1
|
Yan M, Yang R, Liu C, Gao Y, Zhang B. In Situ Probing the Anion-Widened Anodic Electric Double Layer for Enhanced Faradaic Efficiency of Chlorine-Involved Reactions. J Am Chem Soc 2025; 147:6698-6706. [PMID: 39953989 DOI: 10.1021/jacs.4c16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2025]
Abstract
The electric double layer (EDL), which is directly related to ions, influences the electrocatalytic performance. However, the effects of anions on the anodic EDL and reaction kinetics are unclear, especially in water-mediated electrosynthesis. Here, ClO4- anions are discovered to widen the anodic EDL to inhibit the competitive oxygen evolution reaction (OER) for the gram-scale electrosynthesis of 2-chlorocyclohexanol with a 90% Faradaic efficiency (FE) at 100 mA cm-2. The combined results of molecular dynamics simulations and in situ spectroscopies provide solid evidence for the widened EDL that originates from the repulsion of water molecules from the interface by ClO4-. The addition of ClO4- has a negligible effect on chlorination kinetics because of the electrostatic interaction between the anode and Cl- but obviously suppresses the interaction between water and the anode, leading to high FEs of anodic electrosynthesis by increasing the energy barrier of the undesirable OER. In addition, this method is suitable for other chlorination reactions with enhanced FEs at 100 mA cm-2.
Collapse
Affiliation(s)
- Mingming Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Rong Yang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Cuibo Liu
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Ying Gao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
He M, Wang H, Cheng C, Li R, Liu C, Gao Y, Zhang B. Cu δ+ Site-Enhanced Adsorption and Crown Ether-Reconfigured Interfacial D 2O Promote Electrocatalytic Dehalogenative Deuteration. J Am Chem Soc 2025; 147:5377-5385. [PMID: 39874478 DOI: 10.1021/jacs.4c17432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Electrocatalytic dehalogenative deuteration is a sustainable method for precise deuteration, whereas its Faradaic efficiency (FE) is limited by a high overpotential and severe D2 evolution reaction (DER). Here, Cuδ+ site-adjusted adsorption and crown ether-reconfigured interfacial D2O are reported to cooperatively increase the FE of dehalogenative deuteration up to 84% at -100 mA cm-2. Cuδ+ sites strengthen the adsorption of aryl iodides, promoting interfacial mass transfer and thus accelerating the kinetics toward dehalogenative deuteration. The crown ethers disrupt the hydration effect of K·D2O and reconstruct the hydrogen bond with the interfacial D2O, lowering the content K·D2O of the electric double layer and hindering the interaction between D2O and the cathode, thus inhibiting the kinetics of the competitive DER. A linear relationship between the matched sizes of crown ethers and alkali metal cations is demonstrated for universally increasing FEs. This method is also suitable for the deuteration of various halides with high easily reducible functional group compatibility and improved FEs at -100 mA cm-2.
Collapse
Affiliation(s)
- Meng He
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Haotian Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Chuanqi Cheng
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Rui Li
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Cuibo Liu
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Ying Gao
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Bin Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Wang FT, Zhu JX, Liu C, Xiong K, Liu X, Cheng J. Spatial correlation of desorption events accelerates water exchange dynamics at Pt/water interfaces. Chem Sci 2025; 16:2325-2334. [PMID: 39776653 PMCID: PMC11701835 DOI: 10.1039/d4sc06967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps. We reproduce interfacial structures consistent with ab initio molecular dynamics (AIMD) results and obtain diffusion and reorientation dynamics in agreement with the experiment. We show that the hydrogen bonds at the interface become stronger than those in bulk water, which makes the diffusion, reorientation, and hydrogen-bond dynamics slower. Our findings reveal that the spatial correlation of desorption events, driven by the breaking and making of hydrogen bonds, accelerates water exchange dynamics. These dynamics occur on timescales of several hundred picoseconds at 337 K and 302 K. We take a solid step forward toward studying the in situ interface water dynamics and attribute the fast water exchange dynamics to the spatial correlation of the desorption events.
Collapse
Affiliation(s)
- Fei-Teng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jia-Xin Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Chang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ke Xiong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Xiandong Liu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University Nanjing Jiangsu 210023 P. R. China
- Frontiers Science Center for Critical Earth Material Cycling, Nanjing University Nanjing Jiangsu 210023 P. R. China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM Xiamen 361005 China
- Institute of Artificial Intelligence, Xiamen University Xiamen 361005 China
| |
Collapse
|
4
|
Limbu DK, London N, Faruque MO, Momeni MR. h-CMD: An efficient hybrid fast centroid and quasi-centroid molecular dynamics method for the simulation of vibrational spectra. J Chem Phys 2025; 162:014111. [PMID: 39749903 DOI: 10.1063/5.0248115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
Developing efficient path integral (PI) methods for atomistic simulations of vibrational spectra in heterogeneous condensed phases and interfaces has long been a challenging task. Here, we present the h-CMD method, short for hybrid centroid molecular dynamics, which combines the recently introduced fast quasi-CMD (f-QCMD) method with fast CMD (f-CMD). In this scheme, molecules that are believed to suffer more seriously from the curvature problem of CMD, e.g., water, are treated with f-QCMD, while the rest, e.g., solid surfaces, are treated with f-CMD. To test the accuracy of the newly introduced scheme, the infrared spectra of the interfacial D2O confined in the archetypal ZIF-90 framework are simulated using h-CMD compared to a variety of other PI methods, including thermostatted ring-polymer molecular dynamics (T-RPMD) and partially adiabatic CMD as well as f-CMD and experiment as reference. Comparisons are also made with classical MD, where nuclear quantum effects are neglected entirely. Our detailed comparisons at different temperatures of 250-600 K show that h-CMD produces O-D stretches that are in close agreement with the experiment, correcting the known curvature problem and redshifting of the stretch peaks of CMD. h-CMD also corrects the known issues associated with too artificially dampened and broadened spectra of T-RPMD, which leads to missing the characteristic doublet feature of the interfacial confined water, rendering it unsuitable for these systems. The new h-CMD method broadens the applicability of f-QCMD to heterogeneous condensed phases and interfaces, where defining curvilinear coordinates for the entire system is not feasible.
Collapse
Affiliation(s)
- Dil K Limbu
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Nathan London
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Md Omar Faruque
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | - Mohammad R Momeni
- Division of Energy, Matter and Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| |
Collapse
|
5
|
Deng C, Li L, Hu H, Xu Z, Zhou Y, Yin Q, Chen J. Effect of magnetized water on the fundamental grouting properties of cement grout under varying magnetization conditions. Sci Rep 2025; 15:700. [PMID: 39754017 PMCID: PMC11699155 DOI: 10.1038/s41598-024-84928-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
The development and modification of grouting materials constitute crucial factors influencing the effectiveness of grouting. Given the pivotal role of water in the hydration of cement-based composite materials and construction processes, this study proposes an exploratory approach using green, economical magnetized water technology to enhance the performance of cement grouts. The research systematically investigates the effects of magnetized water on the fundamental grouting properties (stability, rheological behavior, and stone body strength) of cement grouts, prepared under varying magnetization conditions (including magnetic intensity, water flow speed, and cycle times). Through the conduct of specific physicochemical tests on water, the study elucidates the mechanism through which magnetized water influences these properties. The results indicate that magnetized water positively impacts the stability of cement grouts, significantly reducing their absolute viscosity, apparent viscosity, plastic viscosity, and yield stress, thus markedly affecting the rheological characteristics of the cement grouts. Additionally, magnetized water notably enhances the flexural and compressive strength of the cement grout stone body, with a particularly significant improvement in early strength. From a quantum mechanics perspective, a magnetization mechanism based on the competition between the strengthening of hydrogen bonds between water molecule clusters and the weakening or breaking of hydrogen bonds within clusters is introduced, providing a theoretical basis for explaining the variability observed in water magnetization experiments.
Collapse
Affiliation(s)
- Chao Deng
- Hunan Engineering Research Center of Structural Safety and Disaster Prevention for Urban Underground Infrastructure, Hunan City University, Yiyang, 413000, People's Republic of China.
- Hunan Engineering Research Center of Development and Application of Ceramsite Concrete Technology, Hunan City University, Yiyang, 413000, Hunan Province, People's Republic of China.
| | - Liuxi Li
- Hunan Engineering Research Center of Structural Safety and Disaster Prevention for Urban Underground Infrastructure, Hunan City University, Yiyang, 413000, People's Republic of China
| | - Huanxiao Hu
- Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring Ministry of Education, School of Geosciences and Info-physics, Central South University, Changsha, 410083, People's Republic of China
| | - Zhichao Xu
- Hunan Engineering Research Center of Structural Safety and Disaster Prevention for Urban Underground Infrastructure, Hunan City University, Yiyang, 413000, People's Republic of China
| | - Yi Zhou
- Hunan Engineering Research Center of Structural Safety and Disaster Prevention for Urban Underground Infrastructure, Hunan City University, Yiyang, 413000, People's Republic of China
| | - Quan Yin
- Department of Civil and Urban Engineering, New York University, Brooklyn, NY, USA
| | - Juan Chen
- College of Electrical and Information Engineering, Hunan University of Science and Technology, Xiangtan, 411201, Hunan, People's Republic of China
| |
Collapse
|
6
|
Ozcelik HG, Bienek D, Hardt M, Glikman D, Braunschweig B, Heuer A. Photoswitchable Arylazopyrazole Surfactants at the Water-Air Interface: A Microscopic Perspective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27183-27193. [PMID: 39686529 DOI: 10.1021/acs.langmuir.4c02397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Surfactants play an important role in modifying the properties of water-air interfaces. Here, we combine information from molecular dynamics simulations, surface tensiometry, and vibrational sum-frequency generation spectroscopy to study the interfacial behavior of photoswitchable arylazopyrazole (AAP) surfactants. This combination of the experimental techniques allows a direct relation between surface tension and surface concentration rather than just the bulk concentration. Specifically, we conducted a comparison between two derivatives, one with an octyl terminal group (O-AAP) and the other without this group (H-AAP), focusing on their respective E and Z isomers. From the simulations of these four systems, we see that those with a stronger cluster formation, likely resulting from higher intermolecular attractive interactions, display higher surface tensions for the intermediate surface excess. In some cases, even a small but noticeable maximum in the surface tension isotherm is observed for systems with strong cluster formation. Such a maximum is not observed in the experiments, although such an observation would be compatible with the general properties of the Frumkin isotherm. We exclude that the peak is due to the finite width of the simulation box. Apart from this effect, the general features of the surface tension are consistent between the experiment and simulation. Evidence is also provided that it is primarily the interaction of the aromatic rings that determines the strength of the surfactant interactions.
