1
|
Zhang L, Shi J, Zhu MH, Huang Y, Lu Q, Sun P, Chen HZ, Lai X, Fang C. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 2025; 313:122801. [PMID: 39236630 DOI: 10.1016/j.biomaterials.2024.122801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
Chemoimmunotherapy is an emerging paradigm in the clinic for treating several malignant diseases, such as non-small cell lung cancer, breast cancer, and large B-cell lymphoma. However, the efficacy of this strategy is still restricted by serious adverse events and a high therapeutic termination rate, presumably due to the lack of tumor-targeted distribution of both chemotherapeutic and immunotherapeutic agents. Targeted drug delivery has the potential to address this issue. Among the most promising nanocarriers in clinical translation, liposomes have drawn great attention in cancer chemoimmunotherapy in recent years. Liposomes-enabled cancer chemoimmunotherapy has made significant progress in clinics, with impressive therapeutic outcomes. This review summarizes the latest preclinical and clinical progress in liposome-enabled cancer chemoimmunotherapy and discusses the challenges and future directions of this field.
Collapse
Affiliation(s)
- Lele Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiangpei Shi
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yanhu Huang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, 200336, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Systems Medicine for Cancer, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China; Key Laboratory of Basic Pharmacology of Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563003, China.
| |
Collapse
|
2
|
Liu X, Wang X, Zang D, Chang Y, Su W, Li G, Zhang J, Yang P, Ma X, Guo Y. pH-responsive oxygen self-sufficient smart nanoplatform for enhanced tumor chemotherapy and photodynamic therapy. J Colloid Interface Sci 2024; 675:1080-1090. [PMID: 39018635 DOI: 10.1016/j.jcis.2024.07.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Premature drug release in chemotherapy and hypoxic conditions in photodynamic therapy (PDT) are perplexing problems in tumor treatment. Thus, it is of great significance to develop the novel therapeutic system with controllable drug release and effective oxygen generation. Herein, a pH-responsive oxygen self-sufficient smart nanoplatform (named DHCCC), integrating hollow mesoporous silica nanoparticles (HMSNs), chitosan (CS), doxorubicin hydrochloride (DOX), chlorin e6 (Ce6) and catalase (CAT), is fabricated to enhance the tumor therapeutic efficacy efficiently through avoiding premature drug release and mitigating hypoxia of tumor microenvironment (TME). The drug DOX can be efficiently loaded into the HMSNs with large cavity and be controllable released because of the pH responsiveness of CS to the weak acidic TME, thereby elevating the chemotherapy efficacy. Meanwhile, CAT can catalyze the decomposition of endogenous hydrogen peroxide in situ generating oxygen to alleviate the hypoxia and enhance the PDT efficiency considerably. In vitro and in vivo results demonstrate that the combined chemo-photodynamic therapy based on the DHCCC nanoplatform exerts more effective antitumor efficacy than chemotherapy or PDT alone. The current study provides a promising inspiration to construct the pH-responsive oxygen self-sufficient smart nanomedicine with potentials to prevent premature drug leakage and overcome hypoxia for efficient tumor therapy.
Collapse
Affiliation(s)
- Xinhe Liu
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin Wang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Dan Zang
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Yi Chang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453100, China
| | - Guangyang Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Pengfei Yang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaoming Ma
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, China.
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
| |
Collapse
|
3
|
Zhao J, Wang D, Zhang X, Di Y, Yang S, Yan L. Preparation of Disulfide/Trisulfide Core-Cross-Linked Polycarbonate Nanocarriers for Intracellular Reduction-Triggered Drug Release. ACS Macro Lett 2024:1433-1441. [PMID: 39383241 DOI: 10.1021/acsmacrolett.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Polymeric nanocarriers have attracted significant attention in the field of anticancer drug delivery due to their unique advantages. However, designing nanocarriers that can maintain stability in the bloodstream while achieving specific drug release within tumor cells remains a major challenge. To address this issue, constructing reversible cross-linked polymeric nanocarriers that are sensitive to the intracellular reducible glutathione (GSH) characteristic of the tumor microenvironment is a promising strategy. Based on this, we designed and synthesized two novel six-membered bicyclic carbonate monomers containing disulfide (DSBC) and trisulfide (TSBC) bonds. Through a one-step ring-opening polymerization, a series of reduction-sensitive polycarbonate copolymers (i.e., PEG-PDSBC and PEG-PTSBC) were prepared, and doxorubicin (DOX)-loaded nanoparticles were fabricated using a nanoprecipitation method. The in vitro drug release behaviors of these nanoparticles were systematically investigated. The results showed that these polymers, due to the cross-linked structure formed by the ring-opening polymerization of their bicyclic monomers, could self-assemble into stable nanoparticles. Under different concentrations of glutathione, DOX-loaded PEG-PTSBC nanoparticles demonstrated faster drug release, indicating more optimized intracellular drug release properties. Further cytotoxicity experiments revealed that both types of blank nanoparticles exhibited good biocompatibility with the 4T1 and NIH-3T3 cells. Fluorescence microscopy and flow cytometry results further indicated that DOX-loaded PEG-PTSBC nanoparticles released more drugs in 4T1 cells, significantly inhibiting tumor cell growth compared with DOX-loaded PEG-PDSBC nanoparticles, with no noticeable difference in NIH-3T3 normal cells. In conclusion, this study suggests that trisulfide cross-linked polycarbonate-based nanocarriers hold promise as an anticancer drug delivery system that combines stability in the bloodstream with specific intracellular drug release, offering new insights for the development of novel, efficient, and safe anticancer nanomedicines.
