1
|
Parfenova LV, Galimshina ZR, Parfenov EV. Organic-Inorganic Biocompatible Coatings for Temporary and Permanent Metal Implants. Int J Mol Sci 2024; 25:11623. [PMID: 39519174 PMCID: PMC11546844 DOI: 10.3390/ijms252111623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
The general trend of increasing life expectancy will consistently drive the demand for orthopedic prostheses. In addition to the elderly, the younger population is also in urgent need of orthopedic devices, as bone fractures are a relatively common injury type; it is important to treat the patient quickly, painlessly, and eliminate further health complications. In the field of traumatology and orthopedics, metals and their alloys are currently the most commonly used materials. In this context, numerous scientists are engaged in the search for new implant materials and coatings. Among the various coating techniques, plasma electrolytic oxidation (PEO) (or micro-arc oxidation-MAO) occupy a distinct position. This method offers a cost-effective and environmentally friendly approach to modification of metal surfaces. PEO can effectively form porous, corrosion-resistant, and bioactive coatings on light alloys. The porous oxide surface structure welcomes organic molecules that can significantly enhance the corrosion resistance of the implant and improve the biological response of the body. The review considers the most crucial aspects of new combined PEO-organic coatings on metal implants, in terms of their potential for implantation, corrosion resistance, and biological activity in vitro and in vivo.
Collapse
Affiliation(s)
- Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 450075 Ufa, Russia;
| | - Zulfiya R. Galimshina
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 450075 Ufa, Russia;
| | - Evgeny V. Parfenov
- Department of Materials Science and Physics of Metals, Ufa University of Science and Technology, 450008 Ufa, Russia;
| |
Collapse
|
2
|
Zhao J, Jing Q, Zhou T, Zhang X, Li W, Pang H. Controllable Synthesis of Manganese Organic Phosphate with Different Morphologies and Their Derivatives for Supercapacitors. Molecules 2024; 29:4186. [PMID: 39275034 PMCID: PMC11397101 DOI: 10.3390/molecules29174186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024] Open
Abstract
Morphological control of metal-organic frameworks (MOFs) at the micro/nanoscopic scale is critical for optimizing the electrochemical properties of them and their derivatives. In this study, manganese organic phosphate (Mn-MOP) with three distinct two-dimensional (2D) morphologies was synthesized by varying the molar ratio of Mn2+ to phenyl phosphonic acid, and one of the morphologies is a unique palm leaf shape. In addition, a series of 2D Mn-MOP derivatives were obtained by calcination in air at different temperatures. Electrochemical studies showed that 2D Mn-MOP derivative calcined at 550 °C and exhibited a superior specific capacitance of 230.9 F g-1 at 0.5 A g-1 in 3 M KOH electrolyte. The aqueous asymmetric supercapacitor and the constructed flexible solid-state device demonstrated excellent rate performance. This performance reveals the promising application of 2D Mn-MOP materials for energy storage.
Collapse
Affiliation(s)
- Jingwen Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Qingling Jing
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Ting Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xinhuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Wenting Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Li X, Sun X, Wei C, Huang FP, Liu HT, Tian H. Single-Molecule Magnet Rods: Remarkably Elongated Lanthanide Phosphonate Cores with Quasilinear Hydrazones. Inorg Chem 2024; 63:16393-16403. [PMID: 39163558 DOI: 10.1021/acs.inorgchem.4c02336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Large metal-phosphonate clusters typically exhibit regular polyhedral, wheel-shaped, spherical, or capsule-shaped morphologies more effectively than high-aspect ratio topologies. A system of elongated lanthanide core topologies has now been synthesized by the reaction of lanthanide 1-naphthylmethylphosphonates and four differently terminated pyrazinyl hydrazones. Four new rod-shaped dysprosium phosphonate clusters, [Dy6(O3PC11H9)4(L1)4(μ4-O)(DMF)4]·2DMF·3MeCN·3H2O (1), [Dy8(O3PC11H9)4(L2)4(μ3-O)4(CO2)4(H2O)4]·6DMF·4MeCN·3H2O (2), [Dy12Na(O3PC11H9)6(L3)6(μ3-O)2(pyr)6]·DMF·2MeCN·H2O (3), and [Dy14(O3PC11H9)12(L4)8(μ3-O)2(DMF)4(MeOH)2(H2O)4]·5DMF·2MeCN·H2O (4), were obtained. Four single-pyrazinyl hydrazones function as pentadentate bis-chelate terminal co-ligands, coordinating the periphery of dysprosium phosphonate rods. A sodium ion serves as a cation template for constructing heterobimetallic 3 by occupying the void, demonstrating the ability to reliably control cluster length by modifying the hydrazone co-ligand structure and cation template. Additionally, it was observed that the elongation of the rods has a significant directional impact on the magnetic relaxation behavior, transitioning from a one-step process in 1 to a three-step process in 2, a two-step process in 3, and finally a two-step process in 4.
Collapse
Affiliation(s)
- XiaoJuan Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Xiao Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Chaolun Wei
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hou-Ting Liu
- Food and Biochemistry Engineering Department, Yantai Vocational College, Yantai 264006, China
| | - Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| |
Collapse
|
4
|
Kumar A, Ghatak A, Murugavel R. Facile room-temperature synthesis of layered transition metal phosphonates via hitherto unknown alkali metal tert-butyl phosphonates. Dalton Trans 2024; 53:14399-14410. [PMID: 39140187 DOI: 10.1039/d4dt01668h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
A facile room-temperature synthetic method is presented to produce alkali metal salts of tert-butyl phosphonic acid. The reaction between equimolar amounts of alkali metal carbonates and tert-butyl phosphonic acid in methanol results in the formation of [(tBuPO3H)Li(H2O)3·(H2O)] (1), [(tBuPO3)Na2(H2O)4]n (2), and [(tBuPO3H)K(H2O)]n (3). Solid-state structures of these compounds have been confirmed by single-crystal X-ray diffraction studies and further validated using numerous spectroscopic and analytical techniques. Compounds 1-3 are polymeric solids that are predominantly made up of a 1-D polymeric metal phosphonate chain. This synthetic approach leads to the formation of network structures/polymers in the solid state that otherwise are absent in solution due to the ionic nature of the interaction between the alkali metal ions and phosphonate anions. Apart from the multidentate nature of the phosphonate ligands, additional hydrogen bonding interactions involving water molecules, free P-OH groups, and PO moieties allow these chains to be propagated into 2-D sheets. We have further utilized the completely metalated sodium phosphonate 2 to synthesize layered metal phosphonates [(tBuPO3)Ca(H2O)]n (4), [(tBuPO3)Mn(H2O)]n (5) and [(tBuPO3)Co(H2O)]n (6) via a simple metathesis reaction.
Collapse
Affiliation(s)
- Anuj Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Aheli Ghatak
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India.
| |
Collapse
|
5
|
Singh P, Zeller M, Mezei G. Supramolecular Binding of Phosphonate Dianions by Nanojars and Nanojar Clamshells. Inorg Chem 2024; 63:14216-14230. [PMID: 39023277 PMCID: PMC11289757 DOI: 10.1021/acs.inorgchem.4c02386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Despite the widespread use of phosphonates (RPO32-) in various agricultural, industrial, and household applications and the ensuing eutrophication of polluted water bodies, the capture of phosphonate ions by molecular receptors has been scarcely studied. Herein, we describe a novel approach to phosphonate binding using chemically and thermally robust supramolecular coordination assemblies of the formula [RPO3⊂{cis-CuII(μ-OH)(μ-pz)}n]2- (Cun; n = 27-31; pz = pyrazolate ion, C3H3N2-; R = aliphatic or aromatic group). The neutral receptors, termed nanojars, strongly bind phosphonate anions by a multitude of hydrogen bonds within their highly hydrophilic cavities. These nanojars can be synthesized either directly from their constituents or by depolymerization of [trans-CuII(μ-OH)(μ-pz)]∞ induced by phosphonate anions. Electrospray-ionization mass spectrometry, UV-vis and variable-temperature, paramagnetic 1H and 31P NMR spectroscopy, single-crystal X-ray diffraction, along with chemical stability studies toward NH3 and Ba2+ ions, and thermal stability studies in solution are employed to explore the binding of various phosphonate ions by nanojars. Crystallographic studies of 12 different nanojars offer unprecedented structural characterization of host-guest complexes with doubly charged RPO32- ions and reveal a new motif in nanojar chemistry, nanojar clamshells, which consist of phosphonate anion-bridged pairs of nanojars and double the phosphonate-binding capacity of nanojars.