Collapse
Affiliation(s)
- H Gokberk Ozcelik
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - David Bienek
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - Michael Hardt
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - Dana Glikman
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - Björn Braunschweig
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| | - Andreas Heuer
- University of Münster, Institute of Physical Chemistry, Corrensstr. 28/30, 48149 Münster, Germany
| |
Collapse
|
7
|
Gray K, Edwards H, Doan AG, Huso W, Lee J, Pan W, Bolima N, Morse ME, Yoda S, Gautam I, Harris SD, Zupan M, Wang T, deCarvalho T, Marten MR. Aspergillus nidulans cell wall integrity kinase, MpkA, impacts cellular phenotypes that alter mycelial-material mechanical properties. Fungal Biol Biotechnol 2024; 11:22. [PMID: 39695906 DOI: 10.1186/s40694-024-00191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
Mycelial materials are an emerging, natural material made from filamentous fungi that have the potential to replace unsustainable materials used in numerous commercial applications (e.g., packaging, textiles, construction). Efforts to change the mechanical properties of mycelial-materials have typically involved altering growth medium, processing approaches, or fungal species. Although these efforts have shown varying levels of success, all approaches have shown there is a strong correlation between phenotype (of both fungal mycelia and mycelial material's assembly) and resultant mechanical properties. We hypothesize that genetic means can be used to generate specific fungal phenotypes, leading to mycelial materials with specific mechanical properties. To begin to test this hypothesis, we used a mutant of the model filamentous fungus, Aspergillus nidulans, with a deletion in the gene encoding the last kinase in the cell wall integrity (CWI) signaling pathway, mpkA. We generated one set of mycelial materials from the ΔmpkA deletion mutant (A1404), and another from its isogenic parent (A1405; control). When subjected to tensile testing, and compared to material generated from the control, ΔmpkA material has similar elastic modulus, but significantly increased ultimate tensile strength, and strain at failure. When subjected to a fragmentation assay (i.e., resistance to shear-stress), the ΔmpkA material also had higher relative mechanical strength. To determine possible causes for this behavior, we carried out a comprehensive set of phenotype assessments focused on: three-dimensional structure, hyphal morphology, hyphal growth behaviors, and conidial development. We found, compared to the control, material generated from the ΔmpkA mutant manifests significantly less development, a modified cell wall composition, larger diameter hyphae, more total biomass, higher water capacity and more densely packed material, which all appear to impact the altered mechanical properties.
Collapse
Affiliation(s)
- Kelsey Gray
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Harley Edwards
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Alexander G Doan
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Walker Huso
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - JungHun Lee
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Wanwei Pan
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Nelanne Bolima
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Meredith E Morse
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Sarah Yoda
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Isha Gautam
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln, East Lansing, MI, 48824, USA
| | - Steven D Harris
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Marc Zupan
- Department of Mechanical Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, 578 S. Shaw Ln, East Lansing, MI, 48824, USA
| | - Tagide deCarvalho
- Keith R. Porter Imaging Facility, College of Natural and Mathematical Sciences, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Mark R Marten
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland, Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| |
Collapse
|
8
|
Flór M, Wilkins DM, de la Puente M, Laage D, Cassone G, Hassanali A, Roke S. Dissecting the hydrogen bond network of water: Charge transfer and nuclear quantum effects. Science 2024; 386:eads4369. [PMID: 39446897 DOI: 10.1126/science.ads4369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024]
Abstract
The molecular structure of water is dynamic, with intermolecular hydrogen (H) bond interactions being modified by both electronic charge transfer and nuclear quantum effects (NQEs). Electronic charge transfer and NQEs potentially change under acidic or basic conditions, but such details have not been measured. In this work, we developed correlated vibrational spectroscopy, a symmetry-based method that separates interacting from noninteracting molecules in self- and cross-correlation spectra, giving access to previously inaccessible information. We found that hydroxide (OH-) donated ~8% more negative charge to the H bond network of water, and hydronium (H3O+) accepted ~4% less negative charge from the H bond network of water. Deuterium oxide (D2O) had ~9% more H bonds compared with water (H2O), and acidic solutions displayed more dominant NQEs than basic ones.
Collapse
Affiliation(s)
- Mischa Flór
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David M Wilkins
- Centre for Quantum Materials and Technologies, School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Miguel de la Puente
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Damien Laage
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Giuseppe Cassone
- Institute for Physical-Chemical Processes, National Research Council of Italy (IPCF-CNR), Messina, Italy
| | - Ali Hassanali
- The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), and Institute of Materials Science (IMX), School of Engineering (STI), and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
9
|
Sun Y, Cao Y, Wang Q, Li X, Sun S, Gu W, He J. Understanding the structures and interactions in gaseous mixtures of water-alcohol by high-resolution infrared spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124790. [PMID: 38981286 DOI: 10.1016/j.saa.2024.124790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Interactions of water and chemical or bio-compound have a universal concern and have been extensively studied. For spectroscopic analysis, the complexity and the low resolution of the spectra make it difficult to obtain the spectral features showing the interactions. In this work, the structures and interactions in gaseous water and water-alcohol mixtures were studied using high-resolution infrared (HR-IR) spectroscopy. The spectral features of water clusters of different sizes, including dimer, trimer, tetramer and pentamer, were observed from the measured spectra of the samples in different volume concentrations, and the interactions of water and methanol/ethanol in the mixtures were obtained. In the analysis, a method based on principal component analysis was used to separate the overlapping spectra. In water-alcohol mixtures, when water is less, water molecules tend to interact with the OH groups on the exterior of the alcohol aggregate, and with the increase of water, a water cage forms around the aggregates. Furthermore, the ratio of the molecule number of methanol in the aggregate to that of water in the cage is around 1:2.3, and the ratio for ethanol is about 1:3.2.
Collapse
Affiliation(s)
- Yan Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Yaqi Cao
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Qing Wang
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China.
| | - Xuli Li
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Weimin Gu
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| | - Jiao He
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei University of Engineering, Handan 056038, China
| |
Collapse
|
10
|
Prasoon A, Ghouse S, Nguyen NN, Yang H, Müller A, Naisa C, Paasch S, Herbawe A, Aiti MA, Cuniberti G, Brunner E, Feng X. Mimicking on-water surface synthesis through micellar interfaces. Nat Commun 2024; 15:10495. [PMID: 39627210 PMCID: PMC11615243 DOI: 10.1038/s41467-024-54962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/25/2024] [Indexed: 12/06/2024] Open
Abstract
The chemistry of the on-water surface, characterized by enhanced reactivity, distinct selectivity, and confined reaction geometry, offers significant potential for chemical and materials syntheses. However, the utilization of on-water surface synthesis is currently limited by the requirement for a stable air-water interface, which restricts its broader synthetic applications. In this work, we present a approach that mimics on-water surface chemistry using micelles. This method involves the self-assembly of charged surfactant molecules beyond their critical micelle concentration (CMC), forming micellar structures that simulate the air-water interface. This creates an environment conducive to chemical reactions, featuring a hydrophobic core and surrounding water layer. Utilizing such mimicking on-water surface with the assembly of porphyrin-based monomers featuring distinct confined geometry and preferential orientations, we achieve reactivity and selectivity (≥99%) in fourteen different reversible and irreversible chemical reactions. Extending the versatility of this approach, we further demonstrate its applicability to two-dimensional (2D) polymerization on micellar interfaces, successfully achieving the aqueous synthesis of crystalline 2D polymer thin layers. This strategy significantly broadens the accessibility of on-water surface chemistry for a wide range of chemical syntheses.
Collapse
Affiliation(s)
- Anupam Prasoon
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Shaik Ghouse
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Nguyen Ngan Nguyen
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Hyejung Yang
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Alina Müller
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Chandrasekhar Naisa
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany
| | - Silvia Paasch
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Abdallh Herbawe
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Muhannad Al Aiti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01062, Dresden, Germany
| | - Eike Brunner
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany.
- Max Planck Institute for Microstructure Physics, Halle (Saale), D-06120, Germany.
| |
Collapse
|
11
|
Sassi P, Comez L, D'Amico F, Rossi B, Bartolini G, Fioretto D, Paolantoni M. Ultraviolet Resonant Raman Scattering of Electrolyte Solutions. APPLIED SPECTROSCOPY 2024; 78:1270-1278. [PMID: 38632936 DOI: 10.1177/00037028241245443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Saltwater stands as the most prevalent liquid on Earth. Consequently, substantial interest has been directed toward its characterization, both as an independent system and as a solvent for complex structures such as biomacromolecules. In the last few decades, special emphasis was placed on the investigation of the hydration properties of ions for the fundamental role they play in numerous chemical processes. In this study, we employed multi-wavelength Raman spectroscopy to examine the hydration shell surrounding bromide ions in solutions of simple electrolytes, specifically lithium bromide, potassium bromide, and cesium bromide, at two different concentrations. Cation-induced differences among electrolytes were observed in connection to their tendency to form ion pairs. An increased sensitivity to reveal the structure of the first hydration shell was evidenced when employing ultraviolet excitation in the 228-266 nm range, under resonance conditions with the charge transfer transition to the solvent peaked at about 200 nm. Other than a significant increase in the Raman cross-section for the OH stretching band when shifting from pure water to the solution, a larger enhancement for the Raman signal of the H-O-H bending mode over the stretching vibration was observed. Thus, the bending band plays a crucial role in monitoring the H-bond structure of water around the anions related to the charge distribution within the first hydration shell of anions, being an effective probe of hydration phenomena.
Collapse
Affiliation(s)
- Paola Sassi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lucia Comez
- CNR-Istituto Officina dei Materiali (IOM), Perugia, Italy
| | - Francesco D'Amico
- Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, Trieste, Italy
| | - Barbara Rossi
- Elettra-Sincrotrone Trieste S.C.p.A. di interesse nazionale, Trieste, Italy
| | - Gabriele Bartolini
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Daniele Fioretto
- Dipartimento di Fisica e Geologia, Università di Perugia, Perugia, Italy
| | - Marco Paolantoni
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| |
Collapse
|
12
|
Wang M, Zhao J, Zhang Y, Liu Y, Ji W, Xiang X. Electrolyte-Salts Regulated Hydrogen-Bonding Configuration and Interphase Formation Achieving Highly Stable Anode for Rechargeable Aqueous Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407961. [PMID: 39420700 DOI: 10.1002/smll.202407961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Hydrogen evolution reactions that cause the alkalization of aqueous electrolytes generally frustrate the structural stability and cycling performance of NaTi2(PO4)3/C anode material for rechargeable aqueous sodium-ion batteries (ASIBs). Herein, a novel highly concentrated electrolyte with a large hydrogen-evolution overpotential and hydroxide-capture ability is rationally established by incorporating a bifunctional Mg(Ac)2 additive into a concentrated NaAc aqueous solution. The highly concentrated electrolyte salts (4m NaAc+3m Mg(Ac)2) favor regulation on hydrogen-bonding configurations and kinetically shift the hydrogen evolution potential to a lower value of -1.37 V (vs Ag/AgCl). The Mg(Ac)2 additive plays particular roles in spontaneously capturing hydroxide ions generated during hydrogen evolution reactions on anode surfaces and simultaneously forming a protective Mg(OH)2-like interphase. As a result, the unique electrolyte significantly improves the structural stability and cycling performance of NaTi2(PO4)3/C anode (94.8% capacity retention after 100 cycles at 100 mA·g-1). The effect of salt concentration on hydrogen bonding configurations of aqueous electrolytes is investigated with Raman spectroscopy and FTIR spectroscopy. The interphase is identified by coupling EDS mapping, X-ray photoelectron spectroscopy, and X-ray diffraction. This work provides a new strategy for improving the cycling stability of aqueous sodium-ion batteries.