Collapse
Affiliation(s)
- Jiye Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| | - Dongdong Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Xi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Yaodong Di
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Shuai Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Lesan Yan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
- Wuhan University of Technology Advanced Engineering Technology Research Institute of Zhongshan City, Zhongshan 528400, China
| |
Collapse
|
4
|
Zhang X, Wang P, Wang X, Xu Y, Cheng T, Zhang C, Ding J, Shi Y, Ma W, Yu CY, Wei H. Stabilized, ROS-sensitive β-cyclodextrin-grafted hyaluronic supramolecular nanocontainers for CD44-targeted anticancer drug delivery. Colloids Surf B Biointerfaces 2024; 242:114081. [PMID: 39003850 DOI: 10.1016/j.colsurfb.2024.114081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/16/2024]
Abstract
Hyaluronic acid (HA)-based tumor microenvironment-responsive nanocontainers are attractive candidates for anticancer drug delivery due to HA's excellent biocompatibility, biodegradability, and CD44-targeting properties. Nevertheless, the consecutive synthesis of stabilized, stealthy, responsive HA-based multicomponent nanomedicines generally requires multi-step preparation and purification procedures, leading to batch-to-batch variation and scale-up difficulties. To develop a facile yet robust strategy for promoted translations, a silica monomer containing a cross-linkable diethoxysilyl unit was prepared to enable in situ crosslinking without any additives. Further combined with the host-guest inclusion complexation between β-cyclodextrin-grafted HA (HA-CD) and ferrocene-functionalized polymers, ferrocene-terminated poly(oligo(ethylene glycol) methyl ether methacrylate (Fc-POEGMA) and Fc-terminated poly(ε-caprolactone)-b-poly(3-(diethoxymethylsilyl)propyl(2-(methacryloyloxy)ethyl) carbamate) (Fc-PCL-b-PDESPMA), a reactive oxygen species (ROS)-sensitive supramolecular polymer construct, Fc-POEGMA/Fc-PCL-b-PDESPMA@HA-CD was readily fabricated to integrate stealthy POEGMA, tumor active targeting HA, and an in situ cross-linkable PDESPMA sequence. Supramolecular amphiphilic copolymers with two different POEGMA contents of 25 wt% (P1) and 20 wt% (P2) were prepared via a simple physical mixing process, affording two core-crosslinked (CCL) micelles via an in situ sol-gel process of ethoxysilyl groups. The P1-based CCL micelles show not only desired colloidal stability against high dilution, but also an intracellular ROS-mimicking environment-induced particulate aggregation that is beneficial for promoted intracellular release of the loaded cargoes. Most importantly, P1-based nanomedicines exhibited greater cytotoxicity in CD44 receptor-positive HeLa cells than that in CD44 receptor-negative MCF-7 cells. Overall, this work developed HA-based nanomedicines with sufficient extracellular colloidal stability and efficient intracellular destabilization properties for enhanced anticancer drug delivery via smart integration of in situ crosslinking and supramolecular complexation.
Collapse
Affiliation(s)
- Xianshuo Zhang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Peipei Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Xinsheng Wang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yaoyu Xu
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Taolin Cheng
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Chengjie Zhang
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Jiaying Ding
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Yunfeng Shi
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, and School of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China.
| | - Wei Ma
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| | - Cui-Yun Yu
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Hua Wei
- Postdoctoral Mobile Station of Basic Medical Sciences, Hengyang Medical School, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study& School of Pharmaceutical Science, University of South China, Hengyang 421001, China.
| |
Collapse
|
5
|
Zhong T, Yang Y, Pang M, Pan Y, Jing S, Qi Y, Huang Y. Human Serum Albumin-Coated 10B Enriched Carbon Dots as Targeted "Pilot Light" for Boron Neutron Capture Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2406577. [PMID: 39324650 DOI: 10.1002/advs.202406577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Boron neutron capture therapy (BNCT) is a physiologically focused radiation therapy that relies on nuclear capture and fission processes. BNCT is regarded as one of the most promising treatments due to its excellent accuracy, short duration of therapy, and low side effects. The creation of novel boron medicines with high selectivity, ease of delivery, and high boron-effective load is a current research topic. Herein, boron-containing carbon dots (BCDs) and their human serum albumin (HSA) complexes (BCDs-HSA) are designed and synthesized as boron-containing drugs for BNCT. BCDs (10B: 7.1 wt%) and BCDs-HSA exhibited excitation-independent orange fluorescent emission which supported the use of fluorescence imaging for tracking 10B in vivo. The introduction of HSA enabled BCDs-HSA to exhibit good biocompatibility and increased tumor accumulation. The active and passive targeting abilities of BCDs-HSA are explored in detail. Subcutaneous RM-1 tumors and B16-F10 tumors both significantly decrease with BNCT, which consists of injecting BCDs-HSA and then irradiating the area with neutrons. In short, this study provides a novel strategy for the delivery of boron and may broaden the perspectives for the design of boron-containing carbon dots nanomedicine for BNCT.
Collapse
Affiliation(s)
- Tianyuan Zhong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yongjin Yang
- Department of Urology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, 730000, China
- Gansu Province Clinical Research Center for Urinary System Disease, Lanzhou, Gansu, 730000, China
| | - Miao Pang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Shiwei Jing
- School of Physics, Northeast Normal University, Changchun, 130024, China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
6
|
Zhang J, Deng M, Xu C, Li D, Yan X, Gu Y, Zhong M, Gao H, Liu Y, Zhang J, Qu X, Zhang J. Dual-Prodrug-Based Hyaluronic Acid Nanoplatform Provides Cascade-Boosted Drug Delivery for Oxidative Stress-Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50459-50473. [PMID: 39258403 DOI: 10.1021/acsami.4c11662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Insufficient drug accumulation in tumors severely limits the antitumor efficiency of hyaluronic acid (HA) nanomedicine in solid tumors due to superficial penetration depth, low cell uptake, and nonspecific drug release. Hence, we constructed a dual NO prodrug (alkynyl-JSK) and doxorubicin prodrug (cis-DOX)-conjugated HA nanoparticle (HA-DOX-JSK NPs), which achieved cascade-boosted drug delivery efficiency based on a relay strategy of NO-mediated deep tumor penetration─HA target CD44 tumor cell uptake─tumor microenvironment (TME)-responsive drug release. The nanoparticle demonstrated sustained and locoregionally GSH/GST-triggered NO release and GSH/pH-responsive DOX release in the tumor. The released NO first mediated collagen degradation, causing deep tumor penetration of nanoparticles in the dense extracellular matrix. Immediately, HA was relayed to enhance CD44-targeted tumor cell uptake, and then, the nanoparticles were finally triggered by specific TME to release DOX and NO in the deep tumor. Relying on the relayed delivery strategy, a significant improvement of DOX accumulation in tumors was realized. Moreover, NO depleted GSH-induced intracellular reactive oxygen species, enhancing DOX chemotherapy. Based on this strategy, the tumor inhibition rate in breast cancer was up to 87.8% in vivo. The relay drug-delivery HA system would greatly cascade-boost drug accumulation in deep tumors for efficient solid tumor therapy.
