1
|
Wang K, Chi C, Huang S, Yu M, Li X. Effect of starch molecular weight on the colon-targeting delivery and promoting GLP-1 secretion of starch-lecithin complex nanoparticles. Food Hydrocoll 2025; 158:110589. [DOI: 10.1016/j.foodhyd.2024.110589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Harper CC, Schloemer TH, Jordan JS, Heflin N, Narayanan P, Zhou Q, Congreve DN, Williams ER. Understanding the Formation Dynamics and Physical Properties of Nanocapsules Using Charge Detection Mass Spectrometry. ACS NANO 2024. [PMID: 39723934 DOI: 10.1021/acsnano.4c12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Characterizing the size, structure, and composition of nanoparticles is vital in predicting and understanding their macroscopic properties. In this work, charge detection mass spectrometry (CDMS) was used to analyze nanocapsules (∼10-200 MDa) consisting of a liquid oleic acid core surrounded by a dense silica outer shell. CDMS is an emerging method for nanoparticle analysis that can rapidly measure the mass and charge of thousands of individual nanoparticles. We find that increasing the feed volume of the tetraethylorthosilicate (TEOS) precursor added to form the silica shell of the nanocapsules yielded both higher and broader nanocapsule mass distributions with differentiable densities. A two-dimensional mass versus charge analysis also revealed the formation of two distinct populations of nanocapsules. These two nanocapsule morphologies were also present in transmission electron microscopy (TEM) images and exhibited low-density spherical cores and crescent-shaped cores where the remainder of the core volume was "filled in" by more dense silica. Nanocapsule shell growth kinetics over a ∼48-h synthesis period were also monitored by sampling the reaction mixture at various times, quenching the sampled aliquots, and then characterizing these time-resolved samples by CDMS. The CDMS data reveal three distinct growth phases in nanocapsule formation; rapid initial nucleation, an "inverted" distribution of silica growth, and a final slow growth phase where the rate of mass increase and final nanocapsule masses are dictated by the initial TEOS feed volumes. CDMS-enabled understanding of the diverse nanocapsule sizes, morphologies, and growth dynamics will allow us to better predict nanocapsule properties while reducing the experimental burden in optimizing nanocapsules for real-world applications.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Tracy H Schloemer
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Nicole Heflin
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Pournima Narayanan
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Qi Zhou
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Daniel N Congreve
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Zhang SC, Gao HL, Zhang L, Zhu YB, Wu YD, Liu JW, Mao LB, Feng M, Dong L, Pan Z, Meng XS, Lu Y, Yu SH. Mechanically Stable and Damage Resistant Freestanding Ultrathin Silver Nanowire Films with Closely Packed Crossed-Lamellar Structure. PRECISION CHEMISTRY 2024; 2:634-643. [PMID: 39734758 PMCID: PMC11672535 DOI: 10.1021/prechem.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 12/31/2024]
Abstract
One-dimensional (1D) functional nanowires are widely used as nanoscale building blocks for assembling advanced nanodevices due to their unique functionalities. However, previous research has mainly focused on nanowire functionality, while neglecting the structural stability and damage resistance of nanowire assemblies, which are critical for the long-term operation of nanodevices. Biomaterials achieve excellent mechanical stability and damage resistance through sophisticated structural design. Here, we successfully prepared a mechanically stabilized monolamella silver nanowire (Ag NW) film, based on a facile bubble-mediated assembly and nondestructive transfer strategy with the assistance of a porous mixed cellulose ester substrate, inspired by the hierarchical structure of biomaterial. Owing to the closely packed arrangement of Ag NWs combined with their weak interfaces, the monolamellar Ag NW film can be transferred to arbitrary substrates without damage. Furthermore, freestanding multilamellar Ag NW films with impressive damage resistance can be obtained from the monolamellar Ag NW film, through the introduction of bioinspired closely packed crossed-lamellar (CPCL) structure. This CPCL structure maximizes intra- and interlamellar interactions among Ag NWs ensuring efficient stress transfer and uniform electron transport, resulting in excellent mechanical durability and stable electrical properties of the multilamellar Ag NW films.
Collapse
Affiliation(s)
- Si-Chao Zhang
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Huai-Ling Gao
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- CAS
Key Laboratory of Mechanical Behavior and Design of Materials, Department
of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Long Zhang
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yin-Bo Zhu
- CAS
Key Laboratory of Mechanical Behavior and Design of Materials, Department
of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Ya-Dong Wu
- Anhui
Key Laboratory of Controllable Chemical Reaction and Material Chemical
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Jian-Wei Liu
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Li-Bo Mao
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Mei Feng
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Liang Dong
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Zhao Pan
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Sen Meng
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yang Lu
- Anhui
Key Laboratory of Controllable Chemical Reaction and Material Chemical
Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China
| | - Shu-Hong Yu
- Department
of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic
Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic
Materials, Division of Nanomaterials & Chemistry, Hefei National
Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
- Institute
of Innovative Materials (I2M), Department of Chemistry, Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Jeong A, Portner J, Tanner CPN, Ondry JC, Zhou C, Mi Z, Tazoui YA, Lee B, Wall VRK, Ginsberg NS, Talapin DV. Colloidal Dispersions of Sterically and Electrostatically Stabilized PbS Quantum Dots: Structure Factors, Second Virial Coefficients, and Film-Forming Properties. ACS NANO 2024; 18:33864-33874. [PMID: 39630577 DOI: 10.1021/acsnano.4c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Electrostatically stabilized nanocrystals (NCs) and, in particular, quantum dots (QDs) hold promise for forming strongly coupled superlattices due to their compact and electronically conductive surface ligands. However, studies of the colloidal dispersion and interparticle interactions of electrostatically stabilized sub-10 nm NCs have been limited, hindering the optimization of their colloidal stability and self-assembly. In this study, we employed small-angle X-ray scattering (SAXS) experiments to investigate the interparticle interactions and arrangement of PbS QDs with thiostannate ligands (PbS-Sn2S64-) in polar solvents. The study reveals significant deviations from the ideal solution behavior in electrostatically stabilized QD dispersions. Our results demonstrate that PbS-Sn2S64- QDs exhibit long-range interactions within the solvent, in contrast to the short-range steric repulsion characteristic of PbS QDs with oleate ligands (PbS-OA). Introducing highly charged multivalent electrolytes screens electrostatic interactions between charged QDs, reducing the length scale of the repulsive interactions. Furthermore, we calculated the second virial (B2) coefficients from SAXS data, providing insights into how surface chemistry, solvent, and size influence pair potentials. Finally, we explore the influence of long-range interparticle interactions of PbS-Sn2S64- QDs on the morphology of films produced by drying or spin-coating colloidal solutions. The long-range repulsive term of PbS-Sn2S64- QDs promotes the formation of amorphous films, and screening the electrostatic repulsion by the addition of an electrolyte enables the formation of crystalline domains. These findings highlight the critical role of NC-NC interactions in tailoring the properties of functional materials made of colloidal NCs.
Collapse
Affiliation(s)
- Ahhyun Jeong
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Joshua Portner
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Christian P N Tanner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Chenkun Zhou
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Zehan Mi
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Youssef A Tazoui
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Avenue, Lemont, Illinois 60439, United States
| | - Vivian R K Wall
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Naomi S Ginsberg
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
- Molecular Biophysics and Integrated Bioimaging Division and Materials Sciences and Chemical Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoSciences Institute, University of California, Berkeley, California 94720, United States
- STROBE, NSF Science & Technology Center, Berkeley, California 94720, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| |
Collapse
|
5
|
Maleki-Ghaleh H, Kamiński B, Moradpur-Tari E, Raza S, Khanmohammadi M, Zbonikowski R, Shakeri MS, Siadati MH, Akbari-Fakhrabadi A, Paczesny J. Visible Light-Sensitive Sustainable Quantum Dot Crystals of Co/Mg Doped Natural Hydroxyapatite Possessing Antimicrobial Activity and Biocompatibility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405708. [PMID: 39449217 DOI: 10.1002/smll.202405708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/07/2024] [Indexed: 10/26/2024]
Abstract
Cutting-edge research in advanced materials is increasingly turning toward the development of novel multifunctional nanomaterials for use in high-tech applications. This research uses the solid-state method as a solvent-free technique to create multifunctional quantum dot (QD) hydroxyapatite (HA) crystals from bovine bone waste. By incorporating cobalt (Co) and magnesium (Mg) into the HA structure, the crystallinity of the hexagonal HA nanoparticles (99.7%), showing QD crystals is enhanced. Oxygen vacancies on the surfaces of the HA nanoparticles contributed to their bandgap falling within the visible light range. In addition, the dopants substituted calcium in the HA crystal structure and generated a divalent oxidation state, shifting the bandgap of natural HA toward red wavelengths (3.26 to 1.94 eV). Moreover, the incorporation of Co led to magnetization within the HA structure through spin polarization. Additionally, the doped QD crystals of HA nanoparticles showed significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and bacteriophages MS2, particularly under visible light exposure. In short, the Co/Mg co-doped HA nanoparticles exhibited ferromagnetic properties, sensitivity to visible light, biocompatibility, and considerable antimicrobial effects, establishing their potential as sustainable multifunctional materials for biomedical applications, especially in anti-infection treatments.