Collapse
Affiliation(s)
- Pooja Singh
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| | - Matthias Zeller
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Gellert Mezei
- Department
of Chemistry, Western Michigan University, Kalamazoo, Michigan 49008, United States
| |
Collapse
|
6
|
González-Fernández E, Marinus N, Dhankhar J, Linden A, Čorić I. Control over Anion Coordination on Pd(II), Cu(I), and Ag(I) with Regioisomeric Phosphine-Carboxylate Ligands. Chemistry 2024; 30:e202401215. [PMID: 38688855 DOI: 10.1002/chem.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The coordination of anionic donors is involved at various stages of catalytic cycles in transition-metal catalysis, but control over the spatial positioning of anions around a metal center is a challenge in coordination chemistry. Here we show that regioisomeric phosphine-carboxylate ligands provide spatial anion control on palladium(II) centers by favoring either κ2, cis-κ1, or trans-κ1 coordination of the carboxylate donor. Additionally, the palladium(II) carboxylates, which contain a methyl donor, upon protonation, deliver metal-alkyl complexes that feature a coordinated carboxylic acid. Such complexes can be considered as models for the minima that follow the concerted metalation-deprotonation transition state for C-H activation. The predictability of the coordination modes is further demonstrated on silver(I) and copper(I) centers, for which less common structures of mononuclear and dinuclear complexes can be obtained by using spatial anion control. Our results demonstrate the potential for spatial control over carboxylate anions in coordination chemistry.
Collapse
Affiliation(s)
- Elisa González-Fernández
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Nittert Marinus
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Jyoti Dhankhar
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Anthony Linden
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| | - Ilija Čorić
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, Zurich, 8057, Switzerland
| |
Collapse
|
7
|
Dan W, Chen Z, Ling Y, Jia Y, Yang Y, Liu X, Deng M. Discovery of two predictable (3,18)-connected topologies based on Wells-Dawson type cages for the design of porous metal phosphonocarboxylate frameworks. Dalton Trans 2024; 53:7734-7741. [PMID: 38634778 DOI: 10.1039/d4dt00590b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Highly connected molecular building blocks (MBBs) have been demonstrated to play a crucial role in reticular chemistry, particularly in predicting the topologies of metal-organic frameworks. Metal phosphonate clusters exhibit considerable advantages in constructing high-connectivity MBBs, owing to the multiple coordination modes offered by phosphonic ligands. Herein, four metal (M = CoII, MnII) phosphonocarboxylate frameworks (CoPCF-1,2 and MnPCF-1,2) were successfully prepared under solvothermal conditions by utilizing the phosphonocarboxylic ligand, 4'-phosphonobiphenyl-3,5-dicarboxylic acid (H4pbpdc), and their structural characterization was performed using single-crystal X-ray diffraction (SCXRD). The structures feature a duodenary nuclear M12(µ3-OH)2(CO2)12(PO3)6(DMF)6/(CH3COO)4.5 cluster, bearing resemblance to the well-known Wells-Dawson ion from polyoxometallate chemistry. It is the first time a Wells-Dawson type cage has served as an 18-connected molecular building block, forming two kinds of porous metal phosphonocarboxylate frameworks with novel (3,18)-connected gez and gea topologies. Their permanent porosities were confirmed through N2 adsorption studies. Notably, the MBB Co12 cluster-based CoPCF-1 shows a loss and recovery process of µ3-OH through single-crystal-to-single-crystal (SCSC) transformation. The magnetic properties of the four compounds exhibit antiferromagnetic behavior.
Collapse
Affiliation(s)
- Wenyan Dan
- College of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yun Ling
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yu Jia
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Yongtai Yang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Xiaofeng Liu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Mingli Deng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China.
| |
Collapse
|
8
|
Rom T, Agrawal A, Biswas R, Haldar KK, Paul AK. Superior Electrochemical Water Splitting and Energy-Storage Performances of In Situ Fabricated Charge-Separated Metal Organophosphonate Single Crystals. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17797-17811. [PMID: 38552198 DOI: 10.1021/acsami.3c19079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
The design and exploration of advanced materials as a durable multifunctional electrocatalyst toward sustainable energy generation and storage development is the most perdurable challenge in the domain of renewable energy research. Herein, a facile in situ solvothermal approach has been adopted to prepare a methylviologen-regulated crystalline metal phosphonate compound, [C12H14N2][Ni(C11H11N2)(H2hedp)2]2•6H2O (NIT1), (H4hedp = 1-hydroxyethane 1,1-diphosphonic acid) and well characterized by several techniques. The as-prepared NIT1 displays excellent bifunctional electrocatalytic activity with dynamic stability toward oxygen evolution reaction (η10 = 288 mV) and hydrogen evolution reaction (η10 = 228 mV) in alkaline (1.0 M KOH) and acidic mediums (0.5 M H2SO4), respectively. Such a low overpotential and Tafel slope (68 mV/dec for OER; 56 mV/dec for HER) along with long-term durability up to 20 h of NIT1 make it superior to benchmark the electrocatalyst and various nonprecious metal-based catalysts under similar experimental condition. Further, the electrochemical supercapacitor measurements (in three-electrode system) reveal that the NIT1 electrode possesses much higher specific capacity of 187.6 C g-1 at a current density of 2 A g-1 (272 C g-1 at 5 mV s-1) with capacitance retention of 75.2% over 10,000 cycles at 14 A g-1 (Coulombic efficiency > 99%) in 6 M KOH electrolyte medium. Finally for a practical application, an asymmetric supercapacitor device (coin cell) is assembled by NIT1 material. The as-fabricated device delivers the maximum energy density of 39.4 Wh kg-1 at a power density of 450 W kg-1 and achieves a wide voltage window of 1.80 V. Notably, the device endures a remarkable cycle performance with cyclic retention of 92% (Coulombic efficiency > 99%) even after 14,000 charge/discharge cycles at 10 A g-1. Nevertheless, the extraordinary electrochemical activities toward OER and HER as well as the high-performance device fabrication for LED illumination of such a noble metal-free lower-dimensional charge-transfer compound are truly path breaking and would be promising for the development of advanced multifunctional materials.
Collapse
Affiliation(s)
- Tanmay Rom
- Department of Chemistry, National Institute of Technology, Kurukshetra136119, India
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Anant Agrawal
- Department of Physics, National Institute of Technology, Kurukshetra 136119, India
| | - Rathindranath Biswas
- Department of Chemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Krishna Kanta Haldar
- Department of Chemistry, School of Basic Science, Central University of Punjab, Bathinda 151401, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology, Kurukshetra136119, India
| |
Collapse
|
9
|
Melo BAV, Gregório Junior DF, de Oliveira MT, de Jesus Trindade F, van de Streek J, Ferreira FF, Brochsztain S. Synthesis and Characterization of Two Novel Naphthalenediimide/Zinc Phosphonate Crystalline Materials Precipitated from Different Solvents. ACS OMEGA 2024; 9:1748-1756. [PMID: 38222663 PMCID: PMC10785331 DOI: 10.1021/acsomega.3c08345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024]
Abstract
Hybrid naphthalenediimide/zinc phosphonate materials (NDI/Zn) were prepared by mixing solutions of N,N'-bis(2-phosphonoethyl)-1,4,5,8-naphthalenediimide (PNDI) and zinc nitrate, resulting in the precipitation of the desired compounds. Samples precipitated from water and N,N-dimethylformamide (DMF) were produced. The obtained samples had the expected elemental composition, and the presence of naphthalenediimides (NDI) was ascertained by infrared and UV-visible spectroscopy. All the samples were crystalline, according to powder X-ray diffraction. Nitrogen adsorption isotherms showed the presence of porosity in the NDI/Zn samples. Mesopores with a diameter = 4.1 nm were present in the sample from DMF, with total pore volume reaching 0.13 cm3/g.