Collapse
Affiliation(s)
- Junxian Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Chang Xu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Danting Li
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Xiaozhe Yan
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Yuxuan Gu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meihui Zhong
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hui Gao
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yingchun Liu
- Jinghua Plastics Industry Company Limited, Langfang 065800, P. R. China
| | - Jiqing Zhang
- Department of Medical Ultrasound, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250000, China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| |
Collapse
|
7
|
Li X, Hu Y, Zhang X, Shi X, Parak WJ, Pich A. Transvascular transport of nanocarriers for tumor delivery. Nat Commun 2024; 15:8172. [PMID: 39289401 PMCID: PMC11408679 DOI: 10.1038/s41467-024-52416-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Nanocarriers (NCs) play a crucial role in delivering theranostic agents to tumors, making them a pivotal focus of research. However, the persistently low delivery efficiency of engineered NCs has been a significant challenge in the advancement of nanomedicine, stirring considerable debate. Transvascular transport is a critical pathway for NC delivery from vessels to tumors, yet a comprehensive understanding of the interactions between NCs and vascular systems remains elusive. In recent years, considerable efforts have been invested in elucidating the transvascular transport mechanisms of NCs, leading to promising advancements in tumor delivery and theranostics. In this context, we highlight various delivery mechanisms, including the enhanced permeability and retention effect, cooperative immune-driven effect, active transcytosis, and cell/bacteria-mediated delivery. Furthermore, we explore corresponding strategies aimed at enhancing transvascular transport of NCs for efficient tumor delivery. These approaches offer intriguing solutions spanning physicochemical, biological, and pharmacological domains to improve delivery and therapeutic outcomes. Additionally, we propose a forward-looking delivery framework that relies on advanced tumor/vessel models, high-throughput NC libraries, nano-bio interaction datasets, and artificial intelligence, which aims to guide the design of next-generation carriers and implementation strategies for optimized delivery.
Collapse
Affiliation(s)
- Xin Li
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Yong Hu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xingcai Zhang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| | - Xiangyang Shi
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), University of Hamburg, Hamburg, 20607, Germany.
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials, Aachen, 52056, Germany.
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, 52074, Germany.
- Aachen Maastricht Institute for Biobased Materials, Maastricht University, RD Geleen, 6167, The Netherlands.
| |
Collapse
|
8
|
Zheng JJ, Li QZ, Wang Z, Wang X, Zhao Y, Gao X. Computer-aided nanodrug discovery: recent progress and future prospects. Chem Soc Rev 2024; 53:9059-9132. [PMID: 39148378 DOI: 10.1039/d3cs00575e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Nanodrugs, which utilise nanomaterials in disease prevention and therapy, have attracted considerable interest since their initial conceptualisation in the 1990s. Substantial efforts have been made to develop nanodrugs for overcoming the limitations of conventional drugs, such as low targeting efficacy, high dosage and toxicity, and potential drug resistance. Despite the significant progress that has been made in nanodrug discovery, the precise design or screening of nanomaterials with desired biomedical functions prior to experimentation remains a significant challenge. This is particularly the case with regard to personalised precision nanodrugs, which require the simultaneous optimisation of the structures, compositions, and surface functionalities of nanodrugs. The development of powerful computer clusters and algorithms has made it possible to overcome this challenge through in silico methods, which provide a comprehensive understanding of the medical functions of nanodrugs in relation to their physicochemical properties. In addition, machine learning techniques have been widely employed in nanodrug research, significantly accelerating the understanding of bio-nano interactions and the development of nanodrugs. This review will present a summary of the computational advances in nanodrug discovery, focusing on the understanding of how the key interfacial interactions, namely, surface adsorption, supramolecular recognition, surface catalysis, and chemical conversion, affect the therapeutic efficacy of nanodrugs. Furthermore, this review will discuss the challenges and opportunities in computer-aided nanodrug discovery, with particular emphasis on the integrated "computation + machine learning + experimentation" strategy that can potentially accelerate the discovery of precision nanodrugs.
Collapse
Affiliation(s)
- Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Qiao-Zhi Li
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xiaoli Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuliang Zhao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| |
Collapse
|
9
|
He M, Xu W, Dan Y, Pan Y, Li Y, Chen M, Dong CM. Mannosylated Fluoropolypeptide Nanovaccines Remodeling Tumor Immunosuppressive Microenvironment to Achieve Highly Potent Cancer Immunotherapy. Adv Healthc Mater 2024:e2401354. [PMID: 39233541 DOI: 10.1002/adhm.202401354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/29/2024] [Indexed: 09/06/2024]
Abstract
It is challenging for nanovaccines (NVs) to effectively deliver antigens/neoantigens to prime specifically potent immunities and remodel immunosuppressive tumor microenvironment (TME) for combating immune "cold" cancers. Herein, a novel kind of mannosylated fluoropolypeptide NVs of MFPCOFG (i.e., mannosylated fluoropoly(D,L-cysteine) ovalbumin-loaded Fe2+-gallic acid) is designed that synergistically integrates triple antigen-metal-thermoimmunity to remodel immunosuppressive TME and achieve highly potent immunities. MFPCOFG plus near-infrared irradiation (NIR) effectively facilitated antigen uptake and escape, induced the maturation and antigen cross-presentations of dendritic cells and macrophages, polarized anti-inflammatory macrophage phenotype M2 into tumoricial M1, primed potent CD4+/CD8+T cells responses, proinflammatory cytokines secretion and immune memory effects, showcasing triple antigen-metal-thermoimmunity outperforming combo/mono-immunity. Importantly, both MFPCOFG + NIR and personalized NVs can remarkably enhance the tumor infiltration of CD4+/CD8+T and NK cells to boost potent immunities and long-lasting memory effects, reduce regulatory T (Tregs) and M2 to remodel immunosuppressive TME in B16-OVA and 4T1 models, achieving superior tumor prevention, ablation, and tumor relapse and metastasis inhibition, as further orchestrated with anti-PD-1. Consequently, this work opens up a new avenue to design biocompatible polypeptide nanovaccines with potent immune-priming and TME-remodeling capabilities, holding great potentials to combat immune "cold" cancers with clinic-used anti-PD-1 for cancer immunotherapy and personalized immunotherapy.