Collapse
Affiliation(s)
- Meijing Wang
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Jiaojiao Zhao
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yangyang Zhang
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yunyun Liu
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Wei Ji
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, Northeast Forestry University, Harbin, 150040, China
| | - Xingde Xiang
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
13
|
Mahmoud SS, Ibrahim AE, Hanafy MS. In vivo assessment of topically applied silver nanoparticles on entire cornea: comprehensive FTIR study. Nanotoxicology 2024; 18:661-677. [PMID: 39530142 DOI: 10.1080/17435390.2024.2426548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/01/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Silver nanoparticles (AgNPs) have gained attention in medicine for their potent antibacterial, antiviral, and anti-inflammatory properties. The use of silver nanoparticles in ophthalmic solutions raises concerns regarding potential toxicity of nanoparticles to ocular tissues, such as the cornea, conjunctiva, and retina, which necessitates further toxicity assessments aiding in the development of safer ophthalmic solutions. This study investigates the impact of AgNPs on corneal tissue using ophthalmic investigations, Fourier transform infrared (FTIR) spectroscopy, and chemometric analyses. Three concentrations of AgNPs (0.48 µg/mL, 7.2 µg/mL, and 15.5 µg/mL) were topically applied twice daily for 10 days, synthesized biologically by reducing silver nitrate with almond kernels water extract. Corneas, obtained by cutting 2-3 mm below the ora serrata, were analyzed with FTIR spectroscopy and subjected to chemometric analyses. Results reveal AgNPs' influence on constituents with OH and NH groups, affecting corneal lipids and reducing the lipid saturation index. AgNPs alter both bulk and interfacial water, leading to changes in corneal hydration thus modifying corneal physico-chemical properties. The influence extends to the water environment around proteins and lipids, releasing bound water from phospholipids and disrupting hydrogen bonding networks around proteins. In conclusion, the applied AgNPs concentrations can be linked to dry eye onset.
Collapse
Affiliation(s)
- Sherif S Mahmoud
- Biophysics and Laser Science Unit, Research Institute of Ophthalmology, Giza, Egypt
| | - Amira E Ibrahim
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Magda S Hanafy
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Gasse P, Stensitzki T, Müller-Werkmeister HM. 2D-IR spectroscopy of azide-labeled carbohydrates in H2O. J Chem Phys 2024; 161:195101. [PMID: 39564876 DOI: 10.1063/5.0225308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/03/2024] [Indexed: 11/21/2024] Open
Abstract
Carbohydrates constitute one of the key classes of biomacromolecules, yet vibrational spectroscopic studies involving carbohydrates remain scarce as spectra are highly congested and lack significant marker vibrations. Recently, we introduced and characterized a thiocyanate-labeled glucose [Gasse et al., J. Chem. Phys. 158, 145101 (2023)] demonstrating 2D-IR spectroscopy of carbohydrates using vibrational probes. Here, we build on that work and test azide groups as alternative for studies of carbohydrates to expand the available set of local probes. Many common carbohydrates with different azide labeling positions, such as galactose, glucose, or lactose, are readily available due to their application in click chemistry and hence do not require additional complex synthesis strategies. In this work, we have characterized azide-labeled glucose,, galactose, acetylglucosamine and lactose in water using IR and 2D-IR spectroscopy to test their potential for future applications in studies of carbohydrate-protein interactions. Our findings indicate that their absorption profiles and vibrational dynamics are primarily determined by the labeling position on the ring. However, we also observe additional variations between samples with the same labeling position. Furthermore, we demonstrate that their usage remains feasible at biologically relevant concentrations, highlighting their potential to probe more complex biological processes, i.e., enzymatic catalysis.
Collapse
Affiliation(s)
- P Gasse
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| | - T Stensitzki
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| | - H M Müller-Werkmeister
- University of Potsdam, Institute of Chemistry, Physical Chemistry, Karl-Liebknecht-Str. 24-25, 14 667 Potsdam, Germany
| |
Collapse
|
15
|
Swiatla-Wojcik D. Simulation Studies of the Dynamics and the Connectivity Patterns of Hydrogen Bonds in Water from Ambient to Supercritical Conditions. Molecules 2024; 29:5513. [PMID: 39683673 DOI: 10.3390/molecules29235513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Pressurized high-temperature water attracts attention as a promising medium for chemical synthesis, biomass processing or destruction of hazardous waste. Adjustment to the desired solvent properties requires knowledge on the behavior of populations of hydrogen-bonded molecules. In this work, the interconnection between the hydrogen bond (HB) dynamics and the structural rearrangements of HB networks have been studied by molecular dynamics simulation using the modified central force flexible potential and the HB definition controlling pair interaction energy, HB length and HB angle. Time autocorrelation functions for molecular pairs bonded continuously and intermittently and the corresponding mean lifetimes have been calculated for conditions ranging from ambient to supercritical. A significant reduction in the continuous and intermittent lifetimes has been found between (293 K, 0.1 MPa) and (373 K, 25 MPa) and attributed to the decreasing size of patches embedded in the continuous HB network. The loss of global HB connectivity at ca. (573 K, 10 MPa) and the investigated supercritical conditions do not noticeably affect the HB dynamics. Over the whole temperature range studied, the reciprocal intermittent lifetime follows the transition state theory dependence on temperature with the activation energy of 10.4 kJ/mol. Calculations of the lifetime of molecules that do not form hydrogen bonds indicate that at supercritical temperatures, the role of reactions involving an unbound H2O molecule as a reactant can be enhanced by lowering system density.
Collapse
Affiliation(s)
- Dorota Swiatla-Wojcik
- Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
16
|
Pritchard FG, Jordan CJC, Verlet JRR. Probing photochemical dynamics using electronic vs vibrational sum-frequency spectroscopy: The case of the hydrated electron at the water/air interface. J Chem Phys 2024; 161:170901. [PMID: 39484892 DOI: 10.1063/5.0235875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
Photo-dynamics can proceed differently at the water/air interface compared to in the respective bulk phases. Second-order non-linear spectroscopy is capable of selectively probing the dynamics of species in such an environment. However, certain conclusions drawn from vibrational and electronic sum-frequency generation spectroscopies do not agree as is the case for the formation and structure of hydrated electrons at the interface. This Perspective aims to highlight these apparent discrepancies, how they can be reconciled, suggests how the two techniques complement one another, and outline the value of performing both techniques on the same system.
Collapse
Affiliation(s)
- Faith G Pritchard
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Caleb J C Jordan
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
17
|
Martinka J, Pederzoli M, Barbatti M, Dral PO, Pittner J. A simple approach to rotationally invariant machine learning of a vector quantity. J Chem Phys 2024; 161:174104. [PMID: 39484894 DOI: 10.1063/5.0230176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024] Open
Abstract
Unlike with the energy, which is a scalar property, machine learning (ML) prediction of vector or tensor properties poses the additional challenge of achieving proper invariance (covariance) with respect to molecular rotation. For the energy gradients needed in molecular dynamics (MD), this symmetry is automatically fulfilled when taking analytic derivative of the energy, which is a scalar invariant (using properly invariant molecular descriptors). However, if the properties cannot be obtained by differentiation, other appropriate methods should be applied to retain the covariance. Several approaches have been suggested to properly treat this issue. For nonadiabatic couplings and polarizabilities, for example, it was possible to construct virtual quantities from which the above tensorial properties are obtained by differentiation and thus guarantee the covariance. Another possible solution is to build the rotational equivariance into the design of a neural network employed in the model. Here, we propose a simpler alternative technique, which does not require construction of auxiliary properties or application of special equivariant ML techniques. We suggest a three-step approach, using the molecular tensor of inertia. In the first step, the molecule is rotated using the eigenvectors of this tensor to its principal axes. In the second step, the ML procedure predicts the vector property relative to this orientation, based on a training set where all vector properties were in this same coordinate system. As the third step, it remains to transform the ML estimate of the vector property back to the original orientation. This rotate-predict-rotate (RPR) procedure should thus guarantee proper covariance of a vector property and is trivially extensible also to tensors such as polarizability. The RPR procedure has an advantage that the accurate models can be trained very fast for thousands of molecular configurations, which might be beneficial where many training sets are required (e.g., in active learning). We have implemented the RPR technique, using the MLatom and Newton-X programs for ML and MD, and performed its assessment on the dipole moment along MD trajectories of 1,2-dichloroethane.
Collapse
Affiliation(s)
- Jakub Martinka
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Sciences, Charles University, Hlavova 8, 12843 Prague 2, Czech Republic
| | - Marek Pederzoli
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Mario Barbatti
- Aix Marseille University, CNRS, ICR, Marseille, France
- Institut Universitaire de France, 75231 Paris, France
| | - Pavlo O Dral
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
18
|
Fellows A, John B, Wolf M, Thämer M. Extracting the Heterogeneous 3D Structure of Molecular Films Using Higher Dimensional SFG Microscopy. J Phys Chem Lett 2024; 15:10849-10857. [PMID: 39436358 PMCID: PMC11533227 DOI: 10.1021/acs.jpclett.4c02679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024]
Abstract
Ultrathin molecular films are widespread in both natural and industrial settings, where details of the molecular structure such as density, out-of-plane tilt angles, and in-plane directionality determine their physicochemical properties. Many of these films possess important molecular-to-macroscopic heterogeneity in these structural parameters, which have traditionally been difficult to characterize. Here, we show how extending sum-frequency generation (SFG) microscopy measurements to higher dimensionality by azimuthal-scanning can extract the spatial variation in the three-dimensional molecular structure at an interface. We extend the commonly applied theoretical assumptions used to analyze SFG signals to the study of systems possessing in-plane anisotropy. This theoretical framework is then applied to a phase-separated mixed lipid monolayer to investigate the variation in molecular density and 3D orientation across the chirally packed lipid domains. The results show little variation in out-of-plane structure but a distinct micron-scale region at the domain boundaries with a reduction in both density and in-plane ordering.
Collapse
Affiliation(s)
- Alexander
P. Fellows
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Ben John
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Martin Thämer
- Fritz-Haber-Institut der
Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| |
Collapse
|
19
|
Du X, Shao W, Bao C, Zhang L, Cheng J, Tang F. Revealing the molecular structures of α-Al2O3(0001)-water interface by machine learning based computational vibrational spectroscopy. J Chem Phys 2024; 161:124702. [PMID: 39315880 DOI: 10.1063/5.0230101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Solid-water interfaces are crucial to many physical and chemical processes and are extensively studied using surface-specific sum-frequency generation (SFG) spectroscopy. To establish clear correlations between specific spectral signatures and distinct interfacial water structures, theoretical calculations using molecular dynamics (MD) simulations are required. These MD simulations typically need relatively long trajectories (a few nanoseconds) to achieve reliable SFG response function calculations via the dipole moment-polarizability time correlation function. However, the requirement for long trajectories limits the use of computationally expensive techniques, such as ab initio MD (AIMD) simulations, particularly for complex solid-water interfaces. In this work, we present a pathway for calculating vibrational spectra (IR, Raman, and SFG) of solid-water interfaces using machine learning (ML)-accelerated methods. We employ both the dipole moment-polarizability correlation function and the surface-specific velocity-velocity correlation function approaches to calculate SFG spectra. Our results demonstrate the successful acceleration of AIMD simulations and the calculation of SFG spectra using ML methods. This advancement provides an opportunity to calculate SFG spectra for complicated solid-water systems more rapidly and at a lower computational cost with the aid of ML.
