1
|
Korolev V, Sinelnik AD, Rybin MV, Lazarenko P, Kushchenko OM, Glukhenkaya V, Kozyukhin S, Zuerch M, Spielmann C, Pertsch T, Staude I, Kartashov D. Tunable high-order harmonic generation in GeSbTe nano-films. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3411-3419. [PMID: 39634838 PMCID: PMC11501657 DOI: 10.1515/nanoph-2023-0859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/04/2024] [Indexed: 12/07/2024]
Abstract
High-order harmonic generation (HHG) in solids opens new frontiers in ultrafast spectroscopy of carrier and field dynamics in condensed matter, picometer resolution structural lattice characterization and designing compact platforms for attosecond pulse sources. Nanoscale structuring of solid surfaces provides a powerful tool for controlling the spatial characteristics and efficiency of the harmonic emission. Here we study HHG in a prototypical phase-change material Ge2Sb2Te5 (GST). In this material the crystal phase can be reversibly changed between a crystalline and amorphous phase by light or electric current mediated methods. We show that optical phase-switching is fully reversible and allows for dynamic control of harmonic emission. This introduces GST as new addition to materials that enable flexible metasurfaces and photonic structures that can be integrated in devices and allow for ultrafast optical control.
Collapse
Affiliation(s)
| | | | - Mikhail V. Rybin
- ITMO University, St. Petersburg, Russia
- Ioffe Institute, St. Petersburg, Russia
| | - Petr Lazarenko
- National Research University of Electronic Technology, Moscow, Russia
| | | | | | - Sergey Kozyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Moscow, Russia
| | - Michael Zuerch
- Friedrich-Schiller University Jena, Jena, Germany
- University of California at Berkeley, Berkeley, USA
| | | | - Thomas Pertsch
- Friedrich-Schiller University Jena, Jena, Germany
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF, Jena, Germany
- Max Planck School of Photonics, Jena, Germany
| | | | | |
Collapse
|
2
|
Vikram MP, Nishida K, Li CH, Riabov D, Pashina O, Tang YL, Makarov SV, Takahara J, Petrov MI, Chu SW. Photo-thermo-optical modulation of Raman scattering from Mie-resonant silicon nanostructures. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:3581-3589. [PMID: 39634823 PMCID: PMC11501727 DOI: 10.1515/nanoph-2023-0922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/11/2024] [Indexed: 12/07/2024]
Abstract
Raman scattering is sensitive to local temperature and thus offers a convenient tool for non-contact and non-destructive optical thermometry at the nanoscale. In turn, all-dielectric nanostructures, such as silicon particles, exhibit strongly enhanced photothermal heating due to Mie resonances, which leads to the strong modulation of elastic Rayleigh scattering intensity through subsequent thermo-optical effects. However, the influence of the complex photo-thermo-optical effect on inelastic Raman scattering has yet to be explored for resonant dielectric nanostructures. In this work, we experimentally demonstrate that the strong photo-thermo-optical interaction results in the nonlinear dependence of the Raman scattering signal intensity from a crystalline silicon nanoparticle via the thermal reconfiguration of the resonant response. Our results reveal a crucial role of the Mie resonance spectral sensitivity to temperature, which modifies not only the conversion of the incident light into heat but also Raman scattering efficiency. The developed comprehensive model provides the mechanism for thermal modulation of Raman scattering, shedding light on the photon-phonon interaction physics of resonant material, which is essential for the validation of Raman nanothermometry in resonant silicon structures under a strong laser field.
