new developments in the biological solids with a detailed discussion for a few selected examples including membrane proteins and nanodiscs. In addition to the unique benefits and limitations, the remaining challenges to overcome, and the impacts of higher magnetic fields and sensitivity enhancement techniques are discussed.
Collapse
Affiliation(s)
- Riqiang Fu
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Ayyalusamy Ramamoortha
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
- Department of Chemical and Biomedical Engineering, Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32310, USA
| |
Collapse
|
14
|
Chalek K, Soni A, Lorenz CD, Holland GP. Proline-Tyrosine Ring Interactions in Black Widow Dragline Silk Revealed by Solid-State Nuclear Magnetic Resonance and Molecular Dynamics Simulations. Biomacromolecules 2024; 25:1916-1922. [PMID: 38315982 DOI: 10.1021/acs.biomac.3c01351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Selective one-dimensional 13C-13C spin-diffusion solid-state nuclear magnetic resonance (SSNMR) provides evidence for CH/π ring packing interactions between Pro and Tyr residues in 13C-enriched Latrodectus hesperus dragline silk. The secondary structure of Pro-containing motifs in dragline spider silks consistently points to an elastin-like type II β-turn conformation based on 13C chemical shift analysis. 13C-13C spin diffusion measurements as a function of mixing times allow for the measurement of spatial proximity between the Pro and Tyr rings to be ∼0.5-1 nm, supporting strong Pro-Tyr ring interactions that likely occur through a CH/π mechanism. These results are supported by molecular dynamics (MD) simulations and analysis and reveals new insights into the secondary structure and Pro-Tyr ring stacking interactions for one of nature's toughest biomaterials.
Collapse
Affiliation(s)
- Kevin Chalek
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92181-1030, United States
| | - Ashana Soni
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92181-1030, United States
| | - Christian D Lorenz
- Biological Physics & Soft Matter Group, Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92181-1030, United States
| |
Collapse
|
15
|
Ke Z, Weng J, Xu X. Calculating 13 C NMR chemical shifts of large molecules using the eXtended ONIOM method at high accuracy with a low cost. J Comput Chem 2023; 44:2347-2357. [PMID: 37572044 DOI: 10.1002/jcc.27201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 08/14/2023]
Abstract
Fragmentation-based methods for nuclear magnetic resonance (NMR) chemical shift calculations have become more and more popular in first-principles calculations of large molecules. However, there are many options for a fragmentation-based method to select, such as theoretical methods, fragmentation schemes, the number of levels of theory, etc. It is important to study the optimal combination of the options to achieve a good balance between accuracy and efficiency. Here we investigate different combinations of options used by a fragmentation-based method, the eXtended ONIOM (XO) method, for 13 C chemical shift calculations on a set of organic and biological molecules. We found that: (1) introducing Hartree-Fock exchange into density functional theory (DFT) could reduce the calculation error due to fragmentation in contrast to pure DFT functionals, while a hybrid functional, xOPBE, is generally recommended; (2) fragmentation schemes generated from the molecular tailoring approach (MTA) with small level parameter n, for example, n = 2 and the degree-based fragmentation method (DBFM) with n = 1, are sufficient to achieve satisfactory accuracy; (3) the two-level XO (XO2) NMR calculation is superior to the calculation with only one level of theory, as the second level (i.e., low level) of theory provides a way to well describe the long-range effect. These findings are beneficial to practical applications of fragmentation-based methods for NMR chemical shift calculations of large molecules.
Collapse
Affiliation(s)
- Zhipeng Ke
- Institute of Photochemistry and Photofunctional Materials, University of Shanghai for Science and Technology, Shanghai, China
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Jingwei Weng
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, China
- Hefei National Laboratory, Hefei, China
| |
Collapse
|
16
|
Fernando LD, Zhao W, Gautam I, Ankur A, Wang T. Polysaccharide assemblies in fungal and plant cell walls explored by solid-state NMR. Structure 2023; 31:1375-1385. [PMID: 37597511 PMCID: PMC10843855 DOI: 10.1016/j.str.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/30/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Abstract
Structural analysis of macromolecular complexes within their natural cellular environment presents a significant challenge. Recent applications of solid-state NMR (ssNMR) techniques on living fungal cells and intact plant tissues have greatly enhanced our understanding of the structure of extracellular matrices. Here, we selectively highlight the most recent progress in this field. Specifically, we discuss how ssNMR can provide detailed insights into the chemical composition and conformational structure of pectin, and the consequential impact on polysaccharide interactions and cell wall organization. We elaborate on the use of ssNMR data to uncover the arrangement of the lignin-polysaccharide interface and the macrofibrillar structure in native plant stems or during degradation processes. We also comprehend the dynamic structure of fungal cell walls under various morphotypes and stress conditions. Finally, we assess how the combination of NMR with other techniques can enhance our capacity to address unresolved structural questions concerning these complex macromolecular assemblies.