Collapse
Affiliation(s)
- Barbra
Poly-Anna Vera Melo
- Center
for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, 09280-560 Santo André, Brazil
| | | | - Matheus Troilo de Oliveira
- Center
for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, 09280-560 Santo André, Brazil
| | - Fabiane de Jesus Trindade
- Center
for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, 09280-560 Santo André, Brazil
| | | | - Fabio Furlan Ferreira
- Center
for Natural Sciences and Humanities, Federal
University of ABC, 09280-560 Santo André, Brazil
| | - Sergio Brochsztain
- Center
for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, 09280-560 Santo André, Brazil
| |
Collapse
|
10
|
Rom T, Poojita, Paul AK. Bifunctional Role of Methyl Viologen in UV and X-ray Sensitive Switchable Organophosphonate Single Crystal. Inorg Chem 2024; 63:61-66. [PMID: 38105491 DOI: 10.1021/acs.inorgchem.3c04115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Finding X-ray and UV responsive hybrid single crystals including their versatile properties is highly desirable though the fabrication of such material is a very challenging task to researchers. Herein, a methyl viologen assisted hybrid nickel organophosphonate structure (i.e., NIT1) is demonstrated by adapting an in situ solvothermal strategy to investigate the X-ray effect and photochromic behaviors. The bifunctional coordinated and templated roles of monocationic and bicationic methyl viologen units present in the hybrid structure are noteworthy and can manifest prominent structural enhancement and reversible photochromism behaviors.
Collapse
Affiliation(s)
- Tanmay Rom
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
- Chemistry and Physics of Materials Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bengaluru, Karnataka 560064, India
| | - Poojita
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology, Kurukshetra 136119, India
| |
Collapse
|
11
|
Ali J, Kumar P, Chandrasekhar V. Lanthanide Phosphonates and Phosphates in Molecular Magnetism. Chem Asian J 2024; 19:e202300812. [PMID: 37961926 DOI: 10.1002/asia.202300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Phosphonate and phosphate ligands have historically received less attention when compared to the widely prevalent carboxylate ligand system. Phosphonates possess multiple donating sites, often leading to the formation of larger aggregates with limited solubility. Conversely, the P-O bond within phosphates is highly susceptible to hydrolysis, resulting in the precipitation of insoluble compounds, particularly when interacting with lanthanide metal ions. However, over the past few decades, various synthetic approaches have emerged for the preparation and characterization of lanthanide complexes involving both phosphonate and phosphate ligands. Consequently, researchers have delved into exploring the magnetic properties of these complexes, such as their potential as single molecule magnets (SMMs) and their ability to exhibit a magnetocaloric effect (MCE). This review will encompass an examination of the crystal structures and magnetic characteristics of lanthanide complexes featuring phosphonate and phosphate ligands.
Collapse
Affiliation(s)
- Junaid Ali
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
| | - Pawan Kumar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
12
|
Fang JJ, Liu Z, Shen YL, Xie YP, Lu X. Template-assisted synthesis of isomeric copper(i) clusters with tunable structures showing photophysical and electrochemical properties. Chem Sci 2023; 14:12637-12644. [PMID: 38020372 PMCID: PMC10646952 DOI: 10.1039/d3sc04682f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
A comparative study of structure-property relationships in isomeric and isostructural atomically precise clusters is an ideal approach to unravel their fundamental properties. Herein, seven high-nuclearity copper(i) alkynyl clusters utilizing template-assisted strategies were synthesized. Spherical Cu36 and Cu56 clusters are formed with a [M@(V/PO4)6] (M: Cu2+, Na+, K+) skeleton motif, while peanut-shaped Cu56 clusters feature four separate PO4 templates. Experiments and theoretical calculations suggested that the photophysical properties of these clusters are dependent on both the inner templates and outer phosphonate ligands. Phenyl and 1-naphthyl phosphate-protected clusters exhibited enhanced emission features attributed to numerous well-arranged intermolecular C-H⋯π interactions between the ligands. Moreover, the electrocatalytic CO2 reduction properties suggested that internal PO4 templates and external naphthyl groups could promote an increase in C2 products (C2H4 and C2H5OH). Our research provides new insight into the design and synthesis of multifunctional copper(i) clusters, and highlights the significance of atomic-level comparative studies of structure-property relationships.
Collapse
Affiliation(s)
- Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yang-Lin Shen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
13
|
Guan K, Wu J, Zhou J, Li Y, Pei L, Shi X. Synthesis Strategy Guided by Decision Tree for Morphology Control of Metal Phosphonates. Inorg Chem 2023; 62:18758-18766. [PMID: 37919939 DOI: 10.1021/acs.inorgchem.3c03263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The morphology control of metal phosphonates is always a difficulty because there are many challenges derived from the complexity of crystallization and the multivariable synthesis system. Responding to challenges, we propose a synthesis strategy guided by a decision tree for morphology control of metal phosphonates, through which directional design of the morphology-controlled synthesis can be realized. Specifically, any one synthetic condition involving the synthesis of metal phosphonates can be regarded as a decision problem to construct a binary decision tree. By means of the classification principle of the binary decision tree, the samples synthesized under the boundary value of each synthesis condition are classified based on crystal phase and morphology. The key synthetic conditions determining crystal phase and morphology can be precisely screened out to serve as decision nodes for the binary decision tree and are also rapidly optimized by the recursion level by level, whereas others cannot. Here, the β-polymorph of copper phenylphosphonate (β-CuPP) is selected as an example to elaborate the decision-tree-guided synthesis strategy for morphology control of metal phosphonates. From the constructed binary decision tree, it is clear that the right amount of methanol in the solvent is vital to obtain β-phase of CuPP, whereas the reactant concentration, pH value, and reaction time are important for morphology and phase transformation. Under the optimal synthetic conditions screened out by the binary decision tree, β-CuPP can thus be controlled to be hierarchically flower-like microsphere morphology through either the direct synthesis route or the solid-to-solid phase transformation route. This research work confirms that the decision-tree-guided synthesis is highly efficacious for the morphology control of metal phosphonates. Furthermore, the morphology-controlled synthesis guided by a decision tree may provide some valuable inspiration for morphology control of metal-organic frameworks (MOFs) and even coordinate compounds.