Collapse
Affiliation(s)
- Mor Pal Vikram
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Kentaro Nishida
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Chien-Hsuan Li
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Daniil Riabov
- School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg191002, Russia
| | - Olesiya Pashina
- School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg191002, Russia
| | - Yu-Lung Tang
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
| | - Sergey V. Makarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg191002, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao266000, Shandong, China
| | - Junichi Takahara
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
- Photonics Center, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka565-0871, Japan
| | - Mihail I. Petrov
- School of Physics and Engineering, ITMO University, Lomonosova 9, Saint Petersburg191002, Russia
| | - Shi-Wei Chu
- Department of Physics, National Taiwan University, 1, Sec 4, Roosevelt Rd., Taipei10617, Taiwan
- Molecular Imaging Center, National Taiwan University, 1, Sec 4, Roosevelt Rd., 10617, Taipei, Taiwan
- Brain Research Center, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu300044, Taiwan
| |
Collapse
|
3
|
Wu W, Chen K, Yu H, Zhu J, Feng Y, Wang J, Huang X, Li L, Hao H, Wang T, Wang N, Naumov P. Trimodal operation of a robust smart organic crystal. Chem Sci 2024; 15:9287-9297. [PMID: 38903221 PMCID: PMC11186328 DOI: 10.1039/d4sc02152e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/10/2024] [Indexed: 06/22/2024] Open
Abstract
We describe a dynamic crystalline material that integrates mechanical, thermal, and light modes of operation, with unusual robustness and resilience and a variety of both slow and fast kinematic effects that occur on very different time scales. In the mechanical mode of operation, crystals of this material are amenable to elastic deformation, and they can be reversibly morphed and even closed into a loop, sustaining strains of up to about 2.6%. Upon release of the external force, the crystals resume their original shape without any sign of damage, demonstrating outstanding elasticity. Application of torque results in plastic twisting for several rotations without damage, and the twisted crystal can still be bent elastically. The thermal mode of operation relies on switching the lattice at least several dozen times. The migration of the phase boundaries depends on the crystal habit. It can be precisely controlled by temperature, and it is accompanied by both slow and fast motions, including shear deformation and leaping. Parallel boundaries result in a thermomechanical effect, while non-parallel boundaries result in a thermosalient effect. Finally, the photochemical mode of operation is driven by isomerization and can be thermally reverted. The structure of the crystal can also be switched photochemically, and the generation of a bilayer induces rapid bending upon exposure to ultraviolet light, an effect that further diversifies the mechanical response of the material. The small structural changes, low-energy and weak intramolecular hydrogen bonds, and shear deformation, which could dissipate part of the elastic energy, are considered to be the decisive factors for the conservation of the long-range order and the extraordinary diversity in the response of this, and potentially many other dynamic crystalline materials.
Collapse
Affiliation(s)
- Wenbo Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Kui Chen
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Hui Yu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Jiaxuan Zhu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Yaoguang Feng
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
| | - Jingkang Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi PO Box 38044 Abu Dhabi UAE
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China
- China State Key Laboratory of Chemical Engineering, Tianjin University 300072 China
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Center for Smart Engineering Materials, New York University Abu Dhabi PO Box 129188 Abu Dhabi UAE
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts Bul. Krste Misirkov 2 MK-1000 Skopje Macedonia
- Department of Chemistry, Molecular Design Institute, New York University 100 Washington Square East New York NY 10003 USA
| |
Collapse
|
4
|
Di Giulio V, Akerboom E, Polman A, García de Abajo FJ. Toward Optimum Coupling between Free Electrons and Confined Optical Modes. ACS NANO 2024; 18:14255-14275. [PMID: 38775711 PMCID: PMC11155252 DOI: 10.1021/acsnano.3c12977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/10/2024] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Free electrons are excellent tools to probe and manipulate nanoscale optical fields with emerging applications in ultrafast spectromicroscopy and quantum metrology. However, advances in this field are hindered by the small probability associated with the excitation of single optical modes by individual free electrons. Here, we theoretically investigate the scaling properties of the electron-driven excitation probability for a wide variety of optical modes including plasmons in metallic nanostructures and Mie resonances in dielectric cavities, spanning a broad spectral range that extends from the ultraviolet to the infrared region. The highest probabilities for the direct generation of three-dimensionally confined modes are observed at low electron and mode energies in small structures, with order-unity (∼100%) coupling demanding the use of <100 eV electrons interacting with eV polaritons confined down to tens of nanometers in space. Electronic transitions in artificial atoms also emerge as practical systems to realize strong coupling to few-eV free electrons. In contrast, conventional dielectric cavities reach a maximum probability in the few-percent range. In addition, we show that waveguide modes can be generated with higher-than-unity efficiency by phase-matched interaction with grazing electrons, suggesting a practical method to create multiple excitations of a localized optical mode by an individual electron through funneling the so-generated propagating photons into a confining cavity─an alternative approach to direct electron-cavity interaction. Our work provides a roadmap to optimize electron-photon coupling with potential applications in electron spectromicroscopy as well as nonlinear and quantum optics at the nanoscale.