Collapse
Affiliation(s)
- Liyanage D Fernando
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Wancheng Zhao
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Ankur Ankur
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
17
|
Paul S, Bouleau E, Reynard-Feytis Q, Arnaud JP, Bancel F, Rollet B, Dalban-Moreynas P, Reiter C, Purea A, Engelke F, Hediger S, De Paëpe G. Sustainable and cost-effective MAS DNP-NMR at 30 K with cryogenic sample exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 356:107561. [PMID: 37837749 DOI: 10.1016/j.jmr.2023.107561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/16/2023]
Abstract
We report here instrumental developments to achieve sustainable, cost-effective cryogenic Helium sample spinning in order to conduct dynamic nuclear polarisation (DNP) and solid-state NMR (ssNMR) at ultra-low temperatures (<30 K). More specifically, we describe an efficient closed-loop helium system composed of a powerful heat exchanger (95% efficient), a single cryocooler, and a single helium compressor to power the sample spinning and cooling. The system is integrated with a newly designed triple-channel NMR probe that minimizes thermal losses without compromising the radio frequency (RF) performance and spinning stability (±0.05%). The probe is equipped with an innovative cryogenic sample exchange system that allows swapping samples in minutes without introducing impurities in the closeloop system. We report that significant gain in sensitivity can be obtained at 30-40 K on large micro-crystalline molecules with unfavorable relaxation timescales, making them difficult or impossible to polarize at 100 K. We also report rotor-synchronized 2D experiments to demonstrate the stability of the system.
Collapse
Affiliation(s)
- Subhradip Paul
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Eric Bouleau
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | - Florian Bancel
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | - Bertrand Rollet
- Univ. Grenoble Alpes, CEA, IRIG, DSBT, 38000 Grenoble, France
| | | | | | | | | | - Sabine Hediger
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France
| | - Gaël De Paëpe
- Univ. Grenoble. Alpes, CEA, CNRS, IRIG, MEM, 38000 Grenoble, France.
| |
Collapse
|
18
|
Medeiros-Silva J, Dregni AJ, Somberg NH, Duan P, Hong M. Atomic structure of the open SARS-CoV-2 E viroporin. SCIENCE ADVANCES 2023; 9:eadi9007. [PMID: 37831764 PMCID: PMC10575589 DOI: 10.1126/sciadv.adi9007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
The envelope (E) protein of the SARS-CoV-2 virus forms cation-conducting channels in the endoplasmic reticulum Golgi intermediate compartment (ERGIC) of infected cells. The calcium channel activity of E is associated with the inflammatory responses of COVID-19. Using solid-state NMR (ssNMR) spectroscopy, we have determined the open-state structure of E's transmembrane domain (ETM) in lipid bilayers. Compared to the closed state, open ETM has an expansive water-filled amino-terminal chamber capped by key glutamate and threonine residues, a loose phenylalanine aromatic belt in the middle, and a constricted polar carboxyl-terminal pore filled with an arginine and a threonine residue. This structure gives insights into how protons and calcium ions are selected by ETM and how they permeate across the hydrophobic gate of this viroporin.
Collapse
Affiliation(s)
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
19
|
Toke O. Three Decades of REDOR in Protein Science: A Solid-State NMR Technique for Distance Measurement and Spectral Editing. Int J Mol Sci 2023; 24:13637. [PMID: 37686450 PMCID: PMC10487747 DOI: 10.3390/ijms241713637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Solid-state NMR (ss-NMR) is a powerful tool to investigate noncrystallizable, poorly soluble molecular systems, such as membrane proteins, amyloids, and cell walls, in environments that closely resemble their physical sites of action. Rotational-echo double resonance (REDOR) is an ss-NMR methodology, which by reintroducing heteronuclear dipolar coupling under magic angle spinning conditions provides intramolecular and intermolecular distance restraints at the atomic level. In addition, REDOR can be exploited as a selection tool to filter spectra based on dipolar couplings. Used extensively as a spectroscopic ruler between isolated spins in site-specifically labeled systems and more recently as a building block in multidimensional ss-NMR pulse sequences allowing the simultaneous measurement of multiple distances, REDOR yields atomic-scale information on the structure and interaction of proteins. By extending REDOR to the determination of 1H-X dipolar couplings in recent years, the limit of measurable distances has reached ~15-20 Å, making it an attractive method of choice for the study of complex biomolecular assemblies. Following a methodological introduction including the most recent implementations, examples are discussed to illustrate the versatility of REDOR in the study of biological systems.