Collapse
Affiliation(s)
- Kaiqi Guan
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Jingxian Wu
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Jing Zhou
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Yang Li
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Lingnan Pei
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| | - Xin Shi
- Institute of Chemistry for Functionalized Materials, School of Chemistry and Chemical Engineering, Liaoning Normal University, 850 Huanghe Road, Dalian 116029, China
| |
Collapse
|
14
|
Huynh RPS, Evans DR, Lian JX, Spasyuk D, Siahrostrami S, Shimizu GKH. Creating Order in Ultrastable Phosphonate Metal-Organic Frameworks via Isolable Hydrogen-Bonded Intermediates. J Am Chem Soc 2023; 145:21263-21272. [PMID: 37738111 DOI: 10.1021/jacs.3c05279] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
The stability presented by trivalent metal-organic frameworks (MOFs) makes them an attractive class of materials. With phosphonate-based ligands, crystallization is a challenge, as there are significantly more binding motifs that can be adopted due to the extra oxygen tether compared to carboxylate counterparts and the self-assembly processes are less reversible. Despite this, we have reported charge-assisted hydrogen-bonded metal-organic frameworks (HMOFs) consisting of [Cr(H2O)6]3+ and phosphonate ligands, which were crystallographically characterized. We sought to use these HMOFs as a crystalline intermediate to synthesize ordered Cr(III)-phosphonate MOFs. This can be done by dehydrating the HMOF to remove the aquo ligands around the Cr(III) center, forcing metal-phosphonate coordination. Herein, a new porous HMOF, H-CALF-50, is synthesized and then dehydrated to yield the MOF CALF-50. CALF-50 is ordered, although it is not single crystalline. It does, however, have exceptional stability, maintaining crystallinity and surface area after boiling in water for 3 weeks and soaking in 14.5 M H3PO4 for 24 h and 9 M HCl for 72 h. Computational methods are used to study the HMOF to MOF transformation and give insight into the nature of the structure and the degree of heterogeneity.
Collapse
Affiliation(s)
- Racheal P S Huynh
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - David R Evans
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jian Xiang Lian
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Denis Spasyuk
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Samira Siahrostrami
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
15
|
Cui R, Wang Y, Yuwen L, Gao L, Huang Z, Wang WH, Zhang QW. Ni-Catalyzed Asymmetric C-P Cross-Coupling Reaction for the Synthesis of Chiral Heterocyclic Phosphine Oxides. Org Lett 2023; 25:6139-6142. [PMID: 37565674 DOI: 10.1021/acs.orglett.3c02216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Nickel performs excellently in C-C and C-X cross-coupling reactions. Here, we disclose a Ni(II)-catalyzed asymmetric C-P cross-coupling reaction to afford valuable chiral heterocyclic tertiary phosphine oxides. The method is mild and efficient, which invokes a self-sustained nickel catalytic cycle without an external reductant, light irradiation, or electricity.
Collapse
Affiliation(s)
- Ranran Cui
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yinqi Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Liyan Yuwen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Li Gao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Zhuo Huang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wei-Han Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qing-Wei Zhang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Glavinović M, Perras JH, Gelfand BS, Lin JB, Spasyuk DM, Zhou W, Shimizu GKH. Microporous Metal-Phosphonates with a Novel Orthogonalized Linker and Complementary Guests: Insights for Trivalent Metal Complexes from Divalent Metal Complexes. Chemistry 2023; 29:e202203835. [PMID: 36581566 DOI: 10.1002/chem.202203835] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/25/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
The reliable self-assembly of microporous metal-phosphonate materials remains a longstanding challenge. This stems from, generally, more coordination modes for the functional group allowing more dense structures, and stronger bonding driving less crystalline products. Here, a novel orthogonalized aryl-phosphonate linker, 1,3,5-tris(4'-phosphono-2',6'-dimethylphenyl) benzene (H6 L3) has been used to direct formation of open frameworks. The peripheral aryl rings of H6 L3 are orthogonalized relative to the central aromatic ring giving a tri-cleft conformation of the linker in which small aromatic molecules can readily associate. When coordinated to magnesium ions, a series of porous crystalline metal-organic, and hydrogen-bonded metal-organic frameworks (MOFs, HMOFs) are formed (CALF-41 (Mg), HCALF-42 (Mg), -43 (Mg)). While most metal-organic frameworks are tailored based on choice of metal and linker, here, the network structures are highly dependent on the inclusion and structure of the guest aromatic compounds. Larger guests, and a higher stoichiometry of metal, result in increased solvation of the metal ion, resulting in networks with connectivities increasingly involving hydrogen-bonds rather than direct phosphonate coordination. Upon thermal activation and aromatic template removal, the materials exhibit surface areas ranging from 400-600 m2 /g. Self-assembly in the absence of aromatic guests yields mixtures of phases, frequently co-producing a dense 3-fold interpenetrated structure (1). Interestingly, a series of both more porous (530-900 m2 /g), and more robust solids is formed by complexing with trivalent metal ions (Al, Ga, In) with aromatic guest; however, these are only attainable as microcrystalline powders. The polyprotic nature of phosphonate linkers enables structural analogy to the divalent analogues and these are identified as CALF-41 analogues. Finally, insights to the structural transformations during metal ion desolvation in this family are gained by considering a pair of structurally related Co materials, whose hydrogen-bonded (HCALF-44 (Co)) and desolvated (CALF-44 (Co)) coordination bonded networks were fully structurally characterized.
Collapse
Affiliation(s)
- Martin Glavinović
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Justin H Perras
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Benjamin S Gelfand
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Jian-Bin Lin
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - Denis M Spasyuk
- Canadian Light Source Inc., University of Saskatchewan, 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada
| | - Wen Zhou
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| | - George K H Shimizu
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
17
|
Anchoring polydentate N/O-ligands in metal phosphite/phosphate/phosphonate (MPO) for functional hybrid materials. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Rojek T, Ślepokura K, Kinzhybalo V, Duczmal M, Wojciechowska A, Matczak-Jon E. Synthesis, structural, spectroscopic and magnetic studies of tetranuclear Ni(II) and Co(II) clusters based on cyclobutyl and cyclopentyl-substituted analogues of zoledronic acid. Polyhedron 2023. [DOI: 10.1016/j.poly.2023.116301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
C3-symmetric tripalladium(II) complex for catalysis via geometrical coincident interaction with C3-symmetric substrate. TRANSIT METAL CHEM 2022. [DOI: 10.1007/s11243-022-00519-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
20
|
Shekh A, Mombeni Goodajdar B, Asghariganjeh MR. Three-Component Solvent-Free Synthesis of 3, 4-Dihydropyrimidones and Thiones by Iron-Phosphonate Nanoparticle. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2021.1948875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Asma Shekh
- Department of Chemistry, Omidiyeh Branch, Islamic Azad University, Omidiyeh, Iran
| | | | | |
Collapse
|
21
|
Khaled A, Kadri R, Kadri M, Berredjem M. New Cu(II) and Zn(II) complexes with diethyl phenyl (N-phenylsulfamoylamino) methyl phosphonate: Synthesis, characterisation, DFT/M11 studies, NBO, DOS, QTAIM and RDG analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Regulating the dimensionality of diphosphaperylenediimide-based polymers by coordinating the out-of-plane anisotropic π-framework toward Ag+. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1325-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
23
|
Wen GH, Zou Q, Xu K, Huang XD, Bao SS, Chen XT, Ouyang Z, Wang Z, Zheng LM. Layered Uranyl Phosphonates Encapsulating Co(II)/Mn(II)/Zn(II) Ions: Exfoliation into Nanosheets and Its Impact on Magnetic and Luminescent Properties. Chemistry 2022; 28:e202200721. [PMID: 35570193 DOI: 10.1002/chem.202200721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 01/17/2023]
Abstract
Layered heterometallic 5f-3d uranyl phosphonates can exhibit unique luminescent and/or magnetic properties, but the fabrication and properties of their 2D counterparts have not been investigated. Herein we report three heterobimetallic uranyl phosphonates, namely, [(UO2 )3 M(2-pmbH)4 (H2 O)4 ] ⋅ 2H2 O [MU, M=Co(II), CoU; Mn(II), MnU; Zn(II), ZnU; 2-pmbH3 =2-(phosphonomethyl)benzoic acid]. They are isostructural and display two-dimensional layered structures where the M(II) centers are encapsulated inside the windows generated by the diamagnetic uranyl phosphonate layer. Each M(II) has an octahedral geometry filled with four water molecules in the equatorial positions and two phosphonate oxygen atoms in the axial positions. The uranium atoms adopt UO7 pentagonal bipyramidal and UO6 square bipyramidal geometries. The lattice and coordination water molecules can be released by thermal treatment and reabsorbed in a reversible manner, accompanied with changes of magnetic dynamics. Interestingly, the bulk samples of MU can be exfoliated in acetone via freezing and thawing processes forming nanosheets with single-layer or two-layer thickness (MU-ns). Magnetic studies revealed that the CoU and MnU systems exhibited field-induced slow magnetization relaxation at low temperature. Compared with crystalline CoU, the magnetic relaxation of the CoU-ns aggregates is significantly accelerated. Moreover, photoluminescence measured at 77 K showed slight red-shift of the five characteristic uranyl emission bands for ZnU-ns in comparison with those of the crystalline ZnU. This work gives the first examples of 2D materials based on 5f-3d heterometallic uranyl phosphonates and illustrates the impact of dimension reduction on their magnetic/optical properties.