Collapse
Affiliation(s)
- Meng He
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Wei Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuxin Dan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yue Pan
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, P. R. China
| | - Yingying Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, 201508, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Hang Z, Zhou L, Bian X, Liu G, Cui F, Du H, Wen Y. Potential application of aptamers combined with DNA nanoflowers in neurodegenerative diseases. Ageing Res Rev 2024; 100:102444. [PMID: 39084322 DOI: 10.1016/j.arr.2024.102444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/09/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
The efficacy of neurotherapeutic drugs hinges on their ability to traverse the blood-brain barrier and access the brain, which is crucial for treating or alleviating neurodegenerative diseases (NDs). Given the absence of definitive cures for NDs, early diagnosis and intervention become paramount in impeding disease progression. However, conventional therapeutic drugs and existing diagnostic approaches must meet clinical demands. Consequently, there is a pressing need to advance drug delivery systems and early diagnostic methods tailored for NDs. Certain aptamers endowed with specific functionalities find widespread utility in the targeted therapy and diagnosis of NDs. DNA nanoflowers (DNFs), distinctive flower-shaped DNA nanomaterials, are intricately self-assembled through rolling ring amplification (RCA) of circular DNA templates. Notably, imbuing DNFs with diverse functionalities becomes seamlessly achievable by integrating aptamer sequences with specific functions into RCA templates, resulting in a novel nanomaterial, aptamer-bound DNFs (ADNFs) that amalgamates the advantageous features of both components. This article delves into the characteristics and applications of aptamers and DNFs, exploring the potential or application of ADNFs in drug-targeted delivery, direct treatment, early diagnosis, etc. The objective is to offer prospective ideas for the clinical treatment or diagnosis of NDs, thereby contributing to the ongoing efforts in this critical field.
Collapse
Affiliation(s)
- Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fenghe Cui
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, No. 20 Yuhuangdingdong Road, Zhifu District, Yantai, Shandong 264000, China.
| | - Hongwu Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
11
|
Chu Z, Wang W, Zheng W, Fu W, Wang Y, Wang H, Qian H. Biomaterials with cancer cell-specific cytotoxicity: challenges and perspectives. Chem Soc Rev 2024; 53:8847-8877. [PMID: 39092634 DOI: 10.1039/d4cs00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Significant advances have been made in materials for biomedical applications, including tissue engineering, bioimaging, cancer treatment, etc. In the past few decades, nanostructure-mediated therapeutic strategies have been developed to improve drug delivery, targeted therapy, and diagnosis, maximizing therapeutic effectiveness while reducing systemic toxicity and side effects by exploiting the complicated interactions between the materials and the cell and tissue microenvironments. This review briefly introduces the differences between the cells and tissues of tumour or normal cells. We summarize recent advances in tumour microenvironment-mediated therapeutic strategies using nanostructured materials. We then comprehensively discuss strategies for fabricating nanostructures with cancer cell-specific cytotoxicity by precisely controlling their composition, particle size, shape, structure, surface functionalization, and external energy stimulation. Finally, we present perspectives on the challenges and future opportunities of nanotechnology-based toxicity strategies in tumour therapy.
Collapse
Affiliation(s)
- Zhaoyou Chu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wang Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Yujie Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
| | - Hua Wang
- The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, P. R. China.
- Anhui Engineering Research Center for Medical Micro-Nano Devices, Anhui Medical University, Hefei 230011, P. R. China
| |
Collapse
|
12
|
Wu M, Xiao Y, Wu R, Lei J, Li T, Zheng Y. Aggregable gold nanoparticles for cancer photothermal therapy. J Mater Chem B 2024; 12:8048-8061. [PMID: 39046068 DOI: 10.1039/d4tb00403e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Photothermal therapy (PTT) is an important non-invasive cancer treatment method. Enhancing the photothermal conversion efficiency (PCE) of photothermal agents (PTAs) and prolonging their tumor accumulation and retention are effective strategies to enhance the efficiency of cancer PTT. Recently, tremendous progress has been made in developing stimuli-responsive aggregable gold nanoparticles as effective PTAs for PTT. In this review, we discuss the chemical principles underlying gold nanoparticle aggregation and highlight the progress in gold nanoparticle aggregation triggered by different stimuli, especially tumor microenvironment-related factors, for cancer PTT. Covalent condensation reactions, click cycloaddition reactions, chelation reactions, and Au-S bonding, as well as non-covalent electrostatic interactions, hydrophobic interactions, hydrogen bonding, and van der Waals forces play key roles in the aggregation of gold nanoparticles. Enzymes, pH, reactive oxygen species, small molecules, salts, and light drive the occurrence of gold nanoparticle aggregation. Targeted aggregation of gold nanoparticles prolongs tumor accumulation and retention of PTAs and improves PCE, resulting in enhanced tumor PTT. Moreover, the major challenges of aggregable gold nanoparticles as PTAs are pointed out and the promising applications are also prospected at the end. With the deepening of research, we expect aggregable gold nanoparticles to become essential PTAs for tumor therapy.