Collapse
Affiliation(s)
- Orsolya Toke
- Laboratory for NMR Spectroscopy, Structural Research Centre, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
20
|
Sučec I, Mammeri NE, Dregni AJ, Hong M. Rapid Determination of the Topology of Oligomeric α-Helical Membrane Proteins by Water- and Lipid-Edited Methyl NMR. J Phys Chem B 2023; 127:7518-7530. [PMID: 37606918 PMCID: PMC10893779 DOI: 10.1021/acs.jpcb.3c05295] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Single-span oligomeric α-helical transmembrane proteins are common in virus ion channels, which are targets of antiviral drugs. Knowledge about the high-resolution structures of these oligomeric α-helical bundles is so far scarce. Structure determination of these membrane proteins by solid-state NMR traditionally requires resolving and assigning protein chemical shifts and measuring many interhelical distances, which are time-consuming. To accelerate experimental structure determination, here we introduce a simple solid-state NMR approach that uses magnetization transfer from water and lipid protons to the protein. By detecting the water- and lipid-transferred intensities of the high-sensitivity methyl 13C signals of Leu, Val, and Ile residues, which are highly enriched in these membrane proteins, we can derive models of the topology of these homo-oligomeric helical bundles. The topology is specified by the positions of amino acid residues in heptad repeats and the orientations of residues relative to the channel pore, lipids, and the helical interface. We demonstrate this water- and lipid-edited methyl NMR approach on the envelope (E) protein of SARS-CoV-2, the causative agent of the COVID-19 pandemic. We show that water-edited and lipid-edited 2D 13C-13C correlation spectra can be measured with sufficient sensitivity. Even without resolving multiple residues of the same type in the NMR spectra, we can obtain the helical bundle topology. We apply these experiments to the structurally unknown E proteins of the MERS coronavirus and the human coronavirus NL63. The resulting structural topologies show interesting differences in the positions of the aromatic residues in these three E proteins, suggesting that these viroporins may have different mechanisms of activation and ion conduction.
Collapse
Affiliation(s)
- Iva Sučec
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
21
|
Ashirov T, Fritz PW, Lauber Y, Avalos CE, Coskun A. Fully Conjugated Benzyne‐Derived Three‐Dimensional Porous Organic Polymers. Chemistry 2023; 29. [DOI: https:/doi.org/10.1002/chem.202301053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Indexed: 07/03/2024]
Abstract
AbstractPorous organic polymers (POPs) have gained tremendous attention owing to their chemical tunability, stability and high surface areas. Whereas there are several examples of fully conjugated two‐dimensional (2D) POPs, three‐dimensional (3D) ones are rather challenging to realize in the absence of structural templates. Herein, we report the base‐catalyzed direct synthesis of a fully conjugated 3D POPs, named benzyne‐derived polymers (BDPs), containing biphenylene and tetraphenylene moieties starting from a simple bisbenzyne precursor, which undergoes [2+2] and [2+2+2+2] cycloaddition reactions to form BDPs primarily composed of biphenylene and tetraphenylene moieties. The resulting polymers exhibited ultramicroporous structures with surface areas up to 544 m2 g−1 and very high CO2/N2 selectivities.