Collapse
Affiliation(s)
- Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xue-Tai Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
24
|
Chen X, Peng Y, Gao R, Wang H, Pei C. Six-coordinated rare earth organoarsinate complexes: Crystal structure, luminescent and magnetic properties investigation. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
25
|
Chen X, Gao RL, Li B, Wang HM. HOMOLEPTIC SAMARIUM(III) COMPLEX OF DIPHENYLARSINATE [Sm(μ-O2AsPh2)3]: CRYSTAL STRUCTURE AND ANTIBACTERIAL ACTIVITY EVALUATION. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622060014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Li GM, Xu F, Han SD, Pan J, Wang GM. Hybrid Photochromic Lanthanide Phosphonate with Multiple Photoresponsive Functionalities. Inorg Chem 2022; 61:8379-8385. [PMID: 35592931 DOI: 10.1021/acs.inorgchem.2c01217] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Hybrid photochromic materials (HPMs) with specific photoresponsive functionality have applications in many fields. The photoinduced electron-transfer (ET) strategy has been proved to be effective in the synthesis of HPMs with diverse photomodulated properties. The exploitation of new electron acceptors (EAs) is meaningful for promoting the development of HPMs. In this work, we introduced a rigid tetraimidazole derivative, 3,3,5,5-tetra(imidazol-1-yl)-1,1-biphenyl (TIBP) as a potential EA, into a metal-diphosphonate (1-hydroxyethylidene-1,1-diphosphonic acid, H4-HEDP) system to explore HPMs and finally obtained a hybrid metal phosphonate (H4-TIBP)0.5·[Dy(H-HEDP) (H2-HEDP)]·H2O (1). 1 features anionic chains composed of diphosphonate and Dy3+ ions. The extra charge is balanced by protonated TIBP cations, which exist in the void of adjacent chains and form H-bonds with Ophosphonate (N-H···O). Upon photostimulation with a Xe lamp (300 W), the crystalline sample 1 exhibited coloration by changing from colorless to pale yellow because of the presence of photoinduced radicals that originated from the ET from Ophosphonate to NTIBP. Along with the coloration, photomodulated fluorescence, magnetism, and proton conductivity were also detected in the photoactivated samples. Different from the reported HPMs based on polypyridine derivatives and photoactive species such as pyridinium and naphthalimide derivatives as EAs, our study provides a new category of EA units to yield HPMs with fascinating photoresponsive functionality via the assembly of polyimidazole derivatives and phosphonate-based supramolecular building blocks.
Collapse
Affiliation(s)
- Gang-Mei Li
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Fei Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Song-De Han
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Jie Pan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| | - Guo-Ming Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, P. R. China
| |
Collapse
|
27
|
Han SD, Hu JX, Wang GM. Recent advances in crystalline hybrid photochromic materials driven by electron transfer. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214304] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Kumar P, Flores Gonzalez J, Sahu PP, Ahmed N, Acharya J, Kumar V, Cador O, Pointillart F, Singh SK, Chandrasekhar V. Magnetocaloric effect and slow magnetic relaxation in peroxide-assisted tetranuclear lanthanide assemblies. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01260j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigation of a series of rare peroxide-assisted tetranuclear lanthanide assemblies revealed both significant magnetocaloric effect and slow magnetic relaxation.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Jessica Flores Gonzalez
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Prem Prakash Sahu
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Naushad Ahmed
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| | - Joydev Acharya
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
| | - Olivier Cador
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Fabrice Pointillart
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) – UMR 6226, 35000 Rennes, France
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana 502285, India
| | - Vadapalli Chandrasekhar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad 500046, Telangana, India
| |
Collapse
|
29
|
Prapakaran T, Kuppuswamy S, Murugavel R. Supramolecular aggregation in sterically encumbered monoarylphosphates and their H-bonded adducts: multigram synthesis of elusive 2,6-di- tert-butylphenyl phosphate. CrystEngComm 2022. [DOI: 10.1039/d2ce00172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A viable synthetic methodology has been developed for multigram synthesis of bulky 2,6-di-tert-butyphenyl phosphate; its supramolecular association behaviour and those of adducts formed with N-bases is established.
Collapse
Affiliation(s)
- T. Prapakaran
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - S. Kuppuswamy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ramaswamy Murugavel
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
30
|
Aust M, Herold AJ, Niederegger L, Schneider C, Mayer DC, Drees M, Warnan J, Pöthig A, Fischer RA. Introducing Benzene-1,3,5-tri(dithiocarboxylate) as a Multidentate Linker in Coordination Chemistry. Inorg Chem 2021; 60:19242-19252. [PMID: 34870417 DOI: 10.1021/acs.inorgchem.1c03045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzene-1,3,5-tri(dithiocarboxylate) (BTDTC3-), the sulfur-donor analogue of trimesate (BTC3-, benzene-1,3,5-tricarboxylate), is introduced, and its potential as a multidentate, electronically bridging ligand in coordination chemistry is evaluated. For this, the sodium salt Na3BTDTC has been synthesized, characterized, and compared with the sodium salt of the related ditopic benzene-1,4-di(dithiocarboxylate) (Na2BDDTC). Single-crystal X-ray diffraction of the respective tetrahydrofuran (THF) solvates reveals that such multitopic aromatic dithiocarboxylate linkers can form both discrete metal complexes (Na3BTDTC·9THF) and (two-dimensional) coordination polymers (Na2BDDTC·4THF). Additionally, the versatile coordination behavior of the novel BTDTC3- ligand is demonstrated by successful synthesis and characterization of trinuclear Cu(I) and hexanuclear Mo(II)2 paddlewheel complexes. The electronic structure and molecular orbitals of both dithiocarboxylate ligands as well as their carboxylate counterparts are investigated by density functional theory computational methods. Electrochemical investigations suggest that BTDTC3- enables electronic communication between the coordinated metal ions, rendering it a promising tritopic linker for functional coordination polymers.