Collapse
Affiliation(s)
- Valerio Di Giulio
- The
Barcelona Institute of Science and Technology, Institut de Ciencies Fotoniques-ICFO, 08860 Castelldefels (Barcelona), Spain
| | - Evelijn Akerboom
- Center
for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Albert Polman
- Center
for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - F. Javier García de Abajo
- The
Barcelona Institute of Science and Technology, Institut de Ciencies Fotoniques-ICFO, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució
Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Li C, Pan R, Gu C, Guo H, Li J. Reconfigurable Micro/Nano-Optical Devices Based on Phase Transitions: From Materials, Mechanisms to Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306344. [PMID: 38489745 PMCID: PMC11132080 DOI: 10.1002/advs.202306344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/10/2024] [Indexed: 03/17/2024]
Abstract
In recent years, numerous efforts have been devoted to exploring innovative micro/nano-optical devices (MNODs) with reconfigurable functionality, which is highly significant because of the progressively increasing requirements for next-generation photonic systems. Fortunately, phase change materials (PCMs) provide an extremely competitive pathway to achieve this goal. The phase transitions induce significant changes to materials in optical, electrical properties or shapes, triggering great research interests in applying PCMs to reconfigurable micro/nano-optical devices (RMNODs). More specifically, the PCMs-based RMNODs can interact with incident light in on-demand or adaptive manners and thus realize unique functions. In this review, RMNODs based on phase transitions are systematically summarized and comprehensively overviewed from materials, phase change mechanisms to applications. The reconfigurable optical devices consisting of three kinds of typical PCMs are emphatically introduced, including chalcogenides, transition metal oxides, and shape memory alloys, highlighting the reversible state switch and dramatic contrast of optical responses along with designated utilities generated by phase transition. Finally, a comprehensive summary of the whole content is given, discussing the challenge and outlooking the potential development of the PCMs-based RMNODs in the future.
Collapse
Affiliation(s)
- Chensheng Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Ruhao Pan
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Haiming Guo
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesBeijing100190China
- CAS Key Laboratory of Vacuum PhysicsSchool of Physical SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Songshan Lake Materials LaboratoryDongguanGuangdong523808China
| |
Collapse
|
6
|
Zhu C, Bamidele EA, Shen X, Zhu G, Li B. Machine Learning Aided Design and Optimization of Thermal Metamaterials. Chem Rev 2024; 124:4258-4331. [PMID: 38546632 PMCID: PMC11009967 DOI: 10.1021/acs.chemrev.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
Artificial Intelligence (AI) has advanced material research that were previously intractable, for example, the machine learning (ML) has been able to predict some unprecedented thermal properties. In this review, we first elucidate the methodologies underpinning discriminative and generative models, as well as the paradigm of optimization approaches. Then, we present a series of case studies showcasing the application of machine learning in thermal metamaterial design. Finally, we give a brief discussion on the challenges and opportunities in this fast developing field. In particular, this review provides: (1) Optimization of thermal metamaterials using optimization algorithms to achieve specific target properties. (2) Integration of discriminative models with optimization algorithms to enhance computational efficiency. (3) Generative models for the structural design and optimization of thermal metamaterials.