Collapse
Affiliation(s)
- Xianglong Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China
| | - Weizhi Shao
- Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
- AI for Science Institute, Beijing 100080, China
| | - Chenglong Bao
- Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
| | - Linfeng Zhang
- AI for Science Institute, Beijing 100080, China
- DP Technology, Beijing 100080, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, China
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
| | - Fujie Tang
- Laboratory of AI for Electrochemistry (AI4EC), Tan Kah Kee Innovation Laboratory (IKKEM), Xiamen 361005, China
- Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Stepanov GO, Penkov NV, Rodionova NN, Petrova AO, Kozachenko AE, Kovalchuk AL, Tarasov SA, Tverdislov VA, Uvarov AV. The heterogeneity of aqueous solutions: the current situation in the context of experiment and theory. Front Chem 2024; 12:1456533. [PMID: 39391834 PMCID: PMC11464478 DOI: 10.3389/fchem.2024.1456533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
The advancement of experimental methods has provided new information about the structure and structural fluctuations of water. Despite the appearance of numerous models, which aim to describe a wide range of thermodynamic and electrical characteristics of water, there is a deficit in systemic understanding of structuring in aqueous solutions. A particular challenge is the fact that even pure water is a heterogeneous, multicomponent system composed of molecular and supramolecular structures. The possibility of the existence of such structures and their nature are of fundamental importance for various fields of science. However, great difficulties arise in modeling relatively large supramolecular structures (e.g. extended hydration shells), where the bonds between molecules are characterized by low energy. Generally, such structures may be non-equilibrium but relatively long-lived. Evidently, the short times of water microstructure exchanges do not mean short lifetimes of macrostructures, just as the instability of individual parts does not mean the instability of the entire structure. To explain this paradox, we review the data from experimental and theoretical research. Today, only some of the experimental results on the lifetime of water structures have been confirmed by modeling, so there is not a complete theoretical picture of the structure of water yet. We propose a new hierarchical water macrostructure model to resolve the issue of the stability of water structures. In this model, the structure of water is presented as consisting of many hierarchically related levels (the stratification model). The stratification mechanism is associated with symmetry breaking at the formation of the next level, even with minimal changes in the properties of the previous level. Such a hierarchical relationship can determine the unique physico-chemical properties of water systems and, in the future, provide a complete description of them.
Collapse
Affiliation(s)
- German O. Stepanov
- Department of General and Medical biophysics, Medical Biological Faculty, N.I. Pirogov Russian National Research Medical University, Moscow, Russia
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Nikita V. Penkov
- Institute of Cell Biophysics RAS, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Natalia N. Rodionova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Anastasia O. Petrova
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | | | | | - Sergey A. Tarasov
- Research and Development Department, OOO "NPF "Materia Medica Holding", Moscow, Russia
| | - Vsevolod A. Tverdislov
- Department of Biophysics Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander V. Uvarov
- Department of Molecular Processes and Extreme States of Matter, Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
21
|
Huang-Fu ZC, Qian Y, Zhang T, Brown JB, Rao Y. Development of phase-cycling interface-specific two-dimensional electronic sum frequency generation (2D-ESFG) spectroscopy. J Chem Phys 2024; 161:114201. [PMID: 39291691 DOI: 10.1063/5.0227560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
Two-dimensional electronic spectroscopy (2D-ES) has become an important technique for studying energy transfer, electronic coupling, and electronic-vibrational coherence in the past ten years. However, since 2D-ES is not interface specific, the electronic information at surfaces and interfaces could not be demonstrated clearly. Two-dimensional electronic sum-frequency generation (2D-ESFG) is an emerging spectroscopic technique that explores the correlations between different interfacial electronic transitions and is the extension of 2D-ES to surface and interfacial specificity. In this work, we present the detailed development and implementation of phase-cycling 2D-ESFG spectroscopy using an acousto-optic pulse shaper in a pump-probe geometry. With the pulse pair generated by a pulse shaper rather than optical devices based on birefringence or interference, this 2D-ESFG setup enables rapid scanning, phase cycling, and the separation of rephasing and nonrephasing signals. In addition, by collecting data in a rotating frame, we greatly improve experimental efficiency. We demonstrate the method for azo-derivative molecules at the air/water interface. This method could be readily extended to different interfaces and surfaces. The unique phase-cycling 2D-ESFG technique enables one to quantify the energy transfer, charge transfer, electronic coupling, and many other electronic properties and dynamics at surfaces and interfaces with precision and relative ease of use. Our goal in this article is to present the fine details of the fourth-order nonlinear optical technique in a manner that is comprehensive, succinct, and approachable such that other researchers can implement, improve, and adapt it to probe unique and innovative problems to advance the field.
Collapse
Affiliation(s)
- Zhi-Chao Huang-Fu
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yuqin Qian
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Tong Zhang
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Jesse B Brown
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| | - Yi Rao
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
22
|
Park S, Oh D, Jang MG, Seo H, Kim U, Ahn J, Choi Y, Shin D, Han JW, Jung W, Kim ID. Unmatched Redox Activity of the Palladium-Doped Indium Oxide Oxygen Carrier for Low-Temperature CO 2 Splitting. ACS NANO 2024; 18:25577-25590. [PMID: 39189916 DOI: 10.1021/acsnano.4c06244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The chemical conversion of CO2 into value-added products is the key technology to realize a carbon-neutral society. One representative example of such conversion is the reverse water-gas shift reaction, which produces CO from CO2. However, the activity is insufficient at ambient pressure and lower temperatures (<600 °C), making it a highly energy-intensive and impractical process. Herein, we report indium oxide nanofibers modified with palladium catalysts that exhibit significantly potent redox activities toward the reduction of CO2 splitting via chemical looping. In particular, we uncover that the doped palladium cations are selectively reduced and precipitated onto the host oxide surface as metallic nanoparticles. These catalytic gems formed operando make In2O3 lattice oxygen more redox-active in H2 and CO2 environments. As a result, the composite nanofiber catalysts demonstrate the reverse water-gas shift reaction via chemical looping at record-low temperatures (≤350 °C), while also imparting high activities (CO2 conversion: 45%). Altogether, our findings expand the viability of CO2 splitting at lower temperatures and provide design principles for indium oxide-based catalysts for CO2 conversion.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Myeong Gon Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Hwakyoung Seo
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Uisik Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Korea Electric Power Research Institute (KEPRI), Daejeon 34056, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yoonseok Choi
- Hydrogen Convergence Materials Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Republic of Korea
| | - Dongjae Shin
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong Woo Han
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
23
|
Fellows AP, Duque ÁD, Balos V, Lehmann L, Netz RR, Wolf M, Thämer M. How Thick is the Air-Water Interface?─A Direct Experimental Measurement of the Decay Length of the Interfacial Structural Anisotropy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18760-18772. [PMID: 39171356 PMCID: PMC11375779 DOI: 10.1021/acs.langmuir.4c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The air-water interface is a highly prevalent phase boundary impacting many natural and artificial processes. The significance of this interface arises from the unique properties of water molecules within the interfacial region, with a crucial parameter being the thickness of its structural anisotropy, or "healing depth". This quantity has been extensively assessed by various simulations which have converged to a prediction of a remarkably short length of ∼6 Å. Despite the absence of any direct experimental measurement of this quantity, this predicted value has surprisingly become widely accepted as fact. Using an advancement in nonlinear vibrational spectroscopy, we provide the first measurement of this thickness and, indeed, find it to be ∼6-8 Å, finally confirming the prior predictions. Lastly, by combining the experimental results with depth-dependent second-order spectra calculated from ab initio parametrized molecular dynamics simulations, which are also in excellent agreement with this experimental result, we shed light on this surprisingly short correlation length of molecular orientations at the interface.
Collapse
Affiliation(s)
- Alexander P Fellows
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Álvaro Díaz Duque
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Vasileios Balos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Louis Lehmann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Thämer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
24
|
Kamimura R, Maeda S, Hayashi T, Motobayashi K, Ikeda K. Why Is Surface-Enhanced Raman Scattering Insensitive to Liquid Water? J Am Chem Soc 2024; 146:22327-22334. [PMID: 39102527 DOI: 10.1021/jacs.4c04901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Surface-enhanced Raman scattering (SERS) is widely recognized as a remarkably powerful analytical technique that enables trace-level detection of organic molecules on a metal surface in aqueous systems with negligible spectral interference of water. This insensitivity of SERS to liquid water is violated in a restrictive manner under specific electrochemical conditions. However, the origin of such different SERS sensitivities to liquid water remains unclear. Here, we show that hydrogen-bond networks of water play a pivotal role in losing SERS enhancement for liquid water, and SERS detection of water requires local defects in the hydrogen-bond networks, which are formed around hydration shells of solute ions or on a polarized electrode surface. This work gives a new perspective on in situ SERS investigations in aqueous systems, including electrochemical and biological reactions.
Collapse
Affiliation(s)
- Ryuto Kamimura
- Program of Applied Physics, Department of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Shoichi Maeda
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Tomohiro Hayashi
- Department of Materials Science and Engineering, School of Materials Science and Chemical Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8502, Japan
| | - Kenta Motobayashi
- Program of Applied Physics, Department of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| | - Katsuyoshi Ikeda
- Program of Applied Physics, Department of Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan
| |
Collapse
|
25
|
Lin Z, Saito H, Sato H, Sugimoto T. Positive and Negative Impacts of Interfacial Hydrogen Bonds on Photocatalytic Hydrogen Evolution. J Am Chem Soc 2024; 146:22276-22283. [PMID: 38968321 DOI: 10.1021/jacs.4c04271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Understanding the behavior of water molecules at solid-liquid interfaces is crucial for various applications such as photocatalytic water splitting, a key technology for sustainable fuel production and chemical transformations. Despite extensive studies conducted in the past, the impact of the microscopic structure of interfacial water molecules on photocatalytic reactivity has not been directly examined. In this study, using real-time mass spectrometry and Fourier-transform infrared spectroscopy, we demonstrated the crucial role of hydrogen bond (H-bond) networks on the photocatalytic hydrogen evolution in thickness-controlled water adsorption layers on various TiO2 photocatalysts. Under controlled water vapor environments with relative humidity (RH) below 70%, we observed a monotonic increase in the H2 formation rate with increasing RH, indicating that reactive water molecules were present not only in the first adsorbed layer but also in several overlying layers. In contrast, at RH > 70%, when more than three water layers covered the catalyst surface, the H2 formation rate turned to decrease dramatically because of the structural rearrangement and hardening of the interfacial H-bond network induced during further water adsorption. This unique many-body effect of interfacial water was consistently observed for various TiO2 particles with different crystalline structures, including brookite, anatase, and a mixture of anatase and rutile. Our results demonstrated that depositing several water layers in a water vapor environment with RH ∼ 70% is optimal for photocatalytic hydrogen evolution rather than liquid-phase reaction conditions in aqueous solutions. This study provides molecular-level insights into designing interfacial water conditions to enhance photocatalytic performance.
Collapse
Affiliation(s)
- Zhongqiu Lin
- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Hikaru Saito
- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Hiromasa Sato
- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
| | - Toshiki Sugimoto
- Department of Materials Molecular Science, Institute for Molecular Science, Okazaki, Aichi 444-8585, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
26
|
Kumar N, Dalvi S, Sumant AV, Pastewka L, Jacobs TDB, Dhinojwala A. Small-scale roughness entraps water and controls underwater adhesion. SCIENCE ADVANCES 2024; 10:eadn8343. [PMID: 39110787 PMCID: PMC11305375 DOI: 10.1126/sciadv.adn8343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024]
Abstract
While controlling underwater adhesion is critical for designing biological adhesives and in improving the traction of tires, haptics, or adhesives for health monitoring devices, it is hindered by a lack of fundamental understanding of how the presence of trapped water impedes interfacial bonding. Here, by using well-characterized polycrystal diamond surfaces and soft, nonhysteretic, low-surface energy elastomers, we show a reduction in adhesion during approach and four times higher adhesion during retraction as compared to the thermodynamic work of adhesion. Our findings reveal how the loading phase of contact is governed by the entrapment of water by ultrasmall (10-nanometer-scale) surface features. In contrast, the same nanofeatures that reduce adhesion during approach serve to increase adhesion during separation. The explanation for this counterintuitive result lies in the incompressibility-inextensibility of trapped water and the work needed to deform the polymer around water pockets. Unlike the well-known viscoelastic contribution to adhesion, this science unlocks strategies for tailoring surface topography to enhance underwater adhesion.