Collapse
Affiliation(s)
- Hossein Maleki-Ghaleh
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Bartosz Kamiński
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Ehsan Moradpur-Tari
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| | - Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | - Mehdi Khanmohammadi
- Biomaterials Group, Materials Design Division, Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw, 02-507, Poland
| | - Rafał Zbonikowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| | | | - M Hossein Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, 15418, Iran
| | - Ali Akbari-Fakhrabadi
- Advanced Materials Laboratory, Department of Mechanical Engineering, University of Chile, Santiago, 8370456, Chile
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw, 01-224, Poland
| |
Collapse
|
6
|
Bryant G, Alzahrani A, Bryant SJ, Nixon-Luke R, Mata J, Shah R. Advanced scattering techniques for characterisation of complex nanoparticles in solution. Adv Colloid Interface Sci 2024; 334:103319. [PMID: 39488033 DOI: 10.1016/j.cis.2024.103319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024]
Abstract
Nanoparticles are vital to a broad range of applications including commercial formulations, sensing and advanced material synthesis. Nanoparticles can come in a variety of shapes including cubes, polyhedra, rods, and prisms, and recent literature has demonstrated the importance of nanoparticle shape to downstream function (such as cellular uptake). While researchers routinely characterise nanoparticle shape using electron microscopy techniques, this generally requires drying of the samples. Many particles (e.g. lipid nanoparticles or polymer particles) change with drying, so complementary solution based techniques are needed. Scattering techniques can be used to characterise such nanoparticles in suspension, overcoming many of the limitations of other techniques. Here we review the current state of the art in the characterisation of complex nanoparticles (non-spherical and multi-layered) using advanced scattering techniques including light, X-ray, and neutron scattering. Recent improvements in instrument availability and data analysis makes these techniques much more accessible to researchers. This review provides an introduction to these techniques aimed at all researchers working with nanoparticles, in the hope that full characterisation of nanoparticles in solution becomes standard practice.
Collapse
Affiliation(s)
- Gary Bryant
- School of Science, RMIT University, Melbourne, Australia.
| | - Amani Alzahrani
- School of Science, RMIT University, Melbourne, Australia; College of Science, Al Baha University, Al Baha, Saudi Arabia
| | | | | | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organization (ANSTO), Sydney, Australia; School of Chemistry, University of New South Wales, Sydney, Australia
| | - Rohan Shah
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
7
|
Li F, Liu R, Li W, Xie M, Qin S. Synchrotron Radiation: A Key Tool for Drug Discovery. Bioorg Med Chem Lett 2024; 114:129990. [PMID: 39406298 DOI: 10.1016/j.bmcl.2024.129990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/22/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Synchrotron radiation is extensively utilized in the domains of materials science, physical chemistry, and life science, resulting from its high intensity, exceptional monochromaticity, superior collimation, and broad wave spectrum. This top-notch light source has also made significant contributions to the progress of biomedicine. The advancement of synchrotron radiation-based X-ray and protein crystallography technologies has created new prospects for drug discovery. These innovative techniques have opened up exciting avenues in the field. The investigation of protein crystal structures and the elucidation of the spatial configuration of biological macromolecules have revealed intricate details regarding the modes of protein binding. Furthermore, the screening of crystal polymorphs and ligands has laid the groundwork for rational drug modification and the improvement of drug physicochemical properties. As science and technology continue to advance, the techniques for analyzing structures using synchrotron radiation sources and the design of corresponding crystallographic beamline stations are undergoing continuous enhancement. These cutting-edge tools and facilities are expected to expedite the drug development process and rectify the current situation of a lack of targeted drugs.
Collapse
Affiliation(s)
- Fengcheng Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Runze Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Wenjun Li
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Mingyuan Xie
- Institute of Advanced Science Facilities, Shenzhen, Guangdong 518107, China.
| | - Song Qin
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao 266112, China; Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
8
|
Kong W, Meng Q, Kong RM, Zhao Y, Qu F. Valence-Transforming O 2-Depleting Nano-Assembly Enable In Situ Tumor Depositional Embolization. Adv Healthc Mater 2024; 13:e2402899. [PMID: 39328009 DOI: 10.1002/adhm.202402899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Indexed: 09/28/2024]
Abstract
Abnormal metabolism and blood supply/O2 imbalance in tumor cells affect drug transport delivery and increase the difficulty of tumor treatment. Controlling tumor growth by inhibiting tumor cell metabolism and regulating progressive embolization in the tumor region provides an innovative basis for constructing tumor therapeutic models. A highly biocompatible and efficient O2-depleting agent has been investigated to enable in situ precipitation and embolization within the tumor microenvironment. In situ deformation embolizer, Fe-GA@CaCO3 nano-assembly (GA: gallic acid), can convert into the large granular size embolization components of Fe(III) precipitates and affluent Ca2+ within the tumor microenvironment. In situ progressive O2 depletion produces Fe(III) precipitates that embolize tumor regions, isolating O2 and nutrients by blocking supply. Meanwhile, affluent Ca2+ acts on the intracellular, causing mitochondrial dysfunction through calcium overload and contributing to irreversible tumor cell damage. Both internal and external routes work synergistically to produce precise functional inhibition of tumors from the inside out, simultaneously responding to both intracellular and the corresponding tumor regions, providing an innovative solution for anti-tumor therapy.
Collapse
Affiliation(s)
- Weiheng Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Qingyao Meng
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Rong-Mei Kong
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Yan Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, China
| | - Fengli Qu
- Department of Pathology, Cancer Hospital of Zhejiang Province, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, China
| |
Collapse
|
9
|
Navarrete-León C, Doherty A, Strimaite M, Bear JC, Olivo A, Endrizzi M, Patrick PS. Nanoparticle Contrast Agents for Dark-Field X-ray Imaging. NANO LETTERS 2024. [PMID: 39601295 DOI: 10.1021/acs.nanolett.4c04878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The poor soft tissue contrast of X-ray CT necessitates contrast agent use to improve diagnosis across disease applications, yet their poor detection sensitivity requires high injected doses, which restrict use in at-risk populations. Dark-field X-ray imaging is emerging as a more sensitive alternative to traditional attenuation-based imaging, leveraging scattered radiation to produce contrast. Yet aside from large, short-lived microbubbles, the alternate physics of dark-field detection has yet to be exploited for contrast agent development. Here we demonstrate that high-Z nanoparticles can provide a new means to producing dark-field image contrast, promoting scatter via a higher rather than lower electron density compared to microbubbles, increasing detection sensitivity compared to attenuation-based detection of a clinical iodine-based agent at an equivalent X-ray dose. As the use of dark-field X-ray imaging expands into more common clinical usage, this will support the development of a new class of nanoparticulate contrast agents.
Collapse
Affiliation(s)
- Carlos Navarrete-León
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray microscopy and tomography lab, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Adam Doherty
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray microscopy and tomography lab, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - Margarita Strimaite
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
- UCL School of Pharmacy, Faculty of Life Sciences, University College London, London, WC1N 1AX, United Kingdom
| | - Joseph C Bear
- School of Life Sciences, Pharmacy & Chemistry, Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, United Kingdom
| | - Alessandro Olivo
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
| | - Marco Endrizzi
- Department of Medical Physics and Biomedical Engineering, University College London, London, WC1E 6BT, United Kingdom
- X-ray microscopy and tomography lab, The Francis Crick Institute, London, NW1 1AT, United Kingdom
| | - P Stephen Patrick
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
| |
Collapse
|
10
|
Bordun I, Calus D, Szymczykiewicz E, Malovanyy M, Nahurskyi N, Borysiuk A, Kulyk Y. C/Ni/N Nanocomposites Based on Hydrolysis Lignin: Synthesis, Study of Structural and Magnetic Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1886. [PMID: 39683275 DOI: 10.3390/nano14231886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024]
Abstract
A two-step method for the synthesis of C/Ni/N nanocomposites based on hydrolysis lignin from wood chemical processing waste is proposed. These nanocomposites were found to have a well-developed porous structure with a wide pore size distribution. It was shown that doping hydrolysis lignin with urea-derived nitrogen leads to the appearance of ferromagnetic behavior in the carbon material. When nickel chloride was added during pyrolysis, the magnetic behavior of the C/Ni/N composite was provided by superparamagnetic Ni particles less than 30 nm in size and the magnetism of the carbon matrix. The addition of urea during the synthesis of the nanocomposite further promotes better integration of nickel into the carbon structure. According to the results of magnetic studies, the nickel content in the C/Ni/N nanocomposite was 19 wt.% compared to 15 wt.% in the C/Ni nanocomposite. The synthesized nanocomposite was demonstrated to have no residual magnetization, so its particles do not agglomerate after the external magnetic field is removed. Due to this property and the well-developed porous structure, C/Ni/N composites have the potential to be used as catalysts, active electrode materials for autonomous energy sources, and in environmental technologies as magnetically sensitive adsorbents.