Collapse
Affiliation(s)
- Changliang Zhu
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
| | - Emmanuel Anuoluwa Bamidele
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80309, United States
| | - Xiangying Shen
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
| | - Guimei Zhu
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen 518055, P.R. China
| | - Baowen Li
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen 518055, P.R. China
- Department
of Physics, Southern University of Science
and Technology, Shenzhen 518055, P.R. China
- Shenzhen
International Quantum Academy, Shenzhen 518048, P.R. China
- Paul M. Rady
Department of Mechanical Engineering and Department of Physics, University of Colorado, Boulder 80309, United States
| |
Collapse
|
7
|
Tonkaev P, Grechaninova E, Iorsh I, Montanarella F, Kivshar Y, Kovalenko MV, Makarov S. Multiscale Supercrystal Meta-atoms. NANO LETTERS 2024; 24:2758-2764. [PMID: 38407023 DOI: 10.1021/acs.nanolett.3c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Meta-atoms are the building blocks of metamaterials, which are employed to control both generation and propagation of light as well as provide novel functionalities of localization and directivity of electromagnetic radiation. In many cases, simple dielectric or metallic resonators are employed as meta-atoms to create different types of electromagnetic metamaterials. Here, we fabricate and study supercrystal meta-atoms composed of coupled perovskite quantum dots. We reveal that these multiscale structures exhibit specific emission properties, such as spectrum splitting and polaritonic effects. We believe that such multiscale supercrystal meta-atoms will provide novel functionalities in the design of many novel types of active metamaterials and metasurfaces.
Collapse
Affiliation(s)
- Pavel Tonkaev
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Evgeniia Grechaninova
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Ivan Iorsh
- Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Federico Montanarella
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich 8093, Switzerland
| | - Yuri Kivshar
- Nonlinear Physics Centre, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| | - Maksym V Kovalenko
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zurich 8093, Switzerland
| | - Sergey Makarov
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| |
Collapse
|
8
|
Udoikono AD, Agwamba EC, Louis H, Benjamin I, Ahmad I, Ejiofor EU, Ahuekwe EF, Chukwuemeka K, Adeyinka AS, Patel HM, Manicum AL, Edim M. Anti-inflammatory biomolecular activity of chlorinated-phenyldiazenyl-naphthalene-2-sulfonic acid derivatives: perception from DFT, molecular docking, and molecular dynamic simulation. J Biomol Struct Dyn 2023; 41:10136-10160. [PMID: 36519503 DOI: 10.1080/07391102.2022.2153414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
In this study, two novel derivatives of naphthalene-2-sulfonic acid: 6-(((1S,5R)-3,5-dichloro-2,4,6-triazabicyclo [z3.1.0]hex-3-en-1-yl)amino)-5-((E)-phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS1) and (E)-6-((4,6-dichloro-1,3,5-triazine2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2-sulfonic acid (DTPS2) have been synthesized and characterized using FT-IR, UV-vis, and NMR spectroscopic techniques. Applying density functional theory (DFT) at the B3LYP, APFD, PBEPBE, HCTH, TPSSTPSS, and ωB97XD/aug-cc-pVDZ level of theories for the electronic structural properties. In-vitro analysis, molecular docking, molecular dynamic (MD) simulation of the compounds was conducted to investigate the anti-inflammatory potential using COXs enzymes. Docking indicates binding affinity of -9.57, -9.60, -6.77 and -7.37 kcal/mol for DTPS1, DTPS2, Ibuprofen and Diclofenac which agrees with in-vitro assay. Results of MD simulation, indicates sulphonic group in DTPS1 has > 30% interaction with the hydroxyl and oxygen atoms in amino acid residues, but > 35% interaction with the DTPS2. It can be said that the DTPS1 and DTPS2 can induce inhibitory effect on COXs to halt biosynthesis of prostaglandins (PGs), a chief mediator of inflammation and pain in mammals.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akaninyene D Udoikono
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Ernest C Agwamba
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, Faculty of Physical Sciences, University of Calabar, Calabar, Nigeria
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Iqrar Ahmad
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Emmanuel U Ejiofor
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Eze F Ahuekwe
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Biological Sciences, Covenant University, Ota, Nigeria
| | - Kelechi Chukwuemeka
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University Owerrinta, Nigeria
| | - Adedapo S Adeyinka
- Research Centre for Synthesis and Catalysis, Department of Chemical Sciences, University of Johannesburg, Johannesburg, South Africa
| | - Harun M Patel
- Department of Biological Sciences, Covenant University, Ota, Nigeria
- Division of Computer-Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Amanda-Lee Manicum