Collapse
Affiliation(s)
- Nityanshu Kumar
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Siddhesh Dalvi
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| | - Anirudha V. Sumant
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Lars Pastewka
- Department of Microsystems Engineering, University of Freiburg, Freiburg 79110, Germany
- Cluster of Excellence livMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Freiburg 79110, Germany
| | - Tevis D. B. Jacobs
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
27
|
Al-Mualem ZA, Chen X, Shafieenezhad A, Senning EN, Baiz CR. Binding-induced lipid domains: Peptide-membrane interactions with PIP 2 and PS. Biophys J 2024; 123:2001-2011. [PMID: 38142298 PMCID: PMC11309973 DOI: 10.1016/j.bpj.2023.12.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023] Open
Abstract
Cell signaling is an important process involving complex interactions between lipids and proteins. The myristoylated alanine-rich C-kinase substrate (MARCKS) has been established as a key signaling regulator, serving a range of biological roles. Its effector domain (ED), which anchors the protein to the plasma membrane, induces domain formation in membranes containing phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylserine (PS). The mechanisms governing the MARCKS-ED binding to membranes remain elusive. Here, we investigate the composition-dependent affinity and MARCKS-ED-binding-induced changes in interfacial environments using two-dimensional infrared spectroscopy and fluorescence anisotropy. Both negatively charged lipids facilitate the MARCKS-ED binding to lipid vesicles. Although the hydrogen-bonding structure at the lipid-water interface remains comparable across vesicles with varied lipid compositions, the dynamics of interfacial water show divergent patterns due to specific interactions between lipids and peptides. Our findings also reveal that PIP2 becomes sequestered by bound peptides, while the distribution of PS exhibits no discernible change upon peptide binding. Interestingly, PIP2 and PS become colocalized into domains both in the presence and absence of MARCKS-ED. More broadly, this work offers molecular insights into the effects of membrane composition on binding.
Collapse
Affiliation(s)
| | - Xiaobing Chen
- Department of Chemistry, The University of Texas at Austin, Austin, Texas
| | - Azam Shafieenezhad
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Eric N Senning
- Department of Neuroscience, The University of Texas at Austin, Austin, Texas.
| | - Carlos R Baiz
- Department of Chemistry, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
28
|
Yanagisawa R, Ueda T, Nakamoto KI, Lu Z, Onishi H, Minato T. The interface between ice and alcohols analyzed by atomic force microscopy. J Chem Phys 2024; 161:024702. [PMID: 38980093 DOI: 10.1063/5.0211501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024] Open
Abstract
This study investigates the interface between ice and organic solvents using atomic force microscopy (AFM). Atomically flat ice surfaces were prepared and observed by AFM in 1-octanol, 1-hexanol, and 1-butanol. The results show differences in surface roughness influenced by the interaction of ice and alcohols. Young's modulus of ice was analyzed by force curve measurements, providing valuable insights into the properties of ice in liquid environments. The results showed the characteristics of the ice surface in different solvents, suggesting potential applications in understanding surface and interface phenomena associated with ice under realistic conditions.
Collapse
Affiliation(s)
- Ryo Yanagisawa
- Department of Chemistry, School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Tadashi Ueda
- Institute for Molecular Science, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Kei-Ichi Nakamoto
- Institute for Molecular Science, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Zhengxi Lu
- Department of Chemistry, School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Hiroshi Onishi
- Department of Chemistry, School of Science, Kobe University, Nada-ku, Kobe 657-8501, Japan
- Institute for Molecular Science, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| | - Taketoshi Minato
- Institute for Molecular Science, National Institutes of Natural Sciences, Nishigonaka 38, Myodaiji-cho, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
29
|
Shen H, Chen L, Zou X, Wu Q. Modeling Vibrational Sum Frequency Generation Spectra of Interfacial Water on a Gold Surface: The Role of the Fermi Resonance. J Phys Chem B 2024; 128:6638-6647. [PMID: 38922305 DOI: 10.1021/acs.jpcb.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Studying the hydrogen bonding structure of H2O at the metal-water interface is a highly complex yet fascinating endeavor. The intricate interactions and diverse orientations of water molecules on metal surfaces with varying potentials pose a significant challenge in elucidating the coupling between O-H stretching and H-O-H bending modes. In this study, we employed DFT-MD simulation to explore how the orientation of interfacial water molecules changes with the applied potential on the Au(111) surface. Based on the surface-specific velocity-velocity correlation function (ssVVCF) formula, we calculated vibrational sum frequency generation (VSFG) spectra for the O-H stretches. We found that three assigned peaks (∼3300, ∼3450, and 3650 cm-1) shifted toward lower frequencies as the potential moved toward more negative values. Our results align remarkably well with experimental Raman spectroscopy data. Notably, our VSFG analysis revealed a significant change in the VSFG spectra of the hydrogen-bonded O-H groups (∼3300 cm-1), switching from a negative to a positive sign with decreasing potential. This alteration suggests a substantial change in the orientation of these low-frequency O-H groups owing to their increased interactions with the Au surface. In contrast, the orientations of both the high-frequency O-H groups (∼3450 cm-1) and the dangling O-H groups (∼3650 cm-1) remained unaffected by the applied potentials. Furthermore, our analysis of the decomposed vibrational density of states (VDOS) for the H-O-H bending mode uncovered the coupling between the H-O-H bending and O-H stretching vibrations, known as the Fermi resonance. Our work suggests that the H-O-H bending vibration becomes restricted when water molecules transition from the ″one-H-down″ to the ″two-H-down″ conformation, leading to a redshift in the O-H stretching vibration through the Fermi resonance. By constructing the VSFG and decomposed VDOS spectra, we gained valuable insights into the structural changes that Raman spectra alone cannot fully interpret. Specifically, our analysis revealed the critical role of the Fermi resonance effect in shaping the spectroscopic signature of interfacial water molecules on the Au(111) surface.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Ling Chen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Xuefeng Zou
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| | - Qingqing Wu
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, P. R. China
| |
Collapse
|
30
|
Hchicha K, Msalmi R, Korb M, Wahbi H, Čižmár E, Hamdi M, Naïli H. Comprehensive Exploration of Optics and Magnetism in a Hydrothermally Synthesized Nickel(II) Complex. ACS OMEGA 2024; 9:29310-29319. [PMID: 39005785 PMCID: PMC11238314 DOI: 10.1021/acsomega.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
The hydrothermal reaction of 2-MeIm (2-MeIm: 2-methylimidazole) with nickel sulfate hexahydrate in methanol afforded a mononuclear complex formulated as [Ni(SO4)(2-MeIm)2(H2O)3]·CH3OH (1). The title compound was described by X-ray single-crystal diffraction, thermal assessment, IR, and UV-vis spectroscopy. The crystal structure of 1 is composed of segregated [Ni(SO4)(2-MeIm)2(H2O)3] neutral entities and a solvent methanol molecule. Two (2-MeIm) ligands, a sulfate group, and a water molecule reside in the equatorial positions of the vertices in this 6-fold coordination. Two aqua ligands lay in the apical positions, resulting in a subtly distorted octahedral framework, as was supported by spectroscopic analysis. The complex's self-assembly is firmly governed by robust O-H···O/N-H···O interactions. Further details on these bonds have been furnished via Hirshfeld surface scrutiny and 2D fingerprint plots. As proven by TGA/DSC analysis, raising the temperature of 1 above 60 °C instigates progressive decomposition stages, which culminates in the production of metal oxide as the ultimate product at 700 °C. The optical analysis suggests the dielectric nature of the material with large direct and indirect gap energies of 5.25 and 4.96 eV, respectively. The results of magnetic studies suggest that 1 undergoes a transition to a magnetically ordered state below 6 K.
Collapse
Affiliation(s)
- Khouloud Hchicha
- Laboratory
Physico Chemistry of the Solid State, Department of Chemistry, Faculty
of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Rawia Msalmi
- Laboratory
Physico Chemistry of the Solid State, Department of Chemistry, Faculty
of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| | - Marcus Korb
- Faculty
of Sciences, School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, Western Australia 6009, Australia
| | - Hajir Wahbi
- Department
of Chemistry, College of Sciences and Arts, Turaif, Northern Border University, Arar, Saudi Arabia
| | - Erik Čižmár
- Faculty
of Science, Institute of Physics, P.J. Šafárik
University in Košice, Park Angelinum 9, SK-041 54 Košice, Slovakia
| | - Mohamed Hamdi
- Department
of Chemistry, College of Sciences and Arts, Turaif, Northern Border University, Arar, Saudi Arabia
| | - Houcine Naïli
- Laboratory
Physico Chemistry of the Solid State, Department of Chemistry, Faculty
of Sciences, University of Sfax, BP 1171, 3000 Sfax, Tunisia
| |
Collapse
|
31
|
Bookholt T, Qin X, Lilli B, Enke D, Huck M, Balkenhohl D, Rüwe K, Brune J, Klare JP, Küpper K, Schuster A, Bergjan J, Steinhart M, Gröger H, Daum D, Schäfer H. Increased Readiness for Water Splitting: NiO-Induced Weakening of Bonds in Water Molecules as Possible Cause of Ultra-Low Oxygen Evolution Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310665. [PMID: 38386292 DOI: 10.1002/smll.202310665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The development of non-precious metal-based electrodes that actively and stably support the oxygen evolution reaction (OER) in water electrolysis systems remains a challenge, especially at low pH levels. The recently published study has conclusively shown that the addition of haematite to H2SO4 is a highly effective method of significantly reducing oxygen evolution overpotential and extending anode life. The far superior result is achieved by concentrating oxygen evolution centres on the oxide particles rather than on the electrode. However, unsatisfactory Faradaic efficiencies of the OER and hydrogen evolution reaction (HER) parts as well as the required high haematite load impede applicability and upscaling of this process. Here it is shown that the same performance is achieved with three times less metal oxide powder if NiO/H2SO4 suspensions are used along with stainless steel anodes. The reason for the enormous improvement in OER performance by adding NiO to the electrolyte is the weakening of the intramolecular O─H bond in the water molecules, which is under the direct influence of the nickel oxide suspended in the electrolyte. The manipulation of bonds in water molecules to increase the tendency of the water to split is a ground-breaking development, as shown in this first example.