Collapse
Affiliation(s)
- Mingyu Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Yao Xiao
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Rongkun Wu
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Jiaojiao Lei
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| | - Tian Li
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
| | - Youkun Zheng
- Basic Medicine Research Innovation Center for Cardiometabolic Diseases, Ministry of Education, Southwest Medical University, Luzhou 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
13
|
Zhou Z, Wang J, Xu X, Wang Z, Mao L, Zhang S, Zhang H, Li Y, Yu Q, Jiang N, Zhang G, Gan Z, Ning Z. Lignin-Based Nanoparticles for Combination of Tumor Oxidative Stress Amplification and Reactive Oxygen Species Responsive Drug Release. Bioconjug Chem 2024; 35:1207-1217. [PMID: 38989881 DOI: 10.1021/acs.bioconjchem.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In this study, maleic anhydride-modified lignin (LG-M), a ROS-cleavable thioketal (TK) bond, and polyethylene glycol (PEG) were used to synthesize a lignin-based copolymer (LG-M(TK)-PEG). Doxorubicin (DOX) was attached to the ROS-cleavable bond in the LG-M(TK)-PEG for the preparation of the ROS-activatable DOX prodrug (LG-M(TK-DOX)-PEG). Nanoparticles (NPs) with a size of 125.7 ± 3.1 nm were prepared by using LG-M(TK-DOX)-PEG, and they exhibited enhanced uptake by cancer cells compared to free DOX. Notably, the presence of lignin in the nanoparticles could boost ROS production in breast cancer 4T1 cells while showing little effect on L929 normal cells. This selective effect facilitated the specific activation of the DOX prodrug in the tumor microenvironment, resulting in the superior tumor inhibitory effects and enhanced biosafety relative to free DOX. This work demonstrates the potential of the LG-M(TK-DOX)-PEG NPs as an efficient drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Ziwei Zhou
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Jin Wang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Xin Xu
- Department of Urology, China Japan Friendship Hospital, Beijing 100029, China
| | - Zhuang Wang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Lingchen Mao
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Shanhu Zhang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Huanhuan Zhang
- Department of General Medicine, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yuqiang Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Qingsong Yu
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Ni Jiang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Guan Zhang
- Department of Urology, China Japan Friendship Hospital, Beijing 100029, China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Zhenbo Ning
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| |
Collapse
|
14
|
Wang J, Wang Y, Li J, Ying J, Mu Y, Zhang X, Zhou X, Sun L, Jiang H, Zhuo W, Shen Y, Zhou T, Liu X, Zhou Q. Neutrophil Extracellular Traps-Inhibiting and Fouling-Resistant Polysulfoxides Potently Prevent Postoperative Adhesion, Tumor Recurrence, and Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400894. [PMID: 38636448 DOI: 10.1002/adma.202400894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Peritoneal metastasis (PM) is considered one of the most dreaded forms of cancer metastases for both patients and physicians. Aggressive cytoreductive surgery (CRS) is the primary treatment for peritoneal metastasis. Unfortunately, this intensive treatment frequently causes clinical complications, such as postoperative recurrence, metastasis, and adhesion formation. Emerging evidence suggests that neutrophil extracellular traps (NETs) released by inflammatory neutrophils contribute to these complications. Effective NET-targeting strategies thus show considerable potential in counteracting these complications but remain challenging. Here, one type of sulfoxide-containing homopolymer, PMeSEA, with potent fouling-resistant and NET-inhibiting capabilities, is synthesized and screened. Hydrating sulfoxide groups endow PMeSEA with superior nonfouling ability, significantly inhibiting protein/cell adhesion. Besides, the polysulfoxides can be selectively oxidized by ClO- which is required to stabilize the NETs rather than H2O2, and ClO- scavenging effectively inhibits NETs formation without disturbing redox homeostasis in tumor cells and quiescent neutrophils. As a result, PMeSEA potently prevents postoperative adhesions, significantly suppresses peritoneal metastasis, and shows synergetic antitumor activity with chemotherapeutic 5-Fluorouracil. Moreover, coupling CRS with PMeSEA potently inhibits CRS-induced tumor metastatic relapse and postoperative adhesions. Notably, PMeSEA exhibits low in vivo acute and subacute toxicities, implying significant potential for clinical postoperative adjuvant treatment.
Collapse
Affiliation(s)
- Jiafeng Wang
- Department of Pharmacology, and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yechun Wang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Junjun Li
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jiajia Ying
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Yongli Mu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xuanhao Zhang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xuefei Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Leimin Sun
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Haiping Jiang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Wei Zhuo
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Tianhua Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Xiangrui Liu
- Department of Pharmacology, and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310020, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Quan Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| |
Collapse
|
15
|
Wang Y, Wang J, Li J, Mu Y, Ying J, Liu Z, Wu M, Geng Y, Zhou X, Zhou T, Shen Y, Sun L, Liu X, Zhou Q. Sulfoxide-containing polymers conjugated prodrug micelles with enhanced anticancer activity and reduced intestinal toxicity. J Control Release 2024; 371:313-323. [PMID: 38823585 DOI: 10.1016/j.jconrel.2024.05.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/22/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Poly(ethylene glycol) (PEG) is widely utilized as a hydrophilic coating to extend the circulation time and improve the tumor accumulation of polymeric micelles. Nonetheless, PEGylated micelles often activate complement proteins, leading to accelerated blood clearance and negatively impacting drug efficacy and safety. Here, we have crafted amphiphilic block copolymers that merge hydrophilic sulfoxide-containing polymers (psulfoxides) with the hydrophobic drug 7-ethyl-10-hydroxylcamptothecin (SN38) into drug-conjugate micelles. Our findings show that the specific variant, PMSEA-PSN38 micelles, remarkably reduce protein fouling, prolong blood circulation, and improve intratumoral accumulation, culminating in significantly increased anti-cancer efficacy compared with PEG-PSN38 counterpart. Additionally, PMSEA-PSN38 micelles effectively inhibit complement activation, mitigate leukocyte uptake, and attenuate hyperactivation of inflammatory cells, diminishing their ability to stimulate tumor metastasis and cause inflammation. As a result, PMSEA-PSN38 micelles show exceptional promise in the realm of anti-metastasis and significantly abate SN38-induced intestinal toxicity. This study underscores the promising role of psulfoxides as viable PEG substitutes in the design of polymeric micelles for efficacious anti-cancer drug delivery.