Collapse
Affiliation(s)
- Ihor Bordun
- Faculty of Electrical Engineering, Czestochowa University of Technology, J. Dabrowskiego Str. 69, 42-201 Czestochowa, Poland
- Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Bandera Str. 12, 79013 Lviv, Ukraine
| | - Dariusz Calus
- Faculty of Electrical Engineering, Czestochowa University of Technology, J. Dabrowskiego Str. 69, 42-201 Czestochowa, Poland
| | - Ewelina Szymczykiewicz
- Faculty of Electrical Engineering, Czestochowa University of Technology, J. Dabrowskiego Str. 69, 42-201 Czestochowa, Poland
| | - Myroslav Malovanyy
- Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Bandera Str. 12, 79013 Lviv, Ukraine
| | - Nazar Nahurskyi
- Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Bandera Str. 12, 79013 Lviv, Ukraine
| | - Anatoliy Borysiuk
- Viacheslav Chornovil Institute of Sustainable Development, Lviv Polytechnic National University, Bandera Str. 12, 79013 Lviv, Ukraine
| | - Yuriy Kulyk
- Faculty of Physics, Ivan Franko Lviv National University, Universytetska Str. 1, 79005 Lviv, Ukraine
| |
Collapse
|
11
|
Li Z, Ma D, Li H, Zhao B, Huang Y, Li Y. Unveiling the Mechanics Behind Polyimide's Friction-Greening Phenomenon. Polymers (Basel) 2024; 16:3253. [PMID: 39683998 DOI: 10.3390/polym16233253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Polyimide (PI) has been widely used as a flexible substrate in the OLED display industry to achieve folding and other functions. However, it has unintended side effects, such as friction-greening, a green screen phenomenon caused by friction after prolonged usage. This is related to drifting TFT characteristics caused by charge accumulating in the PI in combination with the high efficiency of green pixels. In this study, the mechanism of the influence of PI structure on friction-greening was investigated. Increasing the process temperature from 350 °C to 470 °C, the chain segment structure within the PI became more regularized. Thus, the material had higher conductivity and shallower trap energy levels, which was confirmed by X-ray small angle scattering, dielectric, photoluminescence, and other methods. Under prolonged discharge conditions, less charge accumulated within PI, thus effectively mitigating the threshold voltage drift of the thin-film transistor (TFT). These results will contribute to the further optimization of the process and the development of PI materials.
Collapse
Affiliation(s)
- Zhipeng Li
- Mianyang BOE Optoelectronics Technology Co., Ltd., Mianyang 621000, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611000, China
| | - Dawei Ma
- Mianyang BOE Optoelectronics Technology Co., Ltd., Mianyang 621000, China
| | - Haowen Li
- Mianyang BOE Optoelectronics Technology Co., Ltd., Mianyang 621000, China
| | - Baojie Zhao
- Mianyang BOE Optoelectronics Technology Co., Ltd., Mianyang 621000, China
| | - Yinglong Huang
- Mianyang BOE Optoelectronics Technology Co., Ltd., Mianyang 621000, China
| | - Yanbo Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611000, China
| |
Collapse
|
12
|
Faizi HA, Miller DS, Leal L, Gu J, Pacholski ML, Partain Iii EM, Nimako-Boateng C, McMillan JR, Qian C, Wang Z, Chen Q. Deposition of Nanometric Polymer-Surfactant Complexes Formed by Cationic Dextran: A Path to Sustainable Formulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:24360-24372. [PMID: 39498636 DOI: 10.1021/acs.langmuir.4c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
The home and personal care industry is evolving toward more sustainable and environmentally friendly ingredients. Rinse-off personal care products rely on formation of polymer-surfactant complexes to drive deposition of benefit agents (e.g., conditioning oils, fragrances, etc.) onto the skin or hair. The most used natural polymers for this purpose are cationic guar (catGuar) and cationic hydroxyethyl cellulose (catHEC), and the complexation of these polymers with surfactants has been rigorously characterized. Various gaps still exist with these polymers, specifically low biodegradation and undesirable aquatic toxicity profiles. Modified dextran offers an exciting solution as a biodegradable polysaccharide with a high natural origin content. This paper aims to compare the morphology of polymer-surfactant complexes formed between a cationic dextran (catDex) polymer with mixtures of sodium lauryl ether sulfate (SLES) and cocamidopropyl betaine (CapB) to the morphologies of complexes formed between catGuar or catHEC and the same surfactants. Solutions were designed to mimic industrially relevant shampoos. Through a suite of complementary techniques, unique nanometric sized complexes were observed to form between catDex-SLES/CapB compared to the widely reported micrometer-sized coacervates (liquid-liquid phase separation) or precipitates (liquid-solid) formed in catHEC or catGuar-SLES systems. Using a quartz crystal microbalance with dissipation, the adsorption behavior of the catDex-SLES/CapB is characterized on a silica-coated sensor. The results show deposition throughout the dilution regime for catDex-SLES/CapB where the highest deposition is recorded with the undiluted rinsing formulation. This contrasts with catHEC-SLES/CapB and catGuar-SLES/CapB where the highest deposition is recorded in phase-separated regimes. This result was extended to performance testing on hair, confirming that the unique complexes formed by catDex can drive remarkably high levels of silicone deposition from rinse-off personal care products. This innovative approach of utilizing catDex-SLES/CapB complexes could enable design of more sustainable formulations that rely on polycation-surfactant nanocarriers.
Collapse
Affiliation(s)
- Hammad A Faizi
- Dow Home & Personal Care, The Dow Chemical Company, 2200 W. Salzburg Road, Midland, Michigan 48611, United States
| | - Daniel S Miller
- Core Research & Development, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Lyndsay Leal
- Dow Home & Personal Care, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Junsi Gu
- Core Research & Development, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Michaeleen L Pacholski
- Core Research & Development, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Emmett M Partain Iii
- Dow Home & Personal Care, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Caroline Nimako-Boateng
- Core Research & Development, The Dow Chemical Company, 400 Arcola Road, Collegeville, Pennsylvania 19426, United States
| | - Janet R McMillan
- Core Research & Development, The Dow Chemical Company, 693 Washington Street, Midland, Michigan 48674, United States
| | - Chang Qian
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Zuochen Wang
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Bai J, Jia JH, Wang Y, Yang CC, Jiang Q. Ideal Bi-Based Hybrid Anode Material for Ultrafast Charging of Sodium-Ion Batteries at Extremely Low Temperatures. NANO-MICRO LETTERS 2024; 17:60. [PMID: 39532791 PMCID: PMC11557858 DOI: 10.1007/s40820-024-01560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at - 20 °C or lower. However, the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported. Herein, a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue, which is synthesized via a high temperature shock method. Such a hybrid shows an unprecedented rate performance (237.9 mAh g-1 at 2 A g-1) at - 60 °C, outperforming all reported SIB anode materials. Coupled with a Na3V2(PO4)3 cathode, the energy density of the full cell can reach to 181.9 Wh kg-1 at - 40 °C. Based on this work, a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.
Collapse
Affiliation(s)
- Jie Bai
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - Jian Hui Jia
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - Yu Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, People's Republic of China
| | - Chun Cheng Yang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun, 130022, People's Republic of China.
| |
Collapse
|
14
|
Hibbs M, Pal D, Barudzija G, Ariya PA. Physicochemical properties and their impact on ice nucleation efficiency of respiratory viral RNA and proteins. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:2010-2019. [PMID: 39351962 DOI: 10.1039/d4em00411f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Ice nucleation processes in the earth's atmosphere are critical for cloud formation, radiation, precipitation, and climate change. We investigated the physicochemical properties and ice nucleation potential of selected viral aerosols, including their RNA and proteins, using advanced techniques such as scanning-transmission electron microscopy (S/TEM), small angle X-ray scattering (SAXS), particle analyzers, and a peltier chamber. The experiments revealed that RNA particles obtained from MS2 bacteriophage had a mean freezing point of -13.9 ± 0.3 °C, comparable to the average ice nucleation temperature of global dust particles, which is approximatively -15 °C. RNA from MS2, Influenza, SARS-CoV-1 and SARS-CoV-2 demonstrated average ice nucleation temperatures of -13.9 ± 0.3 °C, -13.7 ± 0.3 °C, -13.7 ± 0.3 °C, and -15.9 ± 0.4 °C, respectively. SAXS analysis indicated a high local crystallinity value of 0.5 of MS2 RNA particles, hinting that high crystalline nature may contribute to their effectiveness as ice nuclei. Dilution experiments show that viral RNA consistently catalyzes ice nucleation. The addition of dust-containing particles, such as Fe2O3, CuO, and TiO2, to MS2 bacteriophage droplets enhanced ice nucleation, as did UV radiation. We herein discuss the implications of this work on ice nucleation and freezing processes.