Collapse
Affiliation(s)
- Tom Bookholt
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Xian Qin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Bettina Lilli
- University of Leipzig, Institute of Chemical Technology, 04103, Leipzig, Germany
| | - Dirk Enke
- University of Leipzig, Institute of Chemical Technology, 04103, Leipzig, Germany
| | - Marten Huck
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Danni Balkenhohl
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Klara Rüwe
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Julia Brune
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Johann P Klare
- University of Osnabrück Department of Physics, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Karsten Küpper
- University of Osnabrück Department of Physics, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Anja Schuster
- University of Osnabrück, Inorganic Chemistry II, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Jenrik Bergjan
- University of Osnabrück, Physical Chemistry, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Martin Steinhart
- University of Osnabrück, Physical Chemistry, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Harald Gröger
- Bielefeld University, Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Diemo Daum
- Osnabrück University of Applied Sciences, Faculty of Agricultural Science and Landscape Architecture, Laboratory of Plant Nutrition and Chemistry, Am Krümpel 31, 49090, Osnabrück, Germany
| | - Helmut Schäfer
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| |
Collapse
|
32
|
Gabriel JP, Horstmann R, Tress M. Local and global expansivity in water. J Chem Phys 2024; 160:234502. [PMID: 38884401 DOI: 10.1063/5.0203924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024] Open
Abstract
The supra-molecular structure of a liquid is strongly connected to its dynamics, which in turn control macroscopic properties such as viscosity. Consequently, detailed knowledge about how this structure changes with temperature is essential to understand the thermal evolution of the dynamics ranging from the liquid to the glass. Here, we combine infrared spectroscopy (IR) measurements of the hydrogen (H) bond stretching vibration of water with molecular dynamics simulations and employ a quantitative analysis to extract the inter-molecular H-bond length in a wide temperature range of the liquid. The extracted expansivity of this H-bond differs strongly from that of the average nearest neighbor distance of oxygen atoms obtained through a common conversion of mass density. However, both properties can be connected through a simple model based on a random loose packing of spheres with a variable coordination number, which demonstrates the relevance of supra-molecular arrangement. Furthermore, the exclusion of the expansivity of the inter-molecular H-bonds reveals that the most compact molecular arrangement is formed in the range of ∼316-331K (i.e., above the density maximum) close to the temperature of several pressure-related anomalies, which indicates a characteristic point in the supra-molecular arrangement. These results confirm our earlier approach to deduce inter-molecular H-bond lengths via IR in polyalcohols [Gabriel et al. J. Chem. Phys. 154, 024503 (2021)] quantitatively and open a new alley to investigate the role of inter-molecular expansion as a precursor of molecular fluctuations on a bond-specific level.
Collapse
Affiliation(s)
- Jan Philipp Gabriel
- Institute of Materials Physics in Space, German Aerospace Center, 51170 Köln, Germany
| | - Robin Horstmann
- Institute for Condensed Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - Martin Tress
- Peter Debye Institute for Soft Matter Research, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
33
|
Lang X, Shi L, Zhao Z, Min W. Probing the structure of water in individual living cells. Nat Commun 2024; 15:5271. [PMID: 38902250 PMCID: PMC11190263 DOI: 10.1038/s41467-024-49404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/04/2024] [Indexed: 06/22/2024] Open
Abstract
Water regulates or even governs a wide range of biological processes. Despite its fundamental importance, surprisingly little is known about the structure of intracellular water. Herein we employ a Raman micro-spectroscopy technique to uncover the composition, abundance and vibrational spectra of intracellular water in individual living cells. In three different cell types, we show a small but consistent population (~3%) of non-bulk-like water. It exhibits a weakened hydrogen-bonded network and a more disordered tetrahedral structure. We attribute this population to biointerfacial water located in the vicinity of biomolecules. Moreover, our whole-cell modeling suggests that all soluble (globular) proteins inside cells are surrounded by, on average, one full molecular layer (about 2.6 Angstrom) of biointerfacial water. Furthermore, relative invariance of biointerfacial water is observed among different single cells. Overall, our study not only opens up experimental possibilities of interrogating water structure in vivo but also provides insights into water in life.
Collapse
Affiliation(s)
- Xiaoqi Lang
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Lixue Shi
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhilun Zhao
- Department of Chemistry, Columbia University, New York, NY, 10027, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
34
|
Chen X, Al-Mualem ZA, Baiz CR. Lipid Landscapes: Vibrational Spectroscopy for Decoding Membrane Complexity. Annu Rev Phys Chem 2024; 75:283-305. [PMID: 38382566 DOI: 10.1146/annurev-physchem-090722-010230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Cell membranes are incredibly complex environments containing hundreds of components. Despite substantial advances in the past decade, fundamental questions related to lipid-lipid interactions and heterogeneity persist. This review explores the complexity of lipid membranes, showcasing recent advances in vibrational spectroscopy to characterize the structure, dynamics, and interactions at the membrane interface. We include an overview of modern techniques such as surface-enhanced infrared spectroscopy as a steady-state technique with single-bilayer sensitivity, two-dimensional sum-frequency generation spectroscopy, and two-dimensional infrared spectroscopy to measure time-evolving structures and dynamics with femtosecond time resolution. Furthermore, we discuss the potential of multiscale molecular dynamics (MD) simulations, focusing on recently developed simulation algorithms, which have emerged as a powerful approach to interpret complex spectra. We highlight the ongoing challenges in studying heterogeneous environments in multicomponent membranes via current vibrational spectroscopic techniques and MD simulations. Overall, this review provides an up-to-date comprehensive overview of the powerful combination of vibrational spectroscopy and simulations, which has great potential to illuminate lipid-lipid, lipid-protein, and lipid-water interactions in the intricate conformational landscape of cell membranes.
Collapse
Affiliation(s)
- Xiaobing Chen
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| | | | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
35
|
Ojha D, Henao A, Zysk F, Kühne TD. Nuclear quantum effects on the vibrational dynamics of the water-air interface. J Chem Phys 2024; 160:204114. [PMID: 38804494 DOI: 10.1063/5.0204071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/11/2024] [Indexed: 05/29/2024] Open
Abstract
We have applied path-integral molecular dynamics simulations to investigate the impact of nuclear quantum effects on the vibrational dynamics of water molecules at the water-air interface. The instantaneous fluctuations in the frequencies of the O-H stretch modes are calculated using the wavelet method of time series analysis, while the time scales of vibrational spectral diffusion are determined from frequency-time correlation functions and joint probability distributions. We find that the inclusion of nuclear quantum effects leads not only to a redshift in the vibrational frequency distribution by about 120 cm-1 for both the bulk and interfacial water molecules but also to an acceleration of the vibrational dynamics at the water-air interface by as much as 35%. In addition, a blueshift of about 45 cm-1 is seen in the vibrational frequency distribution of interfacial water molecules compared to that of the bulk. Furthermore, the dynamics of water molecules beyond the topmost molecular layer was found to be rather similar to that of bulk water.
Collapse
Affiliation(s)
- Deepak Ojha
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Andrés Henao
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Frederik Zysk
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Department of Chemistry, University of Paderborn, Warburger Str. 100, D-33098 Paderborn, Germany
| | - Thomas D Kühne
- Center for Advanced Systems Understanding (CASUS), Untermarkt 20, D-02826 Görlitz, Germany, Helmholtz Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany, and TU Dresden, Institute of Artificial Intelligence, Chair of Computational System Sciences, Nöthnitzer Straße 46, D-01187 Dresden, Germany
| |
Collapse
|
36
|
Telfah A, Charifi Z, Latelli N, Qattan IA, Baaziz H, Al-Bataineh QM, Alsaad AM, Sabirianov RF. Formation of hydrogen bonding network of methane sulfonic acid at low degree of hydration (MSA) m·(H 2O) n (m = 1-2 and n = 1-5). Sci Rep 2024; 14:11252. [PMID: 38755227 PMCID: PMC11099154 DOI: 10.1038/s41598-024-61364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/06/2024] [Indexed: 05/18/2024] Open
Abstract
This study employs ab initio calculations based on density functional theory (DFT) to investigate the structural properties, 1H-NMR spectra, and vibrational spectra of methane sulfonic acid (MSA) at low degree of hydration. The findings reveal that energetically stable structures are formed by small clusters consisting of one or two MSA molecules (m = 1 and 2) and one or two water molecules in (MSA)m·(H2O)n (m = 1-2 and n = 1-5).These stable structures arise from the formation of strong cyclic hydrogen bonds between the proton of the hydroxyl (OH) group in MSA and the water molecules. However, clusters containing three or more water molecules (n > 2) exhibit proton transfer from MSA to water, resulting in the formation of ion-pairs composed of CH3SO3- and H3O+species. The measured 1H-NMR spectra demonstrate the presence of hydrogen-bonded interactions between MSA and water, with a single MSA molecule interacting with water molecules. This interaction model accurately represents the hydrogen bonding network, as supported by the agreement between the experimental and calculated NMR chemical shift results.
Collapse
Affiliation(s)
- Ahmad Telfah
- Nanotechnology Center, The University of Jordan, Amman, 11942, Jordan.
- Fachhochschule Dortmund University of Applied Sciences and Arts, Dortmund, Germany.
- Department of Physics, University of Nebraska at Omaha, Omaha, NE, 68182, USA.
| | - Z Charifi
- Department of Physics, Faculty of Science, University of M'sila, 28000, M'sila, Algeria
- Laboratory of Physics and Chemistry of Materials, University of M'sila, M'sila, Algeria
| | - N Latelli
- Department of Chemistry, Faculty of Science, University of M'sila, 28000, M'sila, Algeria
- Laboratoire Chimie des Matériaux et des Vivants: Activité, Réactivité, Université Batna1, 05001, Batna, Algerie
| | - Issam A Qattan
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, 127788, Abu Dhabi, United Arab Emirates.
| | - H Baaziz
- Department of Physics, Faculty of Science, University of M'sila, 28000, M'sila, Algeria
- Laboratory of Physics and Chemistry of Materials, University of M'sila, M'sila, Algeria
| | - Qais M Al-Bataineh
- Leibniz Institut für Analytische Wissenschaften-ISAS-e.V., 44139, Dortmund, Germany
- Experimental Physics, TU Dortmund University, 44227, Dortmund, Germany
| | - A M Alsaad
- Department of Physical Sciences, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - R F Sabirianov
- Department of Physics, University of Nebraska at Omaha, Omaha, NE, 68182, USA
| |
Collapse
|
37
|
Ji D, Liu J, Zhao J, Li M, Rho Y, Shin H, Han TH, Bae J. Sustainable 3D printing by reversible salting-out effects with aqueous salt solutions. Nat Commun 2024; 15:3925. [PMID: 38724512 PMCID: PMC11082145 DOI: 10.1038/s41467-024-48121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
Achieving a simple yet sustainable printing technique with minimal instruments and energy remains challenging. Here, a facile and sustainable 3D printing technique is developed by utilizing a reversible salting-out effect. The salting-out effect induced by aqueous salt solutions lowers the phase transition temperature of poly(N-isopropylacrylamide) (PNIPAM) solutions to below 10 °C. It enables the spontaneous and instant formation of physical crosslinks within PNIPAM chains at room temperature, thus allowing the PNIPAM solution to solidify upon contact with a salt solution. The PNIPAM solutions are extrudable through needles and can immediately solidify by salt ions, preserving printed structures, without rheological modifiers, chemical crosslinkers, and additional post-processing steps/equipment. The reversible physical crosslinking and de-crosslinking of the polymer through the salting-out effect demonstrate the recyclability of the polymeric ink. This printing approach extends to various PNIPAM-based composite solutions incorporating functional materials or other polymers, which offers great potential for developing water-soluble disposable electronic circuits, carriers for delivering small materials, and smart actuators.