Collapse
Affiliation(s)
- Yechun Wang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Jiafeng Wang
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - JunJun Li
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yongli Mu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jiajia Ying
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zimeng Liu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Mengjie Wu
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Yu Geng
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Xuefei Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tianhua Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Youqing Shen
- Zhejiang Key Laboratory of Smart Biomaterials and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Leimin Sun
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China.
| | - Xiangrui Liu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China.
| | - Quan Zhou
- Department of Cell Biology, and Department of Gastroenterology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
16
|
Chen S, Li B, Yue Y, Li Z, Qiao L, Qi G, Ping Y, Liu B. Smart Nanoassembly Enabling Activatable NIR Fluorescence and ROS Generation with Enhanced Tumor Penetration for Imaging-Guided Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404296. [PMID: 38685574 DOI: 10.1002/adma.202404296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/25/2024] [Indexed: 05/02/2024]
Abstract
Fluorescence imaging-guided photodynamic therapy (FIG-PDT) holds promise for cancer treatment, yet challenges persist in poor imaging quality, phototoxicity, and insufficient anti-tumor effect. Herein, a novel nanoplatform, LipoHPM, designed to address these challenges, is reported. This approach employs an acid-sensitive amine linker to connect a biotin-modified hydrophilic polymer (BiotinPEG) with a new hydrophobic photosensitizer (MBA), forming OFF-state BiotinPEG-MBA (PM) micelles via an aggregation-caused quenching (ACQ) effect. These micelles are then co-loaded with the tumor penetration enhancer hydralazine (HDZ) into pH-sensitive liposomes (LipoHPM). Leveraging the ACQ effect, LipoHPM is silent in both fluorescence and reactive oxygen species (ROS) generation during blood circulation but restores both properties upon disassembly. Following intravenous injection in tumor-bearing mice, LipoHPM actively targets tumor cells overexpressing biotin-receptors, contributing to enhanced tumor accumulation. Upon cellular internalization, LipoHPM disassembles within lysosomes, releasing HDZ to enhance tumor penetration and inhibit tumor metastasis. Concurrently, the micelles activate fluorescence for tumor imaging and boost the production of both type-I and type-II ROS for tumor eradication. Therefore, the smart LipoHPM synergistically integrates near-infrared emission, activatable tumor imaging, robust ROS generation, efficient anti-tumor and anti-metastasis activity, successfully overcoming limitations of conventional photosensitizers and establishing itself as a promising nanoplatform for potent FIG-PDT applications.
Collapse
Affiliation(s)
- Siqin Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Bowen Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yifan Yue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhiyao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Li Qiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guobin Qi
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Bin Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
17
|
Hou Z, Brenner JS. Developing targeted antioxidant nanomedicines for ischemic penumbra: Novel strategies in treating brain ischemia-reperfusion injury. Redox Biol 2024; 73:103185. [PMID: 38759419 PMCID: PMC11127604 DOI: 10.1016/j.redox.2024.103185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024] Open
Abstract
During cerebral ischemia-reperfusion conditions, the excessive reactive oxygen species in the ischemic penumbra region, resulting in neuronal oxidative stress, constitute the main pathological mechanism behind ischemia-reperfusion damage. Swiftly reinstating blood perfusion in the ischemic penumbra zone and suppressing neuronal oxidative injury are key to effective treatment. Presently, antioxidants in clinical use suffer from low bioavailability, a singular mechanism of action, and substantial side effects, severely restricting their therapeutic impact and widespread clinical usage. Recently, nanomedicines, owing to their controllable size and shape and surface modifiability, have demonstrated good application potential in biomedicine, potentially breaking through the bottleneck in developing neuroprotective drugs for ischemic strokes. This manuscript intends to clarify the mechanisms of cerebral ischemia-reperfusion injury and provides a comprehensive review of the design and synthesis of antioxidant nanomedicines, their action mechanisms and applications in reversing neuronal oxidative damage, thus presenting novel approaches for ischemic stroke prevention and treatment.
Collapse
Affiliation(s)
- Zhitao Hou
- College of Basic Medical and Sciences, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, China; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated with Beijing University of Chinese Medicine, Beijing, 100700, China; The First Hospital Affiliated with Heilongjiang University of Chinese Medicine, Harbin, 150010, Heilongjiang, China
| | - Jacob S Brenner
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Wang J, Zheng H, Hu G, Yang X, You H, Dong L, Song S. Novel Spatially Asymmetric Copper Bismuthate-Mediated Augmentation of Energy Conversion to Realize "Three-Step" Tumor Suppression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402599. [PMID: 38654629 PMCID: PMC11220698 DOI: 10.1002/advs.202402599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Indexed: 04/26/2024]
Abstract
The generally undesirable bandgap and electron-hole complexation of inorganic sonosensitizers limit the efficiency of reactive oxygen species (ROS) generation, affecting the effectiveness of sonodynamic therapy (SDT). Comparatively, the novel polyvinylpyrrolidone-modified copper bismuthate (PCBO) sonosensitizers are manufactured for a "three-step" SDT promotion. In brief, first, the strong hybridization between Bi 6s and O 2p orbitals in PCBO narrows the bandgap (1.83 eV), facilitating the rapid transfer of charge carriers. Additionally, nonequivalent [CuO4]6- layers reduce crystal symmetry, confer PCBO unique piezoelectricity, and improve electron-hole separation under ultrasonic (US) excitation. This allows PCBO to convert US energy into chemical energy to produce ROS, achieving the accumulation of abundant ROS, resulting in apoptosis and tumor suppression. Concurrently, PCBO also acts as a glutathione scavenger to reduce tumor antioxidant capacity and improve efficacy. To the best of authors understanding, this study reveals PCBO as an innovative piezoelectric sonosensitizer and provides a meaningful paradigm for designing energy conversion strategies for tumor suppression.
Collapse
Affiliation(s)
- Jiarui Wang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation Academy, Chinese Academy of SciencesGanzhou341000China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Haoqin Zheng
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation Academy, Chinese Academy of SciencesGanzhou341000China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Guangyao Hu
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation Academy, Chinese Academy of SciencesGanzhou341000China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Xujian Yang
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation Academy, Chinese Academy of SciencesGanzhou341000China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Hongpeng You
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation Academy, Chinese Academy of SciencesGanzhou341000China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Lile Dong
- Key Laboratory of Rare EarthsChinese Academy of SciencesGanjiang Innovation Academy, Chinese Academy of SciencesGanzhou341000China
- School of Rare EarthsUniversity of Science and Technology of ChinaHefei230026China
| | - Shuyan Song
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022China
| |
Collapse
|
19
|
Elsayad KA, Elmasry GF, Mahmoud ST, Awadallah FM. Sulfonamides as anticancer agents: A brief review on sulfonamide derivatives as inhibitors of various proteins overexpressed in cancer. Bioorg Chem 2024; 147:107409. [PMID: 38714116 DOI: 10.1016/j.bioorg.2024.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/17/2024] [Accepted: 04/26/2024] [Indexed: 05/09/2024]
Abstract
Sulfonamides have gained prominence as versatile agents in cancer therapy, effectively targeting a spectrum of cancer-associated enzymes. This review provides an extensive exploration of their multifaceted roles in cancer biology. Sulfonamides exhibit adaptability by acting as tyrosine kinase inhibitors, disrupting pivotal signaling pathways in cancer progression. Moreover, they disrupt pH regulation mechanisms in cancer cells as carbonic anhydrase inhibitors, inhibiting growth, and survival. Sulfonamides also serve as aromatase inhibitors, interfering with estrogen synthesis in hormone-driven cancers. Inhibition of matrix metalloproteinases presents an opportunity to impede cancer cell invasion and metastasis. Additionally, their emerging role as histone deacetylase inhibitors offers promising prospects in epigenetic-based cancer therapies. These diverse roles underscore sulfonamides as invaluable tools for innovative anti-cancer treatments, warranting further exploration for enhanced clinical applications and patient outcomes.