Collapse
Affiliation(s)
- Mattie Hibbs
- Department of Atmospheric and Oceanic Sciences, Canada.
| | - Devendra Pal
- Department of Atmospheric and Oceanic Sciences, Canada.
| | - Gorjana Barudzija
- Department of Chemistry McGill University, 801 Sherbrooke St. W., Montreal, QC, H2A 0B8, Canada
| | - Parisa A Ariya
- Department of Atmospheric and Oceanic Sciences, Canada.
- Department of Chemistry McGill University, 801 Sherbrooke St. W., Montreal, QC, H2A 0B8, Canada
| |
Collapse
|
15
|
Gatenio N, Kolusheva S, Chèvremont W, Moskovich S, Patil D, Song K, Golan Y. Optical and Structural Properties of Anisotropic ZnS Nanoparticle Suspensions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22982-22989. [PMID: 39413768 PMCID: PMC11526353 DOI: 10.1021/acs.langmuir.4c03164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/01/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
We studied the optical and structural properties of highly ordered arrays of surfactant-capped ZnS nanowires (NWs) and nanorods (NRs) in organic suspensions. The photoluminescence (PL) emission measured under different concentrations and postsynthesis washing cycles interestingly showed increasing emission upon decreasing nanoparticle (NP) concentration. Synchrotron small angle X-ray scattering measurements elucidated the liquid-crystal-like structure of the NPs in suspension under different concentrations and temperatures. The NWs are stacked in a simple structure with a hexagonal cross-section, whereas the structure of the NRs is more complex, resembling a smectic-c liquid crystal, and shows unusual thermal expansion versus temperature. The results point out that a certain amount of bound surfactant must be present on the NP surface to maximize the PL intensity.
Collapse
Affiliation(s)
- Naama Gatenio
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Sofiya Kolusheva
- Ilse
Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - William Chèvremont
- ESRF −
The European Synchrotron, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9,France
| | - Shachar Moskovich
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Dhanush Patil
- School
of
Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM),
College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Kenan Song
- School
of
Environmental, Civil, Agricultural, and Mechanical Engineering (ECAM),
College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Yuval Golan
- Department
of Materials Engineering, Ben-Gurion University
of the Negev, Beer-Sheva 8410501, Israel
- Ilse
Katz
Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| |
Collapse
|
16
|
Ondry JC, Zhou Z, Lin K, Gupta A, Chang JH, Wu H, Jeong A, Hammel BF, Wang D, Fry HC, Yazdi S, Dukovic G, Schaller RD, Rabani E, Talapin DV. Reductive pathways in molten inorganic salts enable colloidal synthesis of III-V semiconductor nanocrystals. Science 2024; 386:401-407. [PMID: 39446954 DOI: 10.1126/science.ado7088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/06/2024] [Indexed: 10/26/2024]
Abstract
Colloidal quantum dots, with their size-tunable optoelectronic properties and scalable synthesis, enable applications in which inexpensive high-performance semiconductors are needed. Synthesis science breakthroughs have been key to the realization of quantum dot technologies, but important group III-group V semiconductors, including colloidal gallium arsenide (GaAs), still cannot be synthesized with existing approaches. The high-temperature molten salt colloidal synthesis introduced in this work enables the preparation of previously intractable colloidal materials. We directly nucleated and grew colloidal quantum dots in molten inorganic salts by harnessing molten salt redox chemistry and using surfactant additives for nanocrystal shape control. Synthesis temperatures above 425°C are critical for realizing photoluminescent GaAs quantum dots, which emphasizes the importance of high temperatures enabled by molten salt solvents. We generalize the methodology and demonstrate nearly a dozen III-V solid-solution nanocrystal compositions that have not been previously reported.
Collapse
Affiliation(s)
- Justin C Ondry
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Zirui Zhou
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Kailai Lin
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Aritrajit Gupta
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Jun Hyuk Chang
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Haoqi Wu
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Ahhyun Jeong
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin F Hammel
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
| | - Di Wang
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
| | - H Christopher Fry
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Sadegh Yazdi
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
| | - Gordana Dukovic
- Materials Science and Engineering, University of Colorado, Boulder, CO 80309, USA
- Renewable and Sustainable Energy Institute, University of Colorado, Boulder, CO 80309, USA
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Richard D Schaller
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dmitri V Talapin
- Department of Chemistry and James Franck Institute, University of Chicago, Chicago, IL 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
17
|
Wang X, Zhao C, Wang J, Lu X, Bao Y, Zhang D, Zheng J. Structure characterization and gelling properties of RG-I-enriched pectins extracted from citrus peels using four different methods. Carbohydr Polym 2024; 342:122410. [PMID: 39048202 DOI: 10.1016/j.carbpol.2024.122410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/27/2024]
Abstract
To facilitate the application of rhamnogalacturonan-I (RG-I)-enriched pectins (RGPs) as novel, healthy, and gelling food additives, this study compared the structural characteristics and gelling properties of RGPs extracted from citrus peel via four methods (alkali: AK, high-temperature/pressure: TP, citric acid: CA, and enzyme-assisted: EA extractions). AK and CA yielded pectins with the highest RG-I proportions (54.8 % and 51.9 %, respectively) by disrupting the homogalacturonan region; TP and EA increased the RG-I proportions by ~10 %. Among the four methods, AK induced the lowest degree of esterification (DE) (6.7 %) and longer side chains that form strong entanglement, contributing to its highest gel hardness. The relatively low DE (18.5 %) of CA RGP facilitated stable gel formation. Notably, its highly branched RG-I region afforded more intramolecular hydrophobic interactions, making a more highly cross-linked gel network of better gel resilience. In contrast, TP induced the highest DE (57 %) and curved molecular chains; it inhibited Ca2+ binding, entanglement, and intramolecular hydrophobic interactions, and thus no gel formed. EA RGP was associated with the lowest molecular size, rendering it more difficult for Ca2+ to form links, which resulted no gel. These findings offer insights into the relationship among the extraction methods, molecular structures, and gelling properties of RGPs.
Collapse
Affiliation(s)
- Xueping Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Human and Animal Physiology, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jirong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuming Bao
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Deli Zhang
- Human and Animal Physiology, Wageningen University & Research, 6708 WD Wageningen, the Netherlands
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
18
|
Obata M, Yamaguchi S, Yoshimura T. A Stochastic FRET Study on the Core Dimension of Polystyrene- block-Poly(Polyethylene Glycol Monomethyl Ether Acrylate) Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20596-20603. [PMID: 39292970 DOI: 10.1021/acs.langmuir.4c02374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Polystyrene-b-poly(polyethylene glycol monomethyl ether acrylate) (PSt-b-PPEGA) copolymers featuring pyrene and perylene as the Förster resonance energy transfer (FRET) donor (denoted as D-BCP) and acceptor (denoted as A-BCP), respectively, were synthesized via the reversible addition and fragmentation chain transfer (RAFT) polymerization. These copolymers were then used to form DA-mixed micelles via a dialysis method. The micelles consisted of D-BCP (mole fraction fD = 0.04), A-BCP (fA = 0.04), and label-free PSt-b-PPEGA (fN = 0.92). The decrease in fluorescence intensity of pyrene in the micelles confirmed the occurrence of FRET, with an observed efficiency of 0.32. A Monte Carlo approach was employed to estimate the expected FRET efficiency, assuming the random fractional distribution of D-BCP and A-BCP, along with the random spatial distribution of pyrene and perylene within the micellar core. The observed FRET efficiency suggested a core radius (Rc) of 0.95R0, where R0 was the Förster critical distance. With R0 calculated to be 3.2 nm based on Förster theory, Rc was determined to be approximately 3.0 nm, aligning closely with the dried-out core radius estimated from aggregation number and polystyrene density. This stochastic FRET methodology was further applied to investigate the swelling behavior of the polymer micelles in a mixture of N,N-dimethylformamide (DMF) and water. Dynamic light scattering analysis revealed minimal change in core dimension below 60 vol % DMF content. However, FRET analysis provided a deeper insight, showing an increase in core radius with DMF content up to 20 vol %, followed by saturation up to 50 vol %, offering a more comprehensive understanding of the micelle swelling behavior.