Collapse
Affiliation(s)
- Donghwan Ji
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Joseph Liu
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayu Zhao
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Minghao Li
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yumi Rho
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Hwansoo Shin
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hee Han
- Department of Organic and Nano Engineering and Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jinhye Bae
- Department of NanoEngineering, University of California San Diego, La Jolla, CA, 92093, USA.
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
- Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
38
|
Ishikawa M, Borges R, Mourão A, Ferreira LM, Lobo AO, Martinho H. Confined Water Dynamics in the Scaffolds of Polylactic Acid. ACS OMEGA 2024; 9:19796-19804. [PMID: 38737045 PMCID: PMC11079869 DOI: 10.1021/acsomega.3c08057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 05/14/2024]
Abstract
Resorbable polylactic acid (PLA) ultrathin fibers have been applied as scaffolds for tissue engineering applications due to their micro- and nanoporous structure that favor cell adhesion, besides inducing cell proliferation and upregulating gene expression related to tissue regeneration. Incorporation of multiwalled carbon nanotubes into PLA fibers has been reported to increase the mechanical properties of the scaffold, making them even more suitable for tissue engineering applications. Ideally, scaffolds should be degraded simultaneously with tissue growth. Hydration and swelling are factors related to scaffold degradation. Hydration would negatively impact the mechanical properties since PLA shows hydrolytic degradation. Water absorption critically affects the catalysis and allowance of the hydrolysis reactions. Moreover, either mass transport and chemical reactions are influenced by confined water, which is an unexplored subject for PLA micro- and nanoporous fibers. Here, we probe and investigate confined water onto highly porous PLA microfibers containing few amounts of incorporated carbon nanotubes by Fourier transform infrared (FTIR) spectroscopy. A hydrostatic pressure was applied to the fibers to enhance the intermolecular interactions between water molecules and C=O groups from polyester bonds, which were evaluated over the wavenumber between 1600 and 2000 cm-1. The analysis of temperature dependence of FTIR spectra indicated the presence of confined water which is characterized by a non-Arrhenius to Arrhenius crossover at T0 = 190 K for 1716 and 1817 cm-1 carbonyl bands of PLA. These bands are sensitive to a hydrogen bond network of confined water. The relevance of our finding relies on the challenge detecting confined water in hydrophobic cavities as in the PLA one. To the best of our knowledge, we present the first report referring the presence of confined water in a hydrophobic scaffold as PLA for tissue engineering. Our findings can provide new opportunities to understand the role of confined water in tissue engineering applications. For instance, we argue that PLA degradation may be affected the most by confined water. PLA degradation involves hydrolytic and enzymatic degradation reactions, which can both be sensitive to changes in water properties.
Collapse
Affiliation(s)
- Mariana Ishikawa
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
| | - Roger Borges
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
- School
of Biomedical Engineering, Faculdade Israelita de Ciências
da Saúde Albert Einstein, Hospital
Israelita Albert Einstein, São
Paulo, São Paulo 09280-560, Brazil
| | - André Mourão
- Federal
University of ABC, Santo André, São Paulo 09280-560, Brazil
| | | | - Anderson O. Lobo
- Interdisciplinary
Laboratory for Advanced Materials, BioMatLab, Department of Materials
Engineering, Federal University of Piauí, Teresina, Piauí 64049-550, Brazil
| | | |
Collapse
|
39
|
Khanifaev J, Schrader T, Perlt E. The effect of machine learning predicted anharmonic frequencies on thermodynamic properties of fluid hydrogen fluoride. J Chem Phys 2024; 160:124302. [PMID: 38516969 DOI: 10.1063/5.0195386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Anharmonic effects play a crucial role in determining thermochemical properties of liquids and gases. For such extended phases, the inclusion of anharmonicity in reliable electronic structure methods is computationally extremely demanding, and hence, anharmonic effects are often lacking in thermochemical calculations. In this study, we apply the quantum cluster equilibrium method to transfer density functional theory calculations at the cluster level to the macroscopic, liquid, and gaseous phase of hydrogen fluoride. This allows us to include anharmonicity, either via vibrational self-consistent field calculations for smaller clusters or using a regression model for larger clusters. We obtain the structural composition of the fluid phases in terms of the population of different clusters as well as isobaric heat capacities as an example for thermodynamic properties. We study the role of anharmonicities for these analyses and observe that, in particular, the dominating structural motifs are rather sensitive to the anharmonicity in vibrational frequencies. The regression model proves to be a promising way to get access to anharmonic features, and the extension to more sophisticated machine-learning models is promising.
Collapse
Affiliation(s)
- Jamoliddin Khanifaev
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Tim Schrader
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Eva Perlt
- Otto Schott Institute of Materials Research, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
40
|
Lüttschwager NOB. The strength of the OH-bend/OH-stretch Fermi resonance in small water clusters. Phys Chem Chem Phys 2024; 26:10120-10135. [PMID: 38487881 DOI: 10.1039/d3cp06255d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A novel Raman jet-spectrometer is used to study the Fermi resonance between the OH bending overtone and OH stretching fundamental in small cyclic water clusters (H2O)n with n = 3, 4, 5. The new setup features a recirculating vacuum system which reduces the gas consumption by 2 to 3 orders of magnitude and enables long-term measurements of very weak Raman signals. Raman spectra measured from highly diluted expansions with unprecedented signal-to-noise ratio are presented and cluster-specific intensity ratios and effective coupling constants are derived using Markov-Chain Monte-Carlo methods, yielding a high probability for an almost "perfect" resonance for the tetramer and pentamer, i.e. a close frequency match of bend overtone and stretch fundamental with intensity ratios close to 1, but a larger coupling constant for the trimer, with best estimates close to W5 ≲ 50 cm-1 < W4 ≲ 60 cm-1 < W3 ≈ 65 cm-1.
Collapse
Affiliation(s)
- Nils O B Lüttschwager
- Georg-August-Universität Göttingen, Institut für Physikalische Chemie, Tammannstraße 6, 37077 Göttingen, Germany.
| |
Collapse
|
41
|
Zhang YY, Zheng H, Wang T, Jiang S, Yan W, Wang C, Zhao Y, Lu JB, Hu HS, Yang J, Zhang W, Wu G, Xie H, Li G, Jiang L, Yang X, Li J. Spectroscopic and Theoretical Identifications of Two Structural Motifs of (H 2O) 10 Cluster. J Phys Chem Lett 2024; 15:3055-3060. [PMID: 38466221 DOI: 10.1021/acs.jpclett.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Precise characterization of archetypal systems of aqueous hydrogen-bonding networks is essential for developing accurate potential functions and universal models of water. The structures of water clusters (H2O)n (n = 2-9) have been verified recently through size-specific infrared spectroscopy with a vacuum ultraviolet free electron laser (VUV-FEL) and quantum chemical studies. For (H2O)10, the pentagonal prism and butterfly motifs were proposed to be important building blocks and were observed in previous experiments. Here we report the size-specific infrared spectra of (H2O)10 via a joint experimental and theoretical study. Well-resolved spectra provide a unique signature for the coexistence of pentagonal prism and butterfly motifs. These (H2O)10 motifs develop from the dominant structures of (H2O)n (n = 8, 9) clusters. This work provides an intriguing prelude to the diverse structure of liquid water and opens avenues for size-dependent measurement of larger systems to understand the stepwise formation mechanism of hydrogen-bonding networks.
Collapse
Affiliation(s)
- Yang-Yang Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huijun Zheng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tiantong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shuai Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Wenhui Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Chong Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ya Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jun-Bo Lu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Gang Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ling Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Hefei National Laboratory, Hefei 230088, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
42
|
Bai Y, He J, Gao Y, Zhang M, Zhou D, Tang Y, Liu J, Bian H, Fang Y. Dynamics of Formamide-Water Mixtures Investigated by Linear and Nonlinear Infrared Spectroscopy. J Phys Chem B 2024. [PMID: 38417258 DOI: 10.1021/acs.jpcb.3c07850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Formamide (FA) exhibits complete miscibility with water, offering a simplified model for exploring the solvation dynamics of peptide linkages in biophysical processes. Its liquid state demonstrates a three-dimensional hydrogen bonding network akin to water, reflecting solvent-like behavior. Analyzing the microscopic structure and dynamics of FA-water mixtures is expected to provide crucial insights into hydrogen bonding dynamics─a key aspect of various biophysical phenomena. This study is focused on the dynamics of FA-water mixtures using linear and femtosecond infrared spectroscopies. By using the intrinsic OD stretch and extrinsic probe SCN-, the local vibrational behaviors across various FA-water compositions were systematically investigated. The vibrational relaxation of OD stretch revealed a negligible impact of FA addition on the vibrational lifetime of water molecules, underscoring the mixture's water-like behavior. However, the reorientational dynamics of OD stretch slowed with increasing FA mole fraction (XFA), plateauing beyond XFA > 0.5. This suggests a correlation between OD's reorientational time and the strength of the hydrogen bond network, likely tied to the solution's changing dielectric constant. Conversely, the vibrational relaxation dynamics of SCN- was strongly correlated with XFA, highlighting a competition between water and FA molecules in solvating SCN-. Moreover, a linear relationship between rising viscosity and the prolonged correlation time of SCN-'s slow dynamics indicates that the solution's macroscopic viscosity is dictated by the extended structures formed between FA and water molecules. The relation between the reorientation dynamics of the SCN- and the macroscopic viscosity in aqueous FA-water mixture solutions was analyzed by using the Stokes-Einstein-Debye equations. The direct viscosity-diffusion coupling is observed, which can be attributed to the homogeneous dynamics feature in FA-water mixture solutions. The inclusion of these intrinsic and extrinsic probes not only enhances the comprehensiveness of our analysis but also provides valuable insights into various aspects of the dynamics within the FA-water system. This investigation sheds light on the fundamental dynamics of FA-water mixtures, emphasizing their molecular-level homogeneity in this binary mixture solution.
Collapse
Affiliation(s)
- Yimin Bai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiman He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yuting Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Miaomiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Dexia Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yun Tang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jing Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
43
|
Yao Y, Catalini S, Foggi P, Mezzenga R. Water-lipid interface in lipidic mesophases with excess water. Faraday Discuss 2024; 249:469-484. [PMID: 37786338 PMCID: PMC10845009 DOI: 10.1039/d3fd00118k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 06/27/2023] [Indexed: 10/04/2023]
Abstract
This study investigates the influence of excess water on the lipidic mesophase during the phase transition from diamond cubic phase (Pn3̄m) to reverse hexagonal phase (HII). Using a combination of small angle X-ray scattering (SAXS), broadband dielectric spectroscopy (BDS), and Fourier transform infrared (FTIR) techniques, we explore the dynamics of lipids and their interaction with water during phase transition. Our BDS results reveal three relaxation processes originating from lipids, all of which exhibit a kink during the phase transition. With the excess water, these processes accelerate due to the plasticizing effect of water. Additionally, our results demonstrate that the headgroups in the HII phase are more densely packed than those in the Pn3̄m phase, which agrees with the FTIR results. Meanwhile, we investigate the influence of excess water on the lipid headgroups, the H-bond network of water, the lipid tail, and the interface carbonyl group between the head and tail of the lipid molecule. The results indicate that excess water permeates the lipid interface and forms additional hydrogen bonds with the carbonyl groups. As a result, the headgroups are more flexible in a lipidic mesophase with excess water than those in mesophases without excess water.