Collapse
Affiliation(s)
- Timur Ashirov
- Department of Chemistry University of Fribourg Chemin du Museé 9 1700 Fribourg Switzerland
| | - Patrick W. Fritz
- Department of Chemistry University of Fribourg Chemin du Museé 9 1700 Fribourg Switzerland
| | - Yanic Lauber
- Department of Chemistry University of Fribourg Chemin du Museé 9 1700 Fribourg Switzerland
| | - Claudia E. Avalos
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
- Department of Chemistry New York University New York, NY 10003 USA
| | - Ali Coskun
- Department of Chemistry University of Fribourg Chemin du Museé 9 1700 Fribourg Switzerland
| |
Collapse
|
22
|
Taware PP, Jain MG, Raran-Kurussi S, Agarwal V, Madhu PK, Mote KR. Measuring Dipolar Order Parameters in Nondeuterated Proteins Using Solid-State NMR at the Magic-Angle-Spinning Frequency of 100 kHz. J Phys Chem Lett 2023; 14:3627-3635. [PMID: 37026698 DOI: 10.1021/acs.jpclett.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Proteins are dynamic molecules, relying on conformational changes to carry out function. Measurement of these conformational changes can provide insight into how function is achieved. For proteins in the solid state, this can be done by measuring the decrease in the strength of anisotropic interactions due to motion-induced fluctuations. The measurement of one-bond heteronuclear dipole-dipole coupling at magic-angle-spinning (MAS) frequencies >60 kHz is ideal for this purpose. However, rotational-echo double resonance (REDOR), an otherwise gold-standard technique for the quantitative measurement of these couplings, is difficult to implement under these conditions, especially in nondeuterated samples. We present here a combination of strategies based on REDOR variants ϵ-REDOR and DEDOR (deferred REDOR) and simultaneously measure residue-specific 15N-1H and 13Cα-1Hα dipole-dipole couplings in nondeuterated systems at the MAS frequency of 100 kHz. These strategies open up avenues to access dipolar order parameters in a variety of systems at the increasingly fast MAS frequencies that are now available.
Collapse
Affiliation(s)
- Pravin P Taware
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Mukul G Jain
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - P K Madhu
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| |
Collapse
|
23
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
24
|
Nishiyama Y, Hou G, Agarwal V, Su Y, Ramamoorthy A. Ultrafast Magic Angle Spinning Solid-State NMR Spectroscopy: Advances in Methodology and Applications. Chem Rev 2023; 123:918-988. [PMID: 36542732 PMCID: PMC10319395 DOI: 10.1021/acs.chemrev.2c00197] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Solid-state NMR spectroscopy is one of the most commonly used techniques to study the atomic-resolution structure and dynamics of various chemical, biological, material, and pharmaceutical systems spanning multiple forms, including crystalline, liquid crystalline, fibrous, and amorphous states. Despite the unique advantages of solid-state NMR spectroscopy, its poor spectral resolution and sensitivity have severely limited the scope of this technique. Fortunately, the recent developments in probe technology that mechanically rotate the sample fast (100 kHz and above) to obtain "solution-like" NMR spectra of solids with higher resolution and sensitivity have opened numerous avenues for the development of novel NMR techniques and their applications to study a plethora of solids including globular and membrane-associated proteins, self-assembled protein aggregates such as amyloid fibers, RNA, viral assemblies, polymorphic pharmaceuticals, metal-organic framework, bone materials, and inorganic materials. While the ultrafast-MAS continues to be developed, the minute sample quantity and radio frequency requirements, shorter recycle delays enabling fast data acquisition, the feasibility of employing proton detection, enhancement in proton spectral resolution and polarization transfer efficiency, and high sensitivity per unit sample are some of the remarkable benefits of the ultrafast-MAS technology as demonstrated by the reported studies in the literature. Although the very low sample volume and very high RF power could be limitations for some of the systems, the advantages have spurred solid-state NMR investigation into increasingly complex biological and material systems. As ultrafast-MAS NMR techniques are increasingly used in multidisciplinary research areas, further development of instrumentation, probes, and advanced methods are pursued in parallel to overcome the limitations and challenges for widespread applications. This review article is focused on providing timely comprehensive coverage of the major developments on instrumentation, theory, techniques, applications, limitations, and future scope of ultrafast-MAS technology.