Collapse
Affiliation(s)
- Makoto Obata
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Shougo Yamaguchi
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-4-37 Takeda, Kofu 400-8510, Japan
| | - Tomokazu Yoshimura
- Department of Chemistry, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara 630-8506, Japan
| |
Collapse
|
19
|
Zhu Y, Wang Y, Gao Z, Gupta P, Singamaneni S, Zuo X, Jun YS. In Situ Monitoring the Nucleation and Growth of Nanoscale CaCO 3 at the Oil-Water Interface. ACS NANO 2024; 18:26522-26531. [PMID: 39283814 DOI: 10.1021/acsnano.4c02490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Interfaces can actively control the nucleation kinetics, orientations, and polymorphs of calcium carbonate (CaCO3). Prior studies have revealed that CaCO3 formation can be affected by the interplay between chemical functional moieties on solid-liquid or air-liquid interfaces as well as CaCO3's precursors and facets. Yet little is known about the roles of a liquid-liquid interface, specifically an oil-liquid interface, in directing CaCO3 mineralization which are common in natural and engineered systems. Here, by using in situ X-ray scattering techniques to locate a meniscus formed between water and a representative oil, isooctane, we successfully monitored CaCO3 formation at the pliable isooctane-water interface and systematically investigated the pivotal roles of the interface in the formation of CaCO3 (i.e., particle size, its spatial distribution with respect to the interface, and its mineral phase). Different from bulk solution, ∼5 nm CaCO3 nanoparticles form at the isooctane-water interface. They stably exist for a long time (36 h), which can result from interface-stabilized dehydrated prenucleation clusters of CaCO3. There is a clear tendency for enhanced amounts and faster crystallization of CaCO3 at locations closer to isooctane, which is attributed to a higher pH and an easier dehydration environment created by the interface and oil. Our study provides insights into CaCO3 nucleation at an oil-water interface, which can deepen our understanding of pliable interfaces interacting with CaCO3 and benefit mineral scaling control during energy-related subsurface operation.
Collapse
Affiliation(s)
- Yaguang Zhu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Ying Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Zhenwei Gao
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Prashant Gupta
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St Louis, Missouri 63130, United States
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Young-Shin Jun
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
20
|
Diaz Maier J, Gaus K, Wagner J. Measurable structure factors of dense dispersions containing polydisperse optically inhomogeneous particles. J Appl Crystallogr 2024; 57:1503-1513. [PMID: 39387071 PMCID: PMC11460387 DOI: 10.1107/s1600576724007957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/12/2024] [Indexed: 10/12/2024] Open
Abstract
Here, it is investigated how optical properties of single scatterers in interacting multi-particle systems influence measurable structure factors. Both particles with linear gradients of their scattering length density and core-shell structures evoke characteristic deviations between the weighted sum 〈S(Q)〉 of partial structure factors in a multi-component system and experimentally accessible measurable structure factors S M(Q). While 〈S(Q)〉 contains only the structural information of self-organizing systems, S M(Q) is additionally influenced by the optical properties of their constituents, resulting in features such as changing amplitudes, additional peaks in the low-wavevector region or splitting of higher-order maxima, which are not related to structural reasons. It is shown that these effects can be systematically categorized according to the qualitative behaviour of the form factor in the Guinier region, which enables assessing the suitability of experimentally obtained structure factors to genuinely represent the microstructure of complex systems free from any particular model assumption. Hence, a careful data analysis regarding size distribution and optical properties of single scatterers is mandatory to avoid a misinterpretation of measurable structure factors.
Collapse
Affiliation(s)
- Joel Diaz Maier
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany
| | - Katharina Gaus
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany
| | - Joachim Wagner
- Institut für Chemie, Universität Rostock, 18051 Rostock, Germany
| |
Collapse
|
21
|
Wu L, Li Y, Liu GQ, Yu SH. Polytypic metal chalcogenide nanocrystals. Chem Soc Rev 2024; 53:9832-9873. [PMID: 39212091 DOI: 10.1039/d3cs01095c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
By engineering chemically identical but structurally distinct materials into intricate and sophisticated polytypic nanostructures, which often surpass their pure phase objects and even produce novel physical and chemical properties, exciting applications in the fields of photovoltaics, electronics and photocatalysis can be achieved. In recent decades, various methods have been developed for synthesizing a library of polytypic nanocrystals encompassing IV, III-V and II-VI polytypic semiconductors. The exceptional performances of polytypic metal chalcogenide nanocrystals have been observed, making them highly promising candidates for applications in photonics and electronics. However, achieving high-precision control over the morphology, composition, crystal structure, size, homojunctions, and periodicity of polytypic metal chalcogenide nanostructures remains a significant synthetic challenge. This review article offers a comprehensive overview of recent progress in the synthesis and control of polytypic metal chalcogenide nanocrystals using colloidal synthetic strategies. Starting from a concise introduction on the crystal structures of metal chalcogenides, the subsequent discussion delves into the colloidal synthesis of polytypic metal chalcogenide nanocrystals, followed by an in-depth exploration of the key factors governing polytypic structure construction. Subsequently, we provide comprehensive insights into the physical properties of polytypic metal chalcogenide nanocrystals, which exhibit strong correlations with their applications. Thereafter, we emphasize the significance of polytypic nanostructures in various applications, such as photovoltaics, photocatalysis, transistors, thermoelectrics, stress sensors, and the electrocatalytic hydrogen evolution. Finally, we present a summary of the recent advancements in this research field and provide insightful perspectives on the forthcoming challenges, opportunities, and future research directions.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Yi Li
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Guo-Qiang Liu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
| | - Shu-Hong Yu
- Department of Chemistry, New Cornerstone Science Laboratory, Institute of Biomimetic Materials & Chemistry, Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China.
- Department of Chemistry, Institute of Innovative Materials, Department of Materials Science and Engineering, Southern University of Science and Technology of China, Shenzhen 518055, China.
| |
Collapse
|
22
|
Wong K, Qi R, Yang Y, Luo Z, Guldin S, Butler KT. Predicting Colloidal Interaction Parameters from Small-Angle X-ray Scattering Curves Using Artificial Neural Networks and Markov Chain Monte Carlo Sampling. JACS AU 2024; 4:3492-3500. [PMID: 39328751 PMCID: PMC11423300 DOI: 10.1021/jacsau.4c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 09/28/2024]
Abstract
Small-angle X-ray scattering (SAXS) is a characterization technique that allows for the study of colloidal interactions by fitting the structure factor of the SAXS profile with a selected model and closure relation. However, the applicability of this approach is constrained by the limited number of existing models that can be fitted analytically, as well as the narrow operating range for which the models are valid. In this work, we demonstrate a proof of concept for using an artificial neural network (ANN) trained on SAXS curves obtained from Monte Carlo (MC) simulations to predict values of the effective macroion valency (Z eff) and the Debye length (κ-1) for a given SAXS profile. This ANN, which was trained on 200,000 simulated SAXS curves, was able to predict values of Z eff and κ-1 for a test set containing 25,000 simulated SAXS curves, where most predicted values had errors smaller than 20%. Subsequently, an ANN was used as a surrogate model in a Markov chain Monte Carlo sampling algorithm to obtain maximum a posteriori estimates of Z eff and κ-1, as well as the associated confidence intervals and correlations between Z eff and κ-1 for an experimentally obtained SAXS profile.
Collapse
Affiliation(s)
- Kelvin Wong
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Runzhang Qi
- Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Langmu Bio, Building 2, 112 Jinjiadulu, Yuhang, Hangzhou 311112, China
| | - Ye Yang
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
- Langmu Bio, Building 2, 112 Jinjiadulu, Yuhang, Hangzhou 311112, China
| | - Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
- Department of Life Science Engineering, Technical University of Munich, Gregor-Mendel-Straße 4, 85354 Freising, Germany
- TUMCREATE, 1 CREATE Way, #10-02 CREATE Tower, 138602, Singapore
| | - Keith T Butler
- Department of Chemistry, University College London, Kathleen Lonsdale Building, Gower Place, London, WC1E 6BS, U.K
| |
Collapse
|
23
|
Pan B, Madani MS, Forsberg AP, Brutchey RL, Malmstadt N. Solvent Dependence of Ionic Liquid-Based Pt Nanoparticle Synthesis: Machine Learning-Aided In-Line Monitoring in a Flow Reactor. ACS NANO 2024; 18:25542-25551. [PMID: 39235302 PMCID: PMC11411720 DOI: 10.1021/acsnano.4c05807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Colloidal platinum nanoparticles (Pt NPs) possess a myriad of technologically relevant applications. A potentially sustainable route to synthesize Pt NPs is via polyol reduction in ionic liquid (IL) solvents; however, the development of this synthetic method is limited by the fact that reaction kinetics have not been investigated. In-line analysis in a flow reactor is an appealing approach to obtain such kinetic data; unfortunately, the optical featurelessness of Pt NPs in the visible spectrum complicates the direct analysis of flow chemistry products via ultraviolet-visible (UV-vis) spectrophotometry. Here, we report a machine learning (ML)-based approach to analyze in-line UV-vis spectrophotometric data to determine Pt NP product concentrations. Using a benchtop flow reactor with ML-interpreted in-line analysis, we were able to investigate NP yield as a function of residence time for two IL solvents: 1-butyl-1-methylpyrrolidinium triflate (BMPYRR-OTf) and 1-butyl-2-methylpyridinium triflate (BMPY-OTf). While these solvents are structurally similar, the polyol reduction shows radically different yields of Pt NPs depending on which solvent is used. The approach presented here will help develop an understanding of how the subtle differences in the molecular structures of these solvents lead to distinct reaction behavior. The accuracy of the ML prediction was validated by particle size analysis and the error was found to be as low as 4%. This approach is generalizable and has the potential to provide information on various reaction outcomes stemming from solvent effects, for example, differential yields, orders of reaction, rate coefficients, NP sizes, etc.