Collapse
Affiliation(s)
- Margit Aust
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Anna J Herold
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Lukas Niederegger
- Assistant Professorship of Bioinorganic Chemistry, Catalysis Research Center, Technical University of Munich, Ernst-Otto-Fischer Straße 1, 85748 Garching, Germany
| | - Christian Schneider
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - David C Mayer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Markus Drees
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Julien Warnan
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Alexander Pöthig
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Roland A Fischer
- Chair of Inorganic and Metal-Organic Chemistry, Department of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| |
Collapse
|
31
|
Chen X, Hu H, Wang S, Li B, Wang H. Diversity of Coordination Architecture of Zinc Complexes with Diphenylarsinate. ChemistrySelect 2021. [DOI: 10.1002/slct.202103625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiao Chen
- State Key Laboratory of NBC Protection for Civilian Changping Beijing 102205 China
| | - Huijuan Hu
- State Key Laboratory of NBC Protection for Civilian Changping Beijing 102205 China
| | - Shan Wang
- State Key Laboratory of NBC Protection for Civilian Changping Beijing 102205 China
| | - Biao Li
- State Key Laboratory of NBC Protection for Civilian Changping Beijing 102205 China
| | - Hongmei Wang
- State Key Laboratory of NBC Protection for Civilian Changping Beijing 102205 China
| |
Collapse
|
32
|
Russell-Webster B, Lopez-Nieto J, Abboud KA, Christou G. Phosphorus-based ligand effects on the structure and radical scavenging ability of molecular nanoparticles of CeO 2. Dalton Trans 2021; 50:15524-15532. [PMID: 34643207 DOI: 10.1039/d1dt02667d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two new CeIV/O2- clusters, (pyH)8[Ce10O4(OH)4(O3PPh)12(NO3)12] (1) and [Ce6O4(OH)4(O2PPh2)4(O2CtBu)8] (2), have been prepared that contain P-based ligands for the first time. They were obtained from the reaction of (NH4)2[Ce(NO3)6], PhPO3H2 or Ph2PO2H, and tBuCO2H in a 2 : 1 : 2 molar ratio in pyridine/MeOH (10 : 1 mL). Both compounds contain a {Ce6O4(OH)4} face-capped octahedral core, with 1 containing an additional four CeIV on the outside to give a supertetrahedral Ce10 topology; the {Ce6O8} unit is the smallest recognizable fragment of the fluorite structure of CeO2. The HO˙ radical scavenging activities of 1 and 2 were measured by UV/vis spectral monitoring of methylene blue oxidation by HO˙ radicals in the presence and absence of the Ce/O clusters, and the results compared with those for larger Ce24 and Ce38 molecular nanoparticles of CeO2 prepared in previous work. 1 and 2 are both very poor HO˙ radical scavengers compared with Ce24 and Ce38, a result that is consistent with reports in the literature that PO43- ions inhibit the radical scavenging ability of traditional CeO2 nanoparticles and putatively assigned to PO43- binding to the surface.
Collapse
Affiliation(s)
| | - Javi Lopez-Nieto
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA,
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA,
| | - George Christou
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA,
| |
Collapse
|
33
|
Xu S, Xie J, Liu Y, Xu W, Tang KW, Xiong B, Wong WY. Silver-Catalyzed Regioselective Phosphorylation of para-Quinone Methides with P(III)-Nucleophiles. J Org Chem 2021; 86:14983-15003. [PMID: 34665625 DOI: 10.1021/acs.joc.1c01703] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A simple and efficient method for the silver-catalyzed regioselective phosphorylation of para-quinone methides (p-QMs) with P(III)-nucleophiles (P(OR)3, ArP(OR)2, Ar2P-OR) has been established via Michaelis-Arbuzov-type reaction. A broad range of P(III)-nucleophiles and para-quinone methides are well tolerated under the mild conditions, giving the expected diarylmethyl-substituted organophosphorus compounds with good to excellent yields. Moreover, a series of corresponding enantiomers can be obtained by employing dialkyl arylphosphonite (ArP(OR)2) as substrates. The control experiments and 31P NMR tracking experiments were also performed to gain insights for the plausible reaction mechanism. This protocol may have significant implications for the formation of C(sp3)-P bonds in Michaelis-Arbuzov-type reactions.
Collapse
Affiliation(s)
- Shipan Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Weifeng Xu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China.,Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|
34
|
Lawler R, Liu YH, Majaya N, Allam O, Ju H, Kim JY, Jang SS. DFT-Machine Learning Approach for Accurate Prediction of p Ka. J Phys Chem A 2021; 125:8712-8722. [PMID: 34554744 DOI: 10.1021/acs.jpca.1c05031] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we propose a novel method of pKa prediction in a diverse set of acids, which combines density functional theory (DFT) method with machine learning (ML) methods. First, the DFT method with B3LYP/6-31++G**/SM8 is used to predict pKa, yielding a mean absolute error of 1.85 pKa units. Subsequently, such pKa values predicted from the DFT method are employed as one of 10 molecular descriptors for developing ML models trained on experimental data. Kernel Ridge Regression (KRR), Gaussian Process Regression, and Artificial Neural Network are optimized using three Pipelines: Pipeline 1 involving only hyperparameter optimization (HPO), Pipeline 2 involving HPO followed by a relative contribution analysis (RCA) and recursive feature elimination (RFE), and Pipeline 3 involving HPO followed by RCA and RFE on an expanded set of composite features. Finally, it is demonstrated that KRR with Pipeline 3 yields optimal pKa prediction at an MAE of 0.60 log units. This algorithm was then utilized to predict the pKa of 37 novel acids. The two most important features were determined to be the number of hydrogen atoms in the molecule and the degree of oxidation of the acid. The predicted pKa values were documented for future reference.
Collapse
Affiliation(s)
- Robin Lawler
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yao-Hao Liu
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Nessa Majaya
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| | - Omar Allam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States.,G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Hyunchul Ju
- Department of Mechanical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Jin Young Kim
- Center for Hydrogen Fuel Cell Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Seung Soon Jang
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
35
|
Schönherr PR, Görls H, Krieck S, Westerhausen M. Synthesis and Oligonuclear Structures of Strontium and Barium Complexes with Protonated and Deprotonated N-Mesityl- P, P-diphenylphosphinic Amide Ligands. ACS OMEGA 2021; 6:23578-23587. [PMID: 34549155 PMCID: PMC8444311 DOI: 10.1021/acsomega.1c03732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Metalation of N-mesityl-P,P-diphenylphosphinic amide Ph2P(O)-NHMes (HL, I) with MgBu2 and Ae{N(SiMe3)2}2 (Ae = Ca, Sr, and Ba) yields alkaline-earth metal complexes with the compositions of [(thf)nAe(L·HL)2] [Ae/n = Mg/0 (II), Ca/2 (III)] as well as of [Sr2L3(L·HL)(HL)] (1), [Ba2L3(L·HL)(HL)] (2), [Ba3L6] (3), and [(thf)2Ba3L6] (4). In III, 1, 2, and 3, the alkaline-earth metal atoms are in severely distorted octahedral environments, and the structural distortions are partially caused by the small O-Ae-N bite angles of the chelating Ph2P(O)-NMes anions. The substructures (L·HL) contain N-H···N hydrogen bridges, stabilizing the arrangement of the ligands in complexes II, III, 1, and 2. In the trinuclear barium complex [Ba(μ-L)3Ba(μ-L)3Ba] (3), a rigid adjustment of the anionic L bases leads to a C3-symmetric molecule in the crystalline state with bridging oxygen atoms. Due to the small O-Ba-N bite angles of the chelating anions, vacant coordination sites are available at the outer barium centers. Coordination of thf bases in these gaps yields the complex [(thf)Ba(μ-L)3Ba(μ-L)3Ba(thf)] (4). However, THF is unable to deaggregate the trinuclear complexes into smaller barium-containing moieties. Increasing the radius of the alkaline-earth metals and increasing the nuclearity of these compounds lead to decreasing solubility in common organic solvents. NMR studies verify that the molecular structures of these alkaline-earth metal complexes are maintained in ethereal solvents and toluene.