Collapse
Affiliation(s)
- Yusuke Nishiyama
- JEOL Ltd., Akishima, Tokyo196-8558, Japan
- RIKEN-JEOL Collaboration Center, Yokohama, Kanagawa230-0045, Japan
| | - Guangjin Hou
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, 2011-Collaborative Innovation Center of Chemistry for Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian116023, China
| | - Vipin Agarwal
- Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad500 046, India
| | - Yongchao Su
- Analytical Research and Development, Merck & Co., Inc., Rahway, New Jersey07065, United States
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan41809-1055, United States
| |
Collapse
|
25
|
Shamir Y, Goldbourt A. Atomic-Resolution Structure of the Protein Encoded by Gene V of fd Bacteriophage in Complex with Viral ssDNA Determined by Magic-Angle Spinning Solid-State NMR. J Am Chem Soc 2022; 145:300-310. [PMID: 36542094 PMCID: PMC9837838 DOI: 10.1021/jacs.2c09957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
F-specific filamentous phages, elongated particles with circular single-stranded DNA encased in a symmetric protein capsid, undergo an intermediate step, where thousands of homodimers of a non-structural protein, gVp, bind to newly synthesized strands of DNA, preventing further DNA replication and preparing the circular genome in an elongated conformation for assembly of a new virion structure at the membrane. While the structure of the free homodimer is known, the ssDNA-bound conformation has yet to be determined. We report an atomic-resolution structure of the gVp monomer bound to ssDNA of fd phage in the nucleoprotein complex elucidated via magic-angle spinning solid-state NMR. The model presents significant conformational changes with respect to the free form. These modifications facilitate the binding mechanism and possibly promote cooperative binding in the assembly of the gVp-ssDNA complex.
Collapse
|
26
|
Porat-Dahlerbruch G, Struppe J, Quinn CM, Gronenborn AM, Polenova T. 19F fast MAS (60-111 kHz) dipolar and scalar based correlation spectroscopy of organic molecules and pharmaceutical formulations. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101831. [PMID: 36182713 DOI: 10.1016/j.ssnmr.2022.101831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
19F magic angle spinning (MAS) NMR spectroscopy is a powerful tool for characterization of fluorinated solids. The recent development of 19F MAS NMR probes, operating at spinning frequencies of 60-111 kHz, enabled analysis of systems spanning from organic molecules to pharmaceutical formulations to biological assemblies, with unprecedented resolution. Herein, we systematically evaluate the benefits of high MAS frequencies (60-111 kHz) for 1D and 2D 19F-detected experiments in two pharmaceuticals, the antimalarial drug mefloquine and a formulation of the cholesterol-lowering drug atorvastatin calcium. We demonstrate that 1H decoupling is essential and that scalar-based, heteronuclear single quantum coherence (HSQC) and heteronuclear multiple quantum coherence (HMQC) correlation experiments become feasible and efficient at the MAS frequency of 100 kHz. This study opens doors for the applications of high frequency 19F MAS NMR to a wide range of problems in chemistry and biology.
Collapse
Affiliation(s)
- Gal Porat-Dahlerbruch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA, 01821, United States
| | - Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States
| | - Angela M Gronenborn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, United States
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, United States; Department of Structural Biology, University of Pittsburgh, School of Medicine, 3501 Fifth Ave., Pittsburgh, PA, 15261, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh, School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA, 15261, United States.
| |
Collapse
|
27
|
Duan P, Dregni AJ, Hong M. Solid-State NMR 19F- 1H- 15N Correlation Experiments for Resonance Assignment and Distance Measurements of Multifluorinated Proteins. J Phys Chem A 2022; 126:7021-7032. [PMID: 36150071 PMCID: PMC10867861 DOI: 10.1021/acs.jpca.2c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several solid-state NMR techniques have been introduced recently to measure nanometer distances involving 19F, whose high gyromagnetic ratio makes it a potent nuclear spin for structural investigation. These solid-state NMR techniques either use 19F correlation with 1H or 13C to obtain qualitative interatomic contacts or use the rotational-echo double-resonance (REDOR) pulse sequence to measure quantitative distances. However, no NMR technique is yet available for disambiguating 1H-19F distances in multiply