Collapse
Affiliation(s)
- Bin Pan
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089-1211, United States
| | - Majed S Madani
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089-1211, United States
- Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Allison P Forsberg
- Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, California 90089-0744, United States
| | - Richard L Brutchey
- Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, California 90089-0744, United States
| | - Noah Malmstadt
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, 925 Bloom Walk, Los Angeles, California 90089-1211, United States
- Department of Chemistry, University of Southern California, 840 Downey Way, Los Angeles, California 90089-0744, United States
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, California 90089-0260, United States
- USC Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Ave, Los Angeles, California 90033, United States
| |
Collapse
|
24
|
Lin SW, Lam PK, Wu CT, Su KH, Sung CF, Huang SR, Chang JW, Shih O, Yeh YQ, Vo TH, Tsao HK, Hsieh HT, Jeng US, Shieh FK, Yang HC. Decoding the Biomimetic Mineralization of Metal-Organic Frameworks in Water. ACS NANO 2024; 18:25170-25182. [PMID: 39189348 DOI: 10.1021/acsnano.4c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
This study unveils the "green" metal-organic framework (MOF) structuring mechanism by decoding proton transfer in water during ZIF-8 synthesis. Combining in situ small- to wide-angle X-ray scattering, multiscale simulations, and quantum calculations, we reveal that the ZIF-8 early-stage nucleation and crystallization process in aqueous solution unfolds in three distinct stages. In stage I, imidazole ligands replace water in zinc-water cages, triggering an "acidity flip" that promotes proton transfer. This leads to the assembly of structures from single zinc ions to 3D amorphous cluster nuclei. In stage II, amorphous nuclei undergo a critical transformation, evolving into crystalline nuclei and subsequently forming mesoscale-ordered structures and crystallites. The process proceeds until the amorphous precursors are completely consumed, with the transformation kinetics governed by an energy barrier that determines the rate-limiting step. In stage III, stable crystallite nanoparticles form in solution, characterized by a temperature-dependent thermal equilibrium of molecular interactions at the crystal-solution interface. Beyond these core advancements, we explore the influence of encapsulated pepsin and nonencapsulated lysozyme on ZIF-8 formation, finding that their amino acid proton transfer capacity and concentration influence the resulting biomolecule-MOF composite's shape and encapsulation efficiency. The findings contribute to understanding the molecular mechanisms behind biomimetic mineralization and have potential implications for engineering proteins within amorphous MOF nuclei as protein embryo growth sites.
Collapse
Affiliation(s)
- Shang-Wei Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Phuc Khanh Lam
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Chin-Teng Wu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Kuan-Hsuan Su
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Chi-Fang Sung
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Sen-Ruo Huang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| | - Je-Wei Chang
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Yi-Qi Yeh
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
| | - Trung Hieu Vo
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Haw-Ting Hsieh
- Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, California 94720, United States
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu Science Park, Hsinchu 300092, Taiwan
- Department of Chemical Engineering & College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Fa-Kuen Shieh
- Department of Chemistry, National Central University, Taoyuan 32001, Taiwan
| | - Hsiao-Ching Yang
- Department of Chemistry, Fu Jen Catholic University, New Taipei City 24205, Taiwan
| |
Collapse
|
25
|
Wu H, Li Z. A new dual-thickness semi-transparent beamstop for small-angle X-ray scattering. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1197-1208. [PMID: 39182204 PMCID: PMC11371043 DOI: 10.1107/s1600577524007392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024]
Abstract
An innovative dual-thickness semi-transparent beamstop designed to enhance the performance of small-angle X-ray scattering (SAXS) experiments is introduced. This design integrates two absorbers of differing thicknesses side by side into a single attenuator, known as a beamstop. Instead of completely stopping the direct beam, it attenuates it, allowing the SAXS detector to measure the transmitted beam through the sample. This approach achieves true synchronization in measuring both scattered and transmitted signals and effectively eliminates higher-order harmonic contributions when determining the transmission light intensity through the sample. This facilitates and optimizes signal detection and background subtraction. This contribution details the theoretical basis and practical implementation of this solution at the SAXS station on the 1W2A beamline at the Beijing Synchrotron Radiation Facility. It also anticipates its application at other SAXS stations, including that at the forthcoming High Energy Photon Source, providing an effective solution for high-precision SAXS experiments.
Collapse
Affiliation(s)
- Haijuan Wu
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
- College of Nuclear Science and TechnologyUniversity of Chinese Academy of SciencesBeijing100049People’s Republic of China
| | - Zhihong Li
- Beijing Synchrotron Radiation Facility, Institute of High Energy PhysicsChinese Academy of SciencesBeijing100049People’s Republic of China
| |
Collapse
|
26
|
Do T, Vaculciakova S, Kluska K, Peris-Díaz MD, Priborsky J, Guran R, Krężel A, Adam V, Zitka O. Antioxidant-related enzymes and peptides as biomarkers of metallic nanoparticles (eco)toxicity in the aquatic environment. CHEMOSPHERE 2024; 364:142988. [PMID: 39103097 PMCID: PMC11422181 DOI: 10.1016/j.chemosphere.2024.142988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/20/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024]
Abstract
Increased awareness of the impact of human activities on the environment has emerged in recent decades. One significant global environmental and human health issue is the development of materials that could potentially have negative effects. These materials can accumulate in the environment, infiltrate organisms, and move up the food chain, causing toxic effects at various levels. Therefore, it is crucial to assess materials comprising nano-scale particles due to the rapid expansion of nanotechnology. The aquatic environment, particularly vulnerable to waste pollution, demands attention. This review provides an overview of the behavior and fate of metallic nanoparticles (NPs) in the aquatic environment. It focuses on recent studies investigating the toxicity of different metallic NPs on aquatic organisms, with a specific emphasis on thiol-biomarkers of oxidative stress such as glutathione, thiol- and related-enzymes, and metallothionein. Additionally, the selection of suitable measurement methods for monitoring thiol-biomarkers in NPs' ecotoxicity assessments is discussed. The review also describes the analytical techniques employed for determining levels of oxidative stress biomarkers.
Collapse
Affiliation(s)
- Tomas Do
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Silvia Vaculciakova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Katarzyna Kluska
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Manuel David Peris-Díaz
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Jan Priborsky
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Roman Guran
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Artur Krężel
- Department of Chemical Biology, Faculty of Biotechnology, University of Wrocław, Joliot-Curie 14a, 50-383, Wrocław, Poland
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 613 00, Brno, Czech Republic.
| |
Collapse
|
27
|
Yuan SC, Álvarez Z, Lee SR, Pavlović RZ, Yuan C, Singer E, Weigand SJ, Palmer LC, Stupp SI. Supramolecular Motion Enables Chondrogenic Bioactivity of a Cyclic Peptide Mimetic of Transforming Growth Factor-β1. J Am Chem Soc 2024; 146:21555-21567. [PMID: 39054767 DOI: 10.1021/jacs.4c05170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Transforming growth factor (TGF)-β1 is a multifunctional protein that is essential in many cellular processes that include fibrosis, inflammation, chondrogenesis, and cartilage repair. In particular, cartilage repair is important to avoid physical disability since this tissue does not have the inherent capacity to regenerate beyond full development. We report here on supramolecular coassemblies of two peptide amphiphile molecules, one containing a TGF-β1 mimetic peptide, and another which is one of two constitutional isomers lacking bioactivity. Using human articular chondrocytes, we investigated the bioactivity of the supramolecular copolymers of each isomer displaying either the previously reported linear form of the mimetic peptide or a novel cyclic analogue. Based on fluorescence depolarization and 1H NMR spin-lattice relaxation times, we found that coassemblies containing the cyclic compound and the most dynamic isomer exhibited the highest intracellular TGF-β1 signaling and gene expression of cartilage extracellular matrix components. We conclude that control of supramolecular motion is emerging as an important factor in the binding of synthetic molecules to receptors that can be tuned through chemical structure.