Collapse
Affiliation(s)
- Yang Yao
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
| | - Sara Catalini
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Florence, Italy
- Department of Physic and Geology, University of Perugia, 06123 Perugia, Italy
- CNR-INO, National Research Council-National Institute of Optics, 50125 Florence, Italy
| | - Paolo Foggi
- European Laboratory for Non-Linear Spectroscopy, LENS, 50019 Florence, Italy
- CNR-INO, National Research Council-National Institute of Optics, 50125 Florence, Italy
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Raffaele Mezzenga
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zürich, Switzerland.
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
44
|
Hou R, Li C, Pan D. Raman and IR spectra of water under graphene nanoconfinement at ambient and extreme pressure-temperature conditions: a first-principles study. Faraday Discuss 2024; 249:181-194. [PMID: 37791622 DOI: 10.1039/d3fd00111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The nanoconfinement of water can result in dramatic differences in its physical and chemical properties compared to bulk water. However, a detailed molecular-level understanding of these properties is still lacking. Vibrational spectroscopy, such as Raman and infrared, is a popular experimental tool for studying the structure and dynamics of water, and is often complemented by atomistic simulations to interpret experimental spectra, but there have been few theoretical spectroscopy studies of nanoconfined water using first-principles methods at ambient conditions, let alone under extreme pressure-temperature conditions. Here, we compute the Raman and IR spectra of water nanoconfined by graphene at ambient and extreme pressure-temperature conditions using ab initio simulations. Our results revealed alterations in the Raman stretching and low-frequency bands due to the graphene confinement. We also found spectroscopic evidence indicating that nanoconfinement considerably changes the tetrahedral hydrogen bond network, which is typically found in bulk water. Furthermore, we observed an unusual bending band in the Raman spectrum at ∼10 GPa and 1000 K, which is attributed to the unique molecular structure of confined ionic water. Additionally, we found that at ∼20 GPa and 1000 K, confined water transformed into a superionic fluid, making it challenging to identify the IR stretching band. Finally, we computed the ionic conductivity of confined water in the ionic and superionic phases. Our results highlight the efficacy of Raman and IR spectroscopy in studying the structure and dynamics of nanoconfined water in a large pressure-temperature range. Our predicted Raman and IR spectra can serve as a valuable guide for future experiments.
Collapse
Affiliation(s)
- Rui Hou
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Chu Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| | - Ding Pan
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Shenzhen, China
| |
Collapse
|
45
|
Li MG, Hu M, Fan LM, Bao JD, Li PC. Quantifying the energy landscape in weakly and strongly disordered frictional media. J Chem Phys 2024; 160:024903. [PMID: 38189619 DOI: 10.1063/5.0178092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
We investigate the "roughness" of the energy landscape of a system that diffuses in a heterogeneous medium with a random position-dependent friction coefficient α(x). This random friction acting on the system stems from spatial inhomogeneity in the surrounding medium and is modeled using the generalized Caldira-Leggett model. For a weakly disordered medium exhibiting a Gaussian random diffusivity D(x) = kBT/α(x) characterized by its average value ⟨D(x)⟩ and a pair-correlation function ⟨D(x1)D(x2)⟩, we find that the renormalized intrinsic diffusion coefficient is lower than the average one due to the fluctuations in diffusivity. The induced weak internal friction leads to increased roughness in the energy landscape. When applying this idea to diffusive motion in liquid water, the dissociation energy for a hydrogen bond gradually approaches experimental findings as fluctuation parameters increase. Conversely, for a strongly disordered medium (i.e., ultrafast-folding proteins), the energy landscape ranges from a few to a few kcal/mol, depending on the strength of the disorder. By fitting protein folding dynamics to the escape process from a metastable potential, the decreased escape rate conceptualizes the role of strong internal friction. Studying the energy landscape in complex systems is helpful because it has implications for the dynamics of biological, soft, and active matter systems.
Collapse
Affiliation(s)
- Ming-Gen Li
- Department of Physics, Shantou University, Shantou, Guangdong 515063, China
| | - Meng Hu
- Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
| | - Li-Ming Fan
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing 100048, China
| | - Peng-Cheng Li
- Department of Physics, Shantou University, Shantou, Guangdong 515063, China
| |
Collapse
|
46
|
LaCour RA, Heindel JP, Head-Gordon T. Predicting the Raman Spectra of Liquid Water with a Monomer-Field Model. J Phys Chem Lett 2023; 14:11742-11749. [PMID: 38116782 DOI: 10.1021/acs.jpclett.3c02873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The Raman spectrum of liquid water is quite complex, reflecting its strong sensitivity to the local environment of the individual waters. The OH-stretch region of the spectrum, which captures the influence of hydrogen bonding, has only just begun to be unraveled. Here we develop a model for predicting the Raman spectra of the OH-stretch region by considering how local electric fields distort the energy surface of each water monomer. We find that our model is capable of reproducing the bimodal nature of the main peak, with the shoulder at 3250 cm-1 resulting almost entirely from Fermi resonance. Furthermore, we capture the temperature and polarization dependence of the shoulder, which has proven to be difficult to obtain with previous methods, and analyze the origin of this dependence. We expect our model to be generally useful for understanding and predicting how Raman spectra change under different conditions and with different probe reporters beyond water.
Collapse
Affiliation(s)
- R Allen LaCour
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joseph P Heindel
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Teresa Head-Gordon
- Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Departments of Bioengineering and Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
47
|
Chiang KY, Yu X, Yu CC, Seki T, Sun S, Bonn M, Nagata Y. Bulklike Vibrational Coupling of Surface Water Revealed by Sum-Frequency Generation Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 131:256202. [PMID: 38181372 DOI: 10.1103/physrevlett.131.256202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 10/10/2023] [Accepted: 10/30/2023] [Indexed: 01/07/2024]
Abstract
Vibrational coupling between interfacial water molecules is important for energy dissipation after on-water chemistry, yet intensely debated. Here, we quantify the interfacial vibrational coupling strength through the linewidth of surface-specific vibrational spectra of the water's O─H (O─D) stretch region for neat H_{2}O/D_{2}O and their isotopic mixtures. The local-field-effect-corrected experimental SFG spectra reveal that the vibrational coupling between hydrogen-bonded interfacial water O─H groups is comparable to that in bulk water, despite the effective density reduction at the interface.
Collapse
Affiliation(s)
- Kuo-Yang Chiang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shumei Sun
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
48
|
You X, Zhang D, Zhang XG, Li X, Tian JH, Wang YH, Li JF. Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy. NANO-MICRO LETTERS 2023; 16:53. [PMID: 38108934 PMCID: PMC10728385 DOI: 10.1007/s40820-023-01285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Interfacial water molecules are the most important participants in the hydrogen evolution reaction (HER). Hence, understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism. Unfortunately, investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment. Here, the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry, in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques. Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction. When comparing the different cation electrolyte systems at a given potential, the frequency of the interfacial water peak increases in the specified order: Li+ < Na+ < K+ < Ca2+ < Sr2+. The structure of interfacial water was optimized by adjusting the radius, valence, and concentration of cation to form the two-H down structure. This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance. Therefore, local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
Collapse
Affiliation(s)
- Xueqiu You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Dongao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiangyu Li
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China.
| |
Collapse
|
49
|
Buessler M, Maruyama S, Zelenka M, Onishi H, Backus EHG. Unravelling the interfacial water structure at the photocatalyst strontium titanate by sum frequency generation spectroscopy. Phys Chem Chem Phys 2023; 25:31471-31480. [PMID: 37962476 PMCID: PMC10664186 DOI: 10.1039/d3cp03829g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
The direct conversion of solar energy to hydrogen is considered as a possible method to produce carbon neutral hydrogen fuel. The mechanism of photocatalytic water splitting involves the chemical breakdown of water and re-assembly into hydrogen and oxygen at the interface of a photocatalyst. The selection rules of a suitable material are well established, but the fundamental understanding of the mechanisms, occurring at the interface between the catalyst and the water, remains missing. Using surface specific sum frequency generation spectroscopy, we present here characterisation of the interface between water and the photocatalyst strontium titanate (SrTiO3). We monitor the OH-stretching vibrations present at the interface. Their variations of intensities and frequencies as functions of isotopic dilution, pH and salt concentration provide information about the nature of the hydrogen bonding environment. We observe the presence of water molecules that flip their orientation at pH 5 indicating the point of zero charge of the SrTiO3 layer. These water molecules are oriented with their hydrogen away from the surface when the pH of the solutions is below 5 and pointing towards the surface when the pH is higher than 5. Besides, water molecules donating a H-bond to probably surface TiOH groups are observed at all pH.
Collapse
Affiliation(s)
- Martin Buessler
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria.
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Shingo Maruyama
- Department of Applied Chemistry, Graduate School of Science, Tohoku University, Sendai, Miyagi, Japan
| | - Moritz Zelenka
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria.
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| | - Hiroshi Onishi
- Department of Chemistry, School of Science, Kobe University, Rokko-dai, Nada, Kobe, Japan
- Division of Advanced Molecular Science, Institute for Molecular Science, Myodaiji, Okazaki, Japan
| | - Ellen H G Backus
- University of Vienna, Faculty of Chemistry, Institute of Physical Chemistry, Währinger Straße 42, 1090 Vienna, Austria.
- University of Vienna, Vienna Doctoral School in Chemistry (DoSChem), Währinger Straße 42, 1090 Vienna, Austria
| |
Collapse
|
50
|
Shen H, Shen X, Wu Z. Simulating the isotropic Raman spectra of O-H stretching mode in liquid H 2O based on a machine learning potential: the influence of vibrational couplings. Phys Chem Chem Phys 2023; 25:28180-28188. [PMID: 37819214 DOI: 10.1039/d3cp03035k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
In this study, we trained a deep potential (DP) for H2O, an accurate machine learning (ML) potential. We performed molecular dynamics (MD) simulations of liquid water using the DP model (or DeePMD simulations). Our results showed that the DP model exhibits DFT-level accuracy, and the DeePMD simulation is a promising approach for modeling the structural properties of liquid water. Based on the DeePMD simulation trajectories, we calculated the isotropic Raman spectra of the O-H stretching mode using the surface-specific velocity-velocity correlation function (ssVVCF), showing that the DeePMD/ssVVCF approach can correctly capture the bimodal characteristics of the experimental Raman spectra, with one peak located near 3400 cm-1 and the other near 3250 cm-1. The success of the DeePMD/ssVVCF approach should be credited to (1) the DFT-level accuracy of the DP model for H2O, (2) the ssVVCF formulation considering the coupling between vibrational modes, and (3) non-Condon effects. Furthermore, the DeePMD simulations revealed that the anharmonic interactions between the coupled water molecules in the first and second hydration shells should play an essential role in the strong mixing of the H-O-H bending mode and the O-H stretching mode, leading to the delocalization of the O-H stretching band. In particular, increasing the strength of hydrogen bonds would enhance the bend-stretch coupling, leading to the red-shifting of the O-H vibrational spectra and the increase in the intensity of the shoulder around 3250 cm-1.
Collapse
Affiliation(s)
- Hujun Shen
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Guizhou Education University, Guiyang 550018, China.
| | - Xu Shen
- National Center of Technology Innovation for Intelligent Design and Numerical Control, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenhua Wu
- Department of Big Data and Artificial Intelligence, Guizhou Vocational Technology College of Electronics & Information, Kaili, 556000, China
| |
Collapse
|