fluorinated proteins and protein-ligand complexes. Here, we introduce a three-dimensional (3D) 19F-15N-1H correlation experiment that resolves the distances of multiple fluorines to their adjacent amide protons. We show that optimal polarization transfer between 1H and 19F spins is achieved using an out-and-back 1H-19F REDOR sequence. We demonstrate this 3D correlation experiment on the model protein GB1 and apply it to the multidrug-resistance transporter, EmrE, complexed to a tetrafluorinated substrate. This technique should be useful for resolving and assigning distance constraints in multiply fluorinated proteins, leading to significant savings of time and precious samples compared to producing several singly fluorinated samples. Moreover, the method enables structural determination of protein-ligand complexes for ligands that contain multiple fluorines.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139
| |
Collapse
|
28
|
Sutherland M, Tran N, Hong M. Clustering of tetrameric influenza M2 peptides in lipid bilayers investigated by 19F solid-state NMR. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183909. [PMID: 35276226 DOI: 10.1016/j.bbamem.2022.183909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/19/2022]
Abstract
The influenza M2 protein forms a drug-targeted tetrameric proton channel to mediate virus uncoating, and carries out membrane scission to enable virus release. While the proton channel function of M2 has been extensively studied, the mechanism by which M2 catalyzes membrane scission is still not well understood. Previous fluorescence and electron microscopy studies indicated that M2 tetramers concentrate at the neck of the budding virus in the host plasma membrane. However, molecular evidence for this clustering is scarce. Here, we use 19F solid-state NMR to investigate M2 clustering in phospholipid bilayers. By mixing equimolar amounts of 4F-Phe47 labeled M2 peptide and CF3-Phe47 labeled M2 peptide and measuring F-CF3 cross peaks in 2D 19F19F correlation spectra, we show that M2 tetramers form nanometer-scale clusters in lipid bilayers. This clustering is stronger in cholesterol-containing membranes and phosphatidylethanolamine (PE) membranes than in cholesterol-free phosphatidylcholine and phosphatidylglycerol membranes. The observed correlation peaks indicate that Phe47 sidechains from different tetramers are less than ~2 nm apart. 1H19F correlation peaks between lipid chain protons and fluorinated Phe47 indicate that Phe47 is more deeply inserted into the lipid bilayer in the presence of cholesterol than in its absence, suggesting that Phe47 preferentially interacts with cholesterol. Static 31P NMR spectra indicate that M2 induces negative Gaussian curvature in the PE membrane. These results suggest that M2 tetramers cluster at cholesterol- and PE-rich regions of cell membranes to cause membrane curvature, which in turn can facilitate membrane scission in the last step of virus budding and release.
Collapse
Affiliation(s)
- Madeleine Sutherland
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Nhi Tran
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, United States of America.
| |
Collapse
|
29
|
Shekar SC, Zhao W, Fernando LD, Hung I, Wang T. A 13C three-dimensional DQ-SQ-SQ correlation experiment for high-resolution analysis of complex carbohydrates using solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 336:107148. [PMID: 35121490 DOI: 10.1016/j.jmr.2022.107148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Complex carbohydrates are the key components of the protective cell walls of microbial pathogens and the bioenergy reservoir in plants and algae. Structural characterization of these polymorphic molecules requires assistance from multidimensional 13C correlation approaches. To facilitate the analysis of carbohydrate structure using solid-state NMR, we present a three-dimensional (3D) 13C-13C-13C experiment that includes a double-quantum (DQ) dimension and is thus free of the cube's body diagonal. The enhanced resolution supports the unambiguous resonance assignment of many polysaccharides in plant and fungal cell walls using uniformly 13C-labeled cells of spruce and Aspergillus fumigatus. Long-range structural restraints were effectively obtained to revisit our understanding of the spatial organization of plant cellulose microfibrils. The method is widely applicable to the investigations of cellular carbohydrates and carbon-based biomaterials.
Collapse
Affiliation(s)
- S Chandra Shekar
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wancheng Zhao
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Liyanage D Fernando
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA.