Collapse
Affiliation(s)
- Shelby C Yuan
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Biomaterials for Regenerative Therapies, Institute for Bioengineering of Catalonia (IBEC), Barcelona 08028, Spain
| | - Sieun Ruth Lee
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Radoslav Z Pavlović
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
| | - Chunhua Yuan
- Campus Chemical Instrument Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ethan Singer
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Steven J Weigand
- DuPont-Northwestern-Dow Collaborative Access Team Synchrotron Research Center, Northwestern University, Advanced Photon Source/Argonne National Laboratory 432-A004, Argonne, Illinois 60439, United States
| | - Liam C Palmer
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois 60611, United States
- Department of Medicine, Northwestern University, Chicago, Illinois 60611, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
28
|
Yu Z, Li Q, Liu Y, Tian S, Chen W, Han Y, Tang Z, Zhang J. Malleable, Ultrastrong Antibacterial Thermosets Enabled by Guanidine Urea Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402891. [PMID: 38868926 PMCID: PMC11321644 DOI: 10.1002/advs.202402891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Indexed: 06/14/2024]
Abstract
Dynamic covalent polymers (DCPs) that strike a balance between high performance and rapid reconfiguration have been a challenging task. For this purpose, a solution is proposed in the form of a new dynamic covalent supramolecular motif-guanidine urea structure (GUAs). GUAs contain complex and diverse chemical structures as well as unique bonding characteristics, allowing guanidine urea supramolecular polymers to demonstrate advanced physical properties. Noncovalent interaction aggregates (NIAs) have been confirmed to form in GUA-DCPs through multistage H-bonding and π-π stacking, resulting in an extremely high Young's modulus of 14 GPa, suggesting remarkable mechanical strength. Additionally, guanamine urea linkages in GUAs, a new type of dynamic covalent bond, provide resins with excellent malleability and reprocessability. Guanamine urea metathesis is validated using small molecule model compounds, and the temperature dependent infrared and rheological behavior of GUA-DCPs following the dissociative exchange mechanism. Moreover, the inherent photodynamic antibacterial properties are extensively verified by antibacterial experiments. Even after undergoing three reprocessing cycles, the antibacterial rate of GUA-DCPs remains above 99% after 24 h, highlighting their long-lasting antibacterial effectiveness. GUA-DCPs with dynamic nature, tuneable composition, and unique combination of properties make them promising candidates for various technological advancements.
Collapse
Affiliation(s)
- Zhen Yu
- Center of Eco‐Material and Green ChemistryLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qiong Li
- Department of ChemistryThe University of Hong KongHong Kong999077P. R. China
| | - Yanlin Liu
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Shu Tian
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Wanding Chen
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Yingying Han
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Zhaobin Tang
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingbo315201P. R. China
| | - Junping Zhang
- Center of Eco‐Material and Green ChemistryLanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhou730000P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
29
|
Derelli D, Frank K, Grote L, Mancini F, Dippel AC, Gutowski O, Nickel B, Koziej D. Direct Synthesis of CuPd Icosahedra Supercrystals Studied by In Situ X-Ray Scattering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311714. [PMID: 38501853 DOI: 10.1002/smll.202311714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Nanocrystal self-assembly into supercrystals provides a versatile platform for creating novel materials and devices with tailored properties. While common self-assembly strategies imply the use of purified nanoparticles after synthesis, conversion of chemical precursors directly into nanocrystals and then supercrystals in simple procedures has been rarely reported. Here, the nucleation and growth of CuPd icosahedra and their consecutive assembly into large closed-packed face-centered cubic (fcc) supercrystals are studied. To this end, the study simultaneously and in situ measures X-ray total scattering with pair distribution function analysis (TS-PDF) and small-angle X-ray scattering (SAXS). It is found that the supercrystals' formation is preceded by an intermediate dense phase of nanocrystals displaying short-range order (SRO). It is further shown that the organization of oleic acid/oleylamine surfactants into lamellar structures likely drives the emergence of the SRO phase and later of the supercrystals by reducing the volume accessible to particle diffusion. The supercrystals' formation as well as their disassembly are triggered by temperature. The study demonstrates that ordering of solvent molecules can be crucial in the direct synthesis of supercrystals. The study also provides a general approach to investigate novel preparation routes of supercrystals in situ and across several length scales via X-ray scattering.
Collapse
Affiliation(s)
- Davide Derelli
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
| | - Kilian Frank
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Lukas Grote
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
| | - Federica Mancini
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
- Current affiliation: National Research Council of Italy, Institute of Science, Technology and Sustainability for Ceramics, CNR - ISSMC (former ISTEC), 64 I-48018, Via Granarolo, FAENZA (RA), Italy
| | | | - Olof Gutowski
- Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - Bert Nickel
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539, Munich, Germany
| | - Dorota Koziej
- Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, University of Hamburg, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, 22761, Hamburg, Germany
| |
Collapse
|
30
|
Kumar S, Kohlbrecher J, Aswal VK. Competing Effects of Temperature and Polymer Concentration on Evolution of Re-entrant Interactions in the Nanoparticle-Block Copolymer System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14888-14899. [PMID: 38976366 DOI: 10.1021/acs.langmuir.4c00900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
An interesting evolution of the re-entrant interaction has been observed in an anionic silica nanoparticle (NP)-block copolymer (P85) dispersion due to mutually competing effects of temperature and polymer concentration. It has been demonstrated that a rise in the temperature leads to an evolution of attraction in the system, which interestingly diminishes on increasing the polymer concentration. Consequently, the system exhibits a re-entrant transition from repulsive to attractive and back to repulsive at a given temperature but with respect to the increasing polymer concentration, within a selected region of concentration and temperature. The intriguing observations have been elucidated based on the temperature/concentration-dependent modifications in the interactions governing the system, as probed by contrast-variation small-angle neutron scattering. The initial transition from the repulsive to attractive system is attributed to the temperature-driven enhancement in the hydrophobicity of the amphiphilic triblock copolymer (P85) adsorbed on nanoparticles. The strength and range of this attraction are found to be more than van der Waals attraction while relatively less than electrostatic interaction. At higher polymer concentrations, the saturation of polymer adsorption on nanoparticles introduces additional steric repulsion along with electrostatic interaction between their conjugates, effectively reducing the strength of the attraction. However, with a significant increase in temperature (>75 °C), the attraction again dominates the system, which eventually leads to the particle aggregation at all the measured polymer concentrations (>0.1 wt %). Our study provides useful inputs to develop smart NP-polymer composites having capabilities to respond to external stimuli such as temperature/concentration variation.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Joachim Kohlbrecher
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut (PSI), Villigen CH-5232, Switzerland
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
31
|
Kumar S, Aswal VK. Evolution of the structure and interaction in the surfactant-dependent heat-induced gelation of protein. SOFT MATTER 2024; 20:5553-5563. [PMID: 38957095 DOI: 10.1039/d4sm00284a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The addition of a surfactant and/or an increase in temperature disrupt the native structure of proteins, where high temperature further results in protein gelation. However, in a mixed protein-surfactant system, surfactant concentration and temperature have been observed to exhibit both mutually associative and counter-balancing effects towards heat-induced gelation of protein-surfactant dispersion. This study is conducted on globular bovine serum albumin (BSA) protein and cationic surfactant dodecyl trimethyl ammonium bromide (DTAB), which interact strongly owing to their oppositely charged nature. The findings reveal that the BSA-DTAB suspension undergoes gelation with increasing temperature but only at lower concentrations of DTAB, where the presence of the surfactant facilitates gelation (associative effect). Conversely, as the surfactant concentration increases beyond a critical value, temperature-driven gelation of the BSA-DTAB system is completely inhibited, despite surfactant-induced protein denaturation (counter-balancing effect). To conceptualize these results, we compared them with observations made in a system comprising protein and a similarly charged surfactant, sodium dodecyl sulfate (SDS). It has been further demonstrated that the anionic surfactant (SDS) can restrict protein gelation at much lower concentration compared to the cationic surfactant (DTAB). The evolution of the structure and interaction during gel formation/inhibition has been examined to understand the underlying mechanism guiding these sol-gel transitions. We present a comprehensive phase diagram, encompassing the solution/gel states of the protein-surfactant dispersion, with respect to the dispersion temperature, surfactant concentration, and ionic behavior (anionic or cationic) of the surfactants.
Collapse
Affiliation(s)
- Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India.
- Homi Bhabha National Institute, Mumbai 400 094, India
| |
Collapse
|
32
|
Sakuma F, Higashi K, Ueda K, Morita T, Iohara D, Hirayama F, Moribe K. Effect of Acetaminophen on Poloxamer 407 Micelles and Hydrogels: The Relationship between Structural and Physical Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39012334 DOI: 10.1021/acs.langmuir.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Poloxamer hydrogel possesses thermosensitive sol-gel transition characteristics and is widely used as a drug-controlled-release carrier for topical or injectable formulations. In this study, the effect of loading of a drug, acetaminophen (ACE), on the physical and structural properties of poloxamer 407 (P407) micelles and hydrogels was investigated. Differential scanning calorimetry measurements revealed that ACE reduced the critical micelle temperature and enthalpy of micellization of P407 solutions. The P407 micellization was promoted by ACE incorporation. Rheometry showed that ACE increased the sol-gel transition temperature and reduced the gel strength of P407. In situ small-angle X-ray scattering (SAXS) using synchrotron radiation revealed that ACE altered the structure of P407 micelles and their packing in the P407 gels. As ACE concentration increased, the P407 micelle packing changed from a face-centered cubic phase to a body-centered cubic phase. Furthermore, ACE disordered the micelle packing structure and induced the formation of an amorphous phase. Structural analysis of the P407 micelle packing indicated that ACE reduced the aggregation number (Nagg) of P407 micelles in the gels. The SAXS study for diluted P407 solutions revealed that ACE reduced the P407 micelle size and its uniformity. The structural changes in P407 micelles by ACE loading (e.g., the reduction of Nagg, size, and size uniformity) would alter the micelle packing structure. It was found that these structural changes of micelle packing, especially the formation of an amorphous phase, could destabilize the P407 gel. As a result, the physical properties of P407 gels, such as gelation temperature and gel strength, were changed. This relationship between the structure and physical property of drug-loaded P407 gels was well-explained by correlating the micelle and gel structures. The mechanistic understanding of the change in the physical properties of P407 gels by drug loading is essential for the effective development of poloxamer gel formulations.