Collapse
|
36
|
Sachan SK, Anantharaman G. Cuboctahedral [In 36(μ-OH) 24(NO 3) 8(Imtb) 24]MOF with Atypical Pyramidal Nitrate Ion in SBU: Lewis Acid-Base Assisted Catalysis and Nanomolar Sensing of Picric Acid. Inorg Chem 2021; 60:9238-9242. [PMID: 34115477 DOI: 10.1021/acs.inorgchem.1c00981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A robust and multifunctional cuboctahedral [In36(μ-OH)24(NO3)8(Imtb)24] MOF (In(Imtb)-MOF) with an atypical pyramidal nitrate ion-containing hitherto unknown SBU core [In9(μ-OH)6(NO3)] is reported. The intra- and interlayer nitrate ions adopt pyramidal and inverted pyramidal shapes, which separates the active indium site [(In3(μ-OH)2)NO3-(In3(μ-OH)2)] and linear In3(μ-OH)2 by 0.5 and 0.9 nm, respectively. Additionally, the high density of active metal sites shows remarkable catalytic activity with higher TOF even for sterically hindered substrates in Strecker synthesis and CO2 cycloaddition. Moreover, the luminescence behavior of In(Imtb)-MOF and the presence of uncoordinated nitrogen atoms are exploited for selective sensing of explosive trinitrophenol (TNP) with a detection limit (LOD) of 2.3 ppb.
Collapse
Affiliation(s)
- Sharad Kumar Sachan
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur-208016, India
| | - Ganapathi Anantharaman
- Department of Chemistry, Indian Institute of Technology (IIT) Kanpur, Kanpur-208016, India
| |
Collapse
|
37
|
A three-component copper phosphonate complex as a sensor platform for sensitive Cd2+ and Zn2+ ion detection in water via fluorescence enhancement. J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Livingston C, Blanchard GJ. Metal Ion-Dependent Interfacial Organization and Dynamics of Metal-Phosphonate Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4658-4665. [PMID: 33827218 DOI: 10.1021/acs.langmuir.1c00453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembled monolayers have been studied extensively due to their relative ease of synthesis and the broad range of applications for this class of materials. Monolayer-support interactions can range in strength from physisorption through covalent bond formation, with consequent variability in the robustness and fluidity of the monolayer. Monolayer-support bonding by metal ion complexation is especially attractive because of the ability to adjust the strength of interaction through metal ion identity. For such systems, both the exchange kinetics and thermodynamics of metal ion-complex formation contribute to the observed properties of the monolayer. We have synthesized metal-phosphate/phosphonate monolayers using Zr4+ and In3+ and have evaluated the metal ion dependence of monolayer dynamics for free and bound chromophores. Our findings reveal significant metal ion-dependent variations in monolayer dynamics and organization.
Collapse
Affiliation(s)
- Corbin Livingston
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University, 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
39
|
Wang K, Jiang XF, Liu XR, Liu HH, Zhang Q, Pan J, Wei Q, Wei L. Synthesis, structure and fluorescent property of a hybrid zinc-diphosphonate. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Tosco B, Melo BPAV, Hermida Merino D, Rey JFQ, Brochsztain S. Layer-by-Layer Naphthalenediimide/Zn Phosphonate Hybrid Films Grown from Aqueous Solutions by a Simple Deposition Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2494-2502. [PMID: 33618516 DOI: 10.1021/acs.langmuir.0c03555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hybrid thin films containing N,N'-bis(2-phosphonoethyl)-1,4,5,8-naphthalenediimide (PNDI) and zinc cations (PNDI/Zn films) were built on silicon and indium tin oxide (ITO) substrates by a simple layer-by-layer deposition process. Silicon substrates primed with a layer of phosphonate groups were immersed alternately into zinc nitrate and PNDI aqueous solutions, yielding PNDI/Zn films containing up to 40 layers. ITO substrates, on the other hand, were used without priming, and the deposition sequence began with a PNDI layer. All film growth steps were conducted at room temperature, using aqueous solutions, thus assuring an environmentally clean process. The PNDI/Zn films were studied by X-ray reflectivity and grazing angle X-ray diffraction, using synchrotron radiation source. The films were constituted by crystallites, containing zinc phosphonate layers oriented nearly parallel to the substrate. PNDI/Zn films on ITO were reduced to stable free radicals, which were observed by UV-visible spectroscopy. Moreover, PNDI/Zn bulk materials with structural analogy with the films were produced.
Collapse
Affiliation(s)
- Bruna Tosco
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo Andre, Sao Paulo 09210-170, Brazil
| | - Barbra Poly-Anna Vera Melo
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo Andre, Sao Paulo 09210-170, Brazil
| | - Daniel Hermida Merino
- Netherlands Organization for Scientific Research (NWO), DUBBLE@ESRF BP CS40220, 38043 Grenoble, France
| | - José Fernando Queiruga Rey
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo Andre, Sao Paulo 09210-170, Brazil
| | - Sergio Brochsztain
- Engineering, Modeling and Applied Social Sciences Center, Federal University of ABC, Santo Andre, Sao Paulo 09210-170, Brazil
| |
Collapse
|
41
|
Yang X, Wei R, Shi Y, Liu LL, Wu Y, Zhao Y, Stephan DW. Oxyphosphoranes as precursors to bridging phosphate-catecholate ligands. Chem Commun (Camb) 2021; 57:1194-1197. [PMID: 33439178 DOI: 10.1039/d0cc07736d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Examples of chelating ligands that incorporate P-O donors are seldom encountered. Herein, a series of novel bridging diphosphate ligand supported bimetallic Zr(iv), V(iii) and Ni(ii) complexes have been derived from reactions of the oxyphosphorane (C6Cl4O2)P(OEt)3 with the corresponding metal halides. The mechanism is probed and shown to involve elimination of ethyl halide, and ring opening affording the chelating phosphate-catecholate ligands.
Collapse
Affiliation(s)
- Xin Yang
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Rui Wei
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yaping Shi
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China.
| | - Liu Leo Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yile Wu
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Douglas W Stephan
- Institute of Drug Discovery Technology, Ningbo University, Zhejiang, China. and Department of Chemistry, University of Toronto, 80 St. George St, Toronto, ON M5S3H6, Canada.
| |
Collapse
|
42
|
Tian H, Huang FP, Li Y, Chen P, Chai K, Lu J, Liu HT, Zeng S, Li D, Dou J. Ring-forming transformation associated with hydrazone changes of hexadecanuclear dysprosium phosphonates. Dalton Trans 2021; 50:1119-1125. [PMID: 33393554 DOI: 10.1039/d0dt03536j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
{Dy16(μ6-C10H7PO3)2(μ5-C10H7PO3)8(spch)8(μ3-OH)2(μ2-OH)2(μ2-AcO)6(μ3-COO)2(DMF)2(H2O)6}·0.5CH3OH·4.5H2O (1) and {Dy16(μ5-C10H7PO3)4(μ3-C10H7PO3)12(μ2-C10H7PO3H)8(opch)4(DMF)8(MeOH)4}·2.5CH3OH·3H2O (2), where H2spch is ((E)-N'-(2-hydroxybenzylidene)pyrazine-2-carbohydrazide, C10H7PO3H2 is 1-naphthylphosphonic acid and H2opch is (E)-N'-(2-hydroxy-3-methoxybenzylidene)pyrazine-2-carbohydrazide, were successfully synthesized by varying the hydrazone ligands in the Dy-phosphonate system. It is important that the ellipsoidal core experiences a ring forming structural transformation to the supramolecular square motif upon the incorporation of an ortho-methoxy substituent into the hydrazone. Alternating-current (ac) magnetic susceptibility studies of 1 and 2 suggest that similar single molecule magnet behaviors occur for these two complexes. The result represents an effective molecular assembly tactic to develop highly complicated lanthanide coordination clusters through the multicomponent self-assembly of the coalescence of phosphonate- and hydrazone-based ligands and metal salts.