- Department of Chemistry, Tshwane University of Technology, Pretoria, South Africa
| | - Moses Edim
- Cross River State University of Technology, Calabar, Nigeria
| |
Collapse
|
9
|
Ma W, Zhou C, Chen D, You S, Wang X, Wang L, Jin L, Huang L, Wang D, Miroshnichenko AE. Active quasi-BIC metasurfaces assisted by epsilon-near-zero materials. OPTICS EXPRESS 2023; 31:13125-13139. [PMID: 37157457 DOI: 10.1364/oe.486827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Active devices play a critical role in modern electromagnetic and photonics systems. To date, the epsilon (ε)-near-zero (ENZ) is usually integrated with the low Q-factor resonant metasurface to achieve active devices, and enhance the light-matter interaction significantly at the nanoscale. However, the low Q-factor resonance may limit the optical modulation. Less work has been focused on the optical modulation in the low-loss and high Q-factor metasurfaces. Recently, the emerging optical bound states in the continuum (BICs) provides an effective way for achieving high Q-factor resonators. In this work, we numerically demonstrate a tunable quasi-BICs (QBICs) by integrating a silicon metasurface with ENZ ITO thin film. Such a metasurface is composed of five square holes in a unit cell, and hosts multiple BICs by engineering the position of centre hole. We also reveal the nature of these QBICs by performing multipole decomposition and calculating near field distribution. Thanks to the large tunability of ITO's permittivity by external bias and high-Q factor enabled by QBICs, we demonstrate an active control on the resonant peak position and intensity of transmission spectrum by integrating ENZ ITO thin films with QBICs supported by silicon metasurfaces. We find that all QBICs show excellent performance on modulating the optical response of such a hybrid structure. The modulation depth can be up to 14.8 dB. We also investigate how the carrier density of ITO film influence the near-field trapping and far-field scattering, which in turn influence the performance of optical modulation based on this structure. Our results may find promising applications in developing active high-performance optical devices.
Collapse
|
10
|
Owen AE, Louis H, Agwamba EC, Udoikono AD, Manicum ALE. Antihypotensive potency of p-synephrine: Spectral analysis, molecular properties and molecular docking investigation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Markina DI, Anoshkin SS, Masharin MA, Khubezhov SA, Tzibizov I, Dolgintsev D, Terterov IN, Makarov SV, Pushkarev AP. Perovskite Nanowire Laser for Hydrogen Chloride Gas Sensing. ACS NANO 2023; 17:1570-1582. [PMID: 36594418 DOI: 10.1021/acsnano.2c11013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Detection of hazardous volatile organic and inorganic species is a crucial task for addressing human safety in the chemical industry. Among these species, there are hydrogen halides (HX, X = Cl, Br, I) vastly exploited in numerous technological processes. Therefore, the development of a cost-effective, highly sensitive detector selective to any HX gas is of particular interest. Herein, we demonstrate the optical detection of hydrogen chloride gas with solution-processed halide perovskite nanowire lasers grown on a nanostructured alumina substrate. An anion exchange reaction between a CsPbBr3 nanowire and vaporized HCl molecules results in the formation of a structure consisting of a bromide core and thin mixed-halide CsPb(Cl,Br)3 shell. The shell has a lower refractive index than the core does. Therefore, the formation and further expansion of the shell reduce the field confinement for experimentally observed laser modes and provokes an increase in their frequency. This phenomenon is confirmed by the coherency of the data derived from XPS spectroscopy, EDX analysis, in situ XRD experiments, HRTEM images, and fluorescent microspectroscopy, as well as numerical modeling for Cl- ion diffusion and the shell-thickness-dependent spectral position of eigenmodes in a core-shell perovskite nanowire. The revealed optical response allows the detection of HCl molecules in the 5-500 ppm range. The observed spectral tunability of the perovskite nanowire lasers can be employed not only for sensing but also for their precise spectral tuning.
Collapse
Affiliation(s)
- Daria I Markina
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Sergey S Anoshkin
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Mikhail A Masharin
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Soslan A Khubezhov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
- North Ossetian State University, Vatutina str. 46, 362025Vladikavkaz, Russia
| | - Ivan Tzibizov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Dmitriy Dolgintsev
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Ivan N Terterov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| | - Sergey V Makarov
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao266000, Shandong, People's Republic of China
| | - Anatoly P Pushkarev
- ITMO University, School of Physics and Engineering, Kronverkskiy pr. 49, 197101St. Petersburg, Russia
| |
Collapse
|