| |
Collapse
|
30
|
Kumari S, Booth V. Antimicrobial Peptide Mechanisms Studied by Whole-Cell Deuterium NMR. Int J Mol Sci 2022; 23:ijms23052740. [PMID: 35269882 PMCID: PMC8910884 DOI: 10.3390/ijms23052740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/29/2022] Open
Abstract
Much of the work probing antimicrobial peptide (AMP) mechanisms has focussed on how these molecules permeabilize lipid bilayers. However, AMPs must also traverse a variety of non-lipid cell envelope components before they reach the lipid bilayer. Additionally, there is a growing list of AMPs with non-lipid targets inside the cell. It is thus useful to extend the biophysical methods that have been traditionally applied to study AMP mechanisms in liposomes to the full bacteria, where the lipids are present along with the full complexity of the rest of the bacterium. This review focusses on what can be learned about AMP mechanisms from solid-state NMR of AMP-treated intact bacteria. It also touches on flow cytometry as a complementary method for measuring permeabilization of bacterial lipid membranes in whole bacteria.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
| | - Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada;
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
- Correspondence: ; Tel.: +1-709-864-4523
| |
Collapse
|
31
|
Duan P, Chen KJ, Wijegunawardena G, Dregni AJ, Wang HK, Wu H, Hong M. Binding Sites of a Positron Emission Tomography Imaging Agent in Alzheimer's β-Amyloid Fibrils Studied Using 19F Solid-State NMR. J Am Chem Soc 2022; 144:1416-1430. [PMID: 35015530 PMCID: PMC8855532 DOI: 10.1021/jacs.1c12056] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Amyloid imaging by positron emission tomography (PET) is an important method for diagnosing neurodegenerative disorders such as Alzheimer's disease. Many 11C- and 18F-labeled PET tracers show varying binding capacities, specificities, and affinities for their target proteins. The structural basis of these variations is poorly understood. Here we employ 19F and 13C solid-state NMR to investigate the binding sites of a PET ligand, flutemetamol, to the 40-residue Alzheimer's β-amyloid peptide (Aβ40). Analytical high-performance liquid chromatography and 19F NMR spectra show that flutemetamol binds the current Aβ40 fibril polymorph with a stoichiometry of one ligand per four to five peptides. Half of the ligands are tightly bound while the other half are loosely bound. 13C and 15N chemical shifts indicate that this Aβ40 polymorph has an immobilized N-terminus, a non-β-sheet His14, and a non-β-sheet C-terminus. We measured the proximity of the ligand fluorine to peptide residues using 19F-13C and 19F-1H rotational-echo double-resonance (REDOR) experiments. The spectra show that three segments in the peptide, 12VHH14, 18VFF20, and 39VV40, lie the closest to the ligand. REDOR-constrained docking simulations indicate that these three segments form multiple binding sites, and the ligand orientations and positions at these sites are similar across different Aβ polymorphs. Comparison of the flutemetamol-interacting residues in Aβ40 with the small-molecule binding sites in other amyloid proteins suggest that conjugated aromatic compounds preferentially bind β-sheet surface grooves lined by aromatic, polar, and charged residues. These motifs may explain the specificity of different PET tracers to different amyloid proteins.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Kelly J. Chen
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Gayani Wijegunawardena
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, KS 67260, United States
| | - Aurelio J. Dregni
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Harrison K. Wang
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Haifan Wu
- Department of Chemistry and Biochemistry, Wichita State University, 1845 Fairmount St, Wichita, KS 67260, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| |
Collapse
|
32
|
Liu Y, Zhou Y, Xu Y. State-of-the-Art, Opportunities, and Challenges in Bottom-up Synthesis of Polymers with High Thermal Conductivity. Polym Chem 2022. [DOI: 10.1039/d2py00272h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In contrast to metals, polymers are predominantly thermal and electrical insulators. With their unparalleled advantages such as light weight, turning polymer insulators into heat conductors with metal-like thermal conductivity is...
Collapse
|
33
|
Ghassemi N, Poulhazan A, Deligey F, Mentink-Vigier F, Marcotte I, Wang T. Solid-State NMR Investigations of Extracellular Matrixes and Cell Walls of Algae, Bacteria, Fungi, and Plants. Chem Rev 2021; 122:10036-10086. [PMID: 34878762 DOI: 10.1021/acs.chemrev.1c00669] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Extracellular matrixes (ECMs), such as the cell walls and biofilms, are important for supporting cell integrity and function and regulating intercellular communication. These biomaterials are also of significant interest to the production of biofuels and the development of antimicrobial treatment. Solid-state nuclear magnetic resonance (ssNMR) and magic-angle spinning-dynamic nuclear polarization (MAS-DNP) are uniquely powerful for understanding the conformational structure, dynamical characteristics, and supramolecular assemblies of carbohydrates and other biomolecules in ECMs. This review highlights the recent high-resolution investigations of intact ECMs and native cells in many organisms spanning across plants, bacteria, fungi, and algae. We spotlight the structural principles identified in ECMs, discuss the current technical limitation and underexplored biochemical topics, and point out the promising opportunities enabled by the recent advances of the rapidly evolving ssNMR technology.
Collapse
Affiliation(s)
- Nader Ghassemi
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Alexandre Poulhazan
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States.,Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Fabien Deligey
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | | | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, Montreal H2X 2J6, Canada
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|