Collapse
Affiliation(s)
- Khaled A Elsayad
- Pharmacy Department, Cairo University Hospitals, Cairo University, Cairo, 11662, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Ghada F Elmasry
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt.
| | - Sally T Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| | - Fadi M Awadallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562, Cairo, Egypt
| |
Collapse
|
20
|
Zhang Z, Yu C, Wu Y, Wang Z, Xu H, Yan Y, Zhan Z, Yin S. Semiconducting polymer dots for multifunctional integrated nanomedicine carriers. Mater Today Bio 2024; 26:101028. [PMID: 38590985 PMCID: PMC11000120 DOI: 10.1016/j.mtbio.2024.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/09/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
The expansion applications of semiconducting polymer dots (Pdots) among optical nanomaterial field have long posed a challenge for researchers, promoting their intelligent application in multifunctional nano-imaging systems and integrated nanomedicine carriers for diagnosis and treatment. Despite notable progress, several inadequacies still persist in the field of Pdots, including the development of simplified near-infrared (NIR) optical nanoprobes, elucidation of their inherent biological behavior, and integration of information processing and nanotechnology into biomedical applications. This review aims to comprehensively elucidate the current status of Pdots as a classical nanophotonic material by discussing its advantages and limitations in terms of biocompatibility, adaptability to microenvironments in vivo, etc. Multifunctional integration and surface chemistry play crucial roles in realizing the intelligent application of Pdots. Information visualization based on their optical and physicochemical properties is pivotal for achieving detection, sensing, and labeling probes. Therefore, we have refined the underlying mechanisms and constructed multiple comprehensive original mechanism summaries to establish a benchmark. Additionally, we have explored the cross-linking interactions between Pdots and nanomedicine, potential yet complete biological metabolic pathways, future research directions, and innovative solutions for integrating diagnosis and treatment strategies. This review presents the possible expectations and valuable insights for advancing Pdots, specifically from chemical, medical, and photophysical practitioners' standpoints.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Chenhao Yu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Yuyang Wu
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Zhe Wang
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| | - Haotian Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Yining Yan
- Department of Radiology, The Third Bethune Hospital of Jilin University, Changchun, Jilin 130000, PR China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin 130012, PR China
| | - Shengyan Yin
- State Key Laboratory of Integrated Optoelectronic, College of Electronic Science and Engineering, Jilin University, No.2699 Qianjin Street, Changchun, Jilin 130012, PR China
| |
Collapse
|
21
|
Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. DISCOVER NANO 2024; 19:85. [PMID: 38724833 PMCID: PMC11082127 DOI: 10.1186/s11671-024-04021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.
Collapse
Affiliation(s)
- Jitendra Patel
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - G Shiva Kumar
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India.
| | - Balaji Maddiboyina
- Department of Medical and Scientific Communications, Scientific Writing Services, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hitech City, Gachibowli, Hyderabad, 500081, India.
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C\O Campus EcotekneVia Monteroni, 3100, Lecce, Italy
| | - Raghvendra A Bohara
- D.Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India.
- University of Galway, Galway, Ireland.
| |
Collapse
|
22
|
Beach M, Nayanathara U, Gao Y, Zhang C, Xiong Y, Wang Y, Such GK. Polymeric Nanoparticles for Drug Delivery. Chem Rev 2024; 124:5505-5616. [PMID: 38626459 PMCID: PMC11086401 DOI: 10.1021/acs.chemrev.3c00705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
23
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
24
|
Gao Y, Cai X, Zou W, Tang X, Jiang L, Hao J, Zheng Y, Ye X, Ying T, Li A. Self-supplying Cu 2+ and H 2O 2 synergistically enhancing disulfiram-mediated melanoma chemotherapy. RSC Adv 2024; 14:13180-13189. [PMID: 38655468 PMCID: PMC11036371 DOI: 10.1039/d4ra01075b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Disulfiram (DSF) can target and kill cancer cells by disrupting cellular degradation of extruded proteins and has therefore received particular attention for its tumor chemotherapeutic potential. However, the uncontrollable Cu2+/DSF ratio reduces the efficacy of DSF-mediated chemotherapy. Herein, self-supplying Cu2+ and oxidative stress synergistically enhanced DSF-mediated chemotherapy is proposed for melanoma-based on PVP-coated CuO2 nanodots (CPNDs). Once ingested, DSF is broken down to diethyldithiocarbamate (DTC), which is delivered into a tumor via the circulation. Under the acidic tumor microenvironment, CPNDs produce sufficient Cu2+ and H2O2. DTC readily chelates Cu2+ ions to generate CuET, which shows antitumor efficacy. CuET-mediated chemotherapy can be enhanced by H2O2. Sufficient Cu2+ generation can guarantee the maximum efficacy of DSF-mediated chemotherapy. Furthermore, released Cu2+ can be reduced to Cu+ by glutathione (GSH) and O2- in tumor cells, and Cu+ can react with H2O2 to generate toxic hydroxyl radicals (·OH) via a Fenton-like reaction, promoting the efficacy of CuET. Therefore, this study hypothesizes that employing CPNDs instead of Cu2+ ions could enhance DSF-mediated melanoma chemotherapy, providing a simple but efficient strategy for achieving chemotherapeutic efficacy.