Collapse
Affiliation(s)
- Haiquan Tian
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Fu-Ping Huang
- Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmacy, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Yongfei Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Peiqiong Chen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Keyu Chai
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jing Lu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Hou-Ting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Suyuan Zeng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Dacheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| | - Jianmin Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China.
| |
Collapse
|
43
|
Yadav R, Dahlen M, Singh AK, Sun X, Gamer MT, Roesky PW. Nonanuclear zinc-gold [Zn 3Au 6] heterobimetallic complexes. Dalton Trans 2021; 50:8558-8566. [PMID: 34075990 DOI: 10.1039/d1dt01396c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nonanuclear zinc-gold heterobimetallic complexes were synthesized in a two-step process. Commercially available carboxy-functionalized phosphine ligands were used for selective binding to Zn and Au centers. In the first step, bipyridine coordinated Zn-metalloligands with free phosphine moieties were prepared. Reaction of Zn-metalloligands with [AuCl(tht)] (tht = tetrahydrothiophene) resulted in the formation of nonanuclear Zn-Au heterobimetallic complexes. The flexibility of the carboxy-functionalized phosphine ligands was shown to be crucial for the formation of aurophilic interactions. Further, the photoluminescence of the Zn-metalloligands and one Zn-Au complex was investigated at room temperature as well as 77 K. The emission spectra showed clear difference between the Zn-metalloligands and the Zn-Au complex.
Collapse
Affiliation(s)
- Ravi Yadav
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Milena Dahlen
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Akhil K Singh
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Xiaofei Sun
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Michael T Gamer
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| | - Peter W Roesky
- Institute of Inorganic Chemistry, Karlsruhe Institute of Technology (KIT), Engesserstraße 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
44
|
Wu JY, Hu ZJ, Sung HL. Halogen bonding interactions assisted network expansion of a tetrahedral cobalt phosphonate coordination polymer bearing 4,4′-bipyridine ligand. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Kanagaraj R, Jana AK, Babu P, Siruguri V, Maji PK, Panda SK, Paul AK. Template-directed hierarchical copper(II)-organophosphonate compounds: Syntheses, crystal structures, magnetic and luminescence properties. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Wu JY, Hu ZJ, Sung HL. A water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole as a highly sensitive luminescence sensor for the selective detection of bisphenol AF and bisphenol B. CrystEngComm 2021. [DOI: 10.1039/d0ce01740j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A highly water-stable molecular cadmium phosphonate bearing 2-(2-pyridyl)benzimidazole has been used as a sensor platform for the luminescence detection of bisphenol AF (BPAF) and bisphenol B (BPB) in water with good sensitivity and selectivity.
Collapse
Affiliation(s)
- Jing-Yun Wu
- Department of Applied Chemistry
- National Chi Nan University
- Taiwan
| | - Zhi-Jia Hu
- Department of Applied Chemistry
- National Chi Nan University
- Taiwan
| | - Hui-Ling Sung
- Division of Preparatory Programs for Overseas Chinese Students
- National Taiwan Normal University
- New Taipei City 244
- Taiwan
| |
Collapse
|
47
|
Sung HL, Weng WP, Lin SF, Yang HC, Wu JY. Temperature-influenced M2L and M2L2 molecular metal phosphonates and diversity of ligand conformation. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2020.119998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Wu JY, Jhan SH, Lin YJ, Cai DL, Hu ZJ, Sung HL. Polymeric layer framework and chain structure of two three-component cadmium and copper phosphonates embedded with pyrazine. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Rom T, Paul AK. Role of aromatic vs. aliphatic amine for the variation of structural, electrical and catalytic behaviors in a series of silver phosphonate extended hybrid solids. Dalton Trans 2020; 49:13618-13634. [PMID: 32975259 DOI: 10.1039/d0dt02796k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Four inorganic-organic hybrid silver phosphonate compounds, [Ag(C10H8N2)(H4hedp)] (1), [Ag2(C10H8N2)(H3hedp)]·2H2O (2), [C4H12N2][Ag4(H2hedp)2] (3) and [C4H12N2][Ag10(H2hedp)4(H2O)2]·2H2O (4) (H5hedp = 1-hydroxyethane-1,1-diphosphonic acid), have been prepared by virtue of the variable amine-directed hydrothermal strategy. The subsequent roles of coordinated aromatic amine (4,4'-bipyridine) and coordination-free templated aliphatic amine (piperazine) are studied. The connectivity of the silver ions, diphosphonate units (hedp) and bipyridine moiety can give rise to the one-dimensional structure of 1 and two-dimensional layer structure of 2. In contrast, the silver ions and diphosphonate units are connected to form the tetrameric and pentameric silver cluster units in compound 3 and 4, respectively. Such clusters are rare examples of fundamental building units in the piperazine templated two-dimensional silver based layer structures. The room temperature dielectric studies show the extremely high dielectric permittivity of the amine templated compounds (3 and 4) compared to amine coordinated structures (1 and 2). The synthesized compounds also participate in various heterogenous catalytic reactions acting as active Lewis acid catalysts that are observed for the first time in the amine-templated metal organophosphonates. The observed band gaps and dielectric values suggest that compounds 3 and 4 are more promising candidates for electronic applications, while compounds 1 and 2 are comparatively better Lewis acid catalysts.
Collapse
Affiliation(s)
- Tanmay Rom
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India.
| | - Avijit Kumar Paul
- Department of Chemistry, National Institute of Technology Kurukshetra, Kurukshetra-136119, Haryana, India.
| |
Collapse
|
50
|
Wöhlbrandt S, Meier C, Reinsch H, Svensson Grape E, Inge AK, Stock N. A Tetratopic Phosphonic Acid for the Synthesis of Permanently Porous MOFs: Reactor Size-Dependent Product Formation and Crystal Structure Elucidation via Three-Dimensional Electron Diffraction. Inorg Chem 2020; 59:13343-13352. [PMID: 32869998 DOI: 10.1021/acs.inorgchem.0c01703] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Following the strategy of installing porosity in coordination polymers predefined by linker geometry, we employed the new tetratopic linker molecule 1,1,2,2-tetrakis[4-phosphonophenyl]ethylene (H8TPPE) for the synthesis of new porous metal phosphonates. A high-throughput study was carried out using Ni2+ and Co2+ as metal ions, and a very strong influence of the reactor size on the product formation is observed while maintaining the same reaction parameters. Using small autoclaves (V = 250 μL), single crystals of isostructural mononuclear complexes of the composition [Ni(H3DPBP)2(H2O)4] (1) and [Co(H3DPBP)2(H2O)4] (2) are formed. They contain the linker molecule H4DPBP (4,4'-diphosphonobenzophenone), which is formed in situ by oxidation of H8TPPE. Using autoclaves with a volume of V = 2 mL, two new 3D metal-organic frameworks (MOFs) of composition [Ni2(H4TPPE)(H2O)6]·4H2O (CAU-46) and [Co2(H4TPPE)(H2O)4]·3H2O (CAU-47) were isolated in bulk quantities, and their crystal structures were determined from three-dimensional electron diffraction (3D ED) and powder X-ray diffraction data. Using even larger autoclaves (V = 30 mL), another 3D MOF of the composition [Co2(H4TPPE)]·6H2O (Co-CAU-48) was obtained, and a structure model was established via 3D ED measurements. Remarkably, the isostructural compound [Ni2(H4TPPE)]·9H2O (Ni-CAU-48) is only obtained indirectly, i.e., via thermal activation of CAU-46. As the chosen linker geometry leads to the formation of MOFs, topological analyses were carried out, highlighting the different connectivities observed in the three frameworks. Porosity of the compounds was proven via water sorption experiments, resulting in uptakes of 126 mg/g (CAU-46), 105 mg/g (CAU-47), 210 mg/g (Ni-CAU-48), and 109 mg/g (Co-CAU-48).
Collapse
Affiliation(s)
- Stephan Wöhlbrandt
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Christoph Meier
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Helge Reinsch
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Erik Svensson Grape
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - A Ken Inge
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Norbert Stock
- Institut für Anorganische Chemie, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|