Collapse
Affiliation(s)
- Yingqian Gao
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
- Department of Ultrasound in Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing Jiangsu China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Weijuan Zou
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xiuzhen Tang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Junnian Hao
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Xinhua Ye
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| | - Tao Ying
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ao Li
- Department of Ultrasound in Medicine, The First Affiliated Hospital of Nanjing Medical University Nanjing Jiangsu China
| |
Collapse
|
25
|
Zhang Q, Hu J, Li DL, Qiu JG, Jiang BH, Zhang CY. Construction of single-molecule counting-based biosensors for DNA-modifying enzymes: A review. Anal Chim Acta 2024; 1298:342395. [PMID: 38462345 DOI: 10.1016/j.aca.2024.342395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
DNA-modifying enzymes act as critical regulators in a wide range of genetic functions (e.g., DNA damage & repair, DNA replication), and their aberrant expression may interfere with regular genetic functions and induce various malignant diseases including cancers. DNA-modifying enzymes have emerged as the potential biomarkers in early diagnosis of diseases and new therapeutic targets in genomic research. Consequently, the development of highly specific and sensitive biosensors for the detection of DNA-modifying enzymes is of great importance for basic biomedical research, disease diagnosis, and drug discovery. Single-molecule fluorescence detection has been widely implemented in the field of molecular diagnosis due to its simplicity, high sensitivity, visualization capability, and low sample consumption. In this paper, we summarize the recent advances in single-molecule counting-based biosensors for DNA-modifying enzyme (i.e, alkaline phosphatase, DNA methyltransferase, DNA glycosylase, flap endonuclease 1, and telomerase) assays in the past four years (2019 - 2023). We highlight the principles and applications of these biosensors, and give new insight into the future challenges and perspectives in the development of single-molecule counting-based biosensors.
Collapse
Affiliation(s)
- Qian Zhang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, China
| | - Juan Hu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Jian-Ge Qiu
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bing-Hua Jiang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
26
|
Zhou J, Yang R, Chen Y, Chen D. Efficacy tumor therapeutic applications of stimuli-responsive block copolymer-based nano-assemblies. Heliyon 2024; 10:e28166. [PMID: 38571609 PMCID: PMC10987934 DOI: 10.1016/j.heliyon.2024.e28166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024] Open
Abstract
Block copolymers are composed of two or more blocks or segments with different chemical properties via various chemical bonds, which can assemble into nanoparticles with a "core-shell" structure. Due to the benefits of simple functionalization, superior drug-loading capacity, and good biocompatibility, various nano-assemblies based on block copolymers have become widely applied in the treatment of cancers in recent years. These nano-assemblies serve as carriers for anti-tumor bioactive, enhancing drug stability and prolonging their circulation time in vivo, which can reduce the toxic side effects of drugs and improve the therapeutic effect. However, the complex and heterogeneous tumor microenvironment poses challenges to the therapeutic efficacy of these nano-assemblies, having the result in the occurrence of drug resistance and the recurrence of tumors. Consequently, a diverse array of stimuli-responsive nano-assemblies has been devised in order to surmount these obstacles. This article provides a comprehensive overview of the utilization of stimuli-responsive nano-assemblies derived from block copolymers in the context of tumor treatment. The review summarizes block polymers responsive to internal stimuli (like ROS, redox, pH, and enzymes) and external stimuli (like light, and temperature), and discusses current challenges and prospects in this field, aiming to provide novel insights for clinical applications.
Collapse
Affiliation(s)
- Jie Zhou
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Rui Yang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Yu Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, 214002, China
- Department of Laboratory, Haidong Second People's Hospital, Haidong, 810699, China
| |
Collapse
|
27
|
Tian Y, Cheng T, Sun F, Zhou Y, Yuan C, Guo Z, Wang Z. Effect of biophysical properties of tumor extracellular matrix on intratumoral fate of nanoparticles: Implications on the design of nanomedicine. Adv Colloid Interface Sci 2024; 326:103124. [PMID: 38461766 DOI: 10.1016/j.cis.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/11/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Nanomedicine has a profound impact on various research domains including drug delivery, diagnostics, theranostics, and regenerative medicine. Nevertheless, the clinical translation of nanomedicines for solid cancer remains limited due to the abundant physiological and pathological barriers in tumor that hinder the intratumoral penetration and distribution of these nanomedicines. In this article, we review the dynamic remodeling of tumor extracellular matrix during the tumor progression, discuss the impact of biophysical obstacles within tumors on the penetration and distribution of nanomedicines within the solid tumor and collect innovative approaches to surmount these obstacles for improving the penetration and accumulation of nanomedicines in tumor. Furthermore, we dissect the challenges and opportunities of the respective approaches, and propose potential avenues for future investigations. The purpose of this review is to provide a perspective guideline on how to effectively enhance the penetration of nanomedicines within tumors using promising methods.
Collapse
Affiliation(s)
- Yachao Tian
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; Heilongjiang Guoru Biotechnology Co., Ltd., Xiangfang District, Harbin City 150030, China; School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yaxin Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chao Yuan
- School of Food Science and Engineering, Qilu University of Technology, Jinan, Shandong 250353, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
28
|
Yu Z, Huang L, Guo J. Anti-stromal nanotherapeutics for hepatocellular carcinoma. J Control Release 2024; 367:500-514. [PMID: 38278367 DOI: 10.1016/j.jconrel.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Hepatocellular carcinoma (HCC), the most commonly diagnosed primary liver cancer, has become a leading cause of cancer-related death worldwide. Accumulating evidence confirms that the stromal constituents within the tumor microenvironment (TME) exacerbate HCC malignancy and set the barriers to current anti-HCC treatments. Recent developments of nano drug delivery system (NDDS) have facilitated the application of stroma-targeting therapeutics, disrupting the stromal TME in HCC. This review discusses the stromal activities in HCC development and therapy resistance. In addition, it addresses the delivery challenges of NDDS for stroma-targeting therapeutics (termed anti-stromal nanotherapeutics in this review), and provides recent advances in anti-stromal nanotherapeutics for safe, effective, and specific HCC therapy.
Collapse
Affiliation(s)
- Zhuo Yu
- Department of Hepatopathy, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
29
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|