Collapse
Affiliation(s)
- Fumie Sakuma
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Kenjirou Higashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Keisuke Ueda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Takeshi Morita
- Graduate School of Science, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1, Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1, Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Kunikazu Moribe
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
33
|
Harper CC, Jordan JS, Papanu S, Williams ER. Characterization of Mass, Diameter, Density, and Surface Properties of Colloidal Nanoparticles Enabled by Charge Detection Mass Spectrometry. ACS NANO 2024; 18:17806-17814. [PMID: 38913932 DOI: 10.1021/acsnano.4c03503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
A variety of scattering-based, microscopy-based, and mobility-based methods are frequently used to probe the size distributions of colloidal nanoparticles with transmission electron microscopy (TEM) often considered to be the "gold standard". Charge detection mass spectrometry (CDMS) is an alternative method for nanoparticle characterization that can rapidly measure the mass and charge of individual nanoparticle ions with high accuracy. Two low polydispersity, ∼100 nm diameter nanoparticle size standards with different compositions (polymethyl methacrylate/polystyrene copolymer and 100% polystyrene) were characterized using both TEM and CDMS to explore the merits and complementary aspects of both methods. Mass and diameter distributions are rapidly obtained from CDMS measurements of thousands of individual ions of known spherical shape, requiring less time than TEM sample preparation and image analysis. TEM image-to-image variations resulted in a ∼1-2 nm range in the determined mean diameters whereas the CDMS mass precision of ∼1% in these experiments leads to a diameter uncertainty of just 0.3 nm. For the 100% polystyrene nanoparticles with known density, the CDMS and TEM particle diameter distributions were in excellent agreement. For the copolymer nanoparticles with unknown density, the diameter from TEM measurements combined with the mass from CDMS measurements enabled an accurate measurement of nanoparticle density. Differing extents of charging for the two nanoparticle standards measured by CDMS show that charging is sensitive to nanoparticle surface properties. A mixture of the two samples was separated based on their different extents of charging despite having overlapping mass distributions centered at 341.5 and 331.0 MDa.
Collapse
Affiliation(s)
- Conner C Harper
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Jacob S Jordan
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| | - Steven Papanu
- Colloidal Metrics Corporation, 2520 Wyandotte Street Suite F, Mountain View, California 94083-2381, United States
| | - Evan R Williams
- Department of Chemistry, University of California, Berkeley, California 94720-1460, United States
| |
Collapse
|
34
|
Shirasawa T, Voegeli W, Arakawa E. Simultaneous fast XAS/SAXS measurements in an energy-dispersive mode. Phys Chem Chem Phys 2024; 26:18493-18499. [PMID: 38916534 DOI: 10.1039/d4cp01399a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
X-ray absorption spectroscopy (XAS) and small-angle X-ray scattering (SAXS) are common materials characterization tools at synchrotron radiation facilities used in many research fields. Since XAS can provide element-specific chemical states and local atomic structures and SAXS can provide nano-scale structural information, their complementary use is advantageous for a comprehensive understanding of multiscale phenomena. This paper presents a new method for simultaneous XAS/SAXS measurements with synchrotron radiation. The method employs a polychromatic X-ray beam as in the energy-dispersive XAS technique and captures both the transmission XAS spectrum and the SAXS intensity distribution with an area X-ray detector, which eliminates the energy scan in the conventional methods and realizes the simultaneous data acquisition in a shorter time. We succeeded in obtaining the atomic and nano-scale structures of Pt and Pt/Pd nanoparticles with a data acquisition time of 0.1 s, suggesting the potential for real-time observation of multiscale phenomena.
Collapse
Affiliation(s)
- Tetsuroh Shirasawa
- Research Institute for Material and Chemical Measurement, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan.
| | - Wolfgang Voegeli
- Natural Sciences Division, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| | - Etsuo Arakawa
- Natural Sciences Division, Tokyo Gakugei University, Koganei, Tokyo 184-8501, Japan
| |
Collapse
|
35
|
Zhang J, Song P, Zhu Z, Li Y, Liu G, Henderson MJ, Li J, Wang W, Tian Q, Li N. Evaporation-induced self-assembly of Janus pyramid molecules from fractal network to core-shell nanoclusters evidenced by small-angle X-ray scattering. J Colloid Interface Sci 2024; 674:437-444. [PMID: 38941936 DOI: 10.1016/j.jcis.2024.06.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
Self-assembly of nanoclusters (NCs) is an effective synthetic method for preparing functionalized nanomaterials. However, the assembly process and mechanisms in solutions still remain ambiguous owing to the limited strategies to monitor intermediate assembled states. Herein, the self-assembly process of amphiphilic molecule 4POSS-DL-POM (consisting of four polyhedral oligomeric silsesquioxanes, a dendritic linker, and one polyoxometalate) by evaporation of acetone in a mixed acetone/n-decane solution is monitored by time-resolved synchrotron small-angle X-ray scattering (SAXS). Scattering data assessments, including Kratky analysis, pair distance distribution function, and model fitting, track the self-assembly process of 4POSS-DL-POM from a fractal network to compact NCs, then to core-shell NCs, and finally to superlattice structure. The calculated average aggregation number of a core-shell NC is 11 according to the parameters obtained from core-shell model fitting, in agreement with electron microscopy. The fundamental understanding of the self-assembly dynamics from heterocluster into NCs provides principles to control building block shape and guide target aggregation, which can further promote the design and construction of highly ordered cluster-assembled functional nanomaterials.
Collapse
Affiliation(s)
- Jianqiao Zhang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Panqi Song
- Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai 201210, China
| | - Zhongjie Zhu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai 201210, China
| | - Yiwen Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai 201210, China
| | - Guangfeng Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai 201210, China
| | - Mark Julian Henderson
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Wang
- Centre for Synthetic Soft Materials, Key Laboratory of Functional Polymer Materials of Ministry of Education and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Qiang Tian
- State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Na Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences (CAS), Shanghai 201210, China.
| |
Collapse
|
36
|
Wu X, Xue H, Fink Z, Helms BA, Ashby PD, Omar AK, Russell TP. Oversaturating Liquid Interfaces with Nanoparticle-Surfactants. Angew Chem Int Ed Engl 2024; 63:e202403790. [PMID: 38589294 DOI: 10.1002/anie.202403790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/10/2024]
Abstract
Assemblies of nanoparticles at liquid interfaces hold promise as dynamic "active" systems when there are convenient methods to drive the system out of equilibrium via crowding. To this end, we show that oversaturated assemblies of charged nanoparticles can be realized and held in that state with an external electric field. Upon removal of the field, strong interparticle repulsive forces cause a high in-plane electrostatic pressure that is released in an explosive emulsification. We quantify the packing of the assembly as it is driven into the oversaturated state under an applied electric field. Physiochemical conditions substantially affect the intensity of the induced explosive emulsification, underscoring the crucial role of interparticle electrostatic repulsion.
Collapse
Affiliation(s)
- Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Han Xue
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Zachary Fink
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA-01003, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
| | - Ahmad K Omar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA-94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA-94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA-01003, USA
- Advanced Institute for Materials Research (AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
37
|
Katawale S, Tank S, Dhaygude H, Holm R, Shah S, Shinde U, Shidhaye S, Aswal V, Kumar S, Nagarsenker M. Impact of formulation parameters on self-assembled liposomes (LeciPlex® III): A detailed investigation. Int J Pharm 2024; 657:124147. [PMID: 38657715 DOI: 10.1016/j.ijpharm.2024.124147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/30/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The present study investigated the feasibility of fabricating self-assembled liposomes, LeciPlex®, a phospholipid-based vesicular nanocarrier using cationic, anionic, and nonionic stabilizers. The phospholipid investigated was soy phosphatidylcholine and the nano-precipitation method based on solvent diffusion was applied as the fabrication technique of liposomes in this study. The effects of various formulation variables, such as lipid and stabilizer concentration, total solid concentration, and solvent type on the self-assembly of vesicles were studied for physical characterization including particle size analysis, differential scanning calorimetry, viscosity, optical transmittance, transmission electron microscopy, and small angle neutron scattering. All three LeciPlex® systems exhibited a direct relationship between particle size and phospholipid concentration. The two categoric variables, solvent, and stabilizer used to prepare LeciPlex® demonstrated a significant effect on particle size for all three LeciPlex® systems. Small angle neutron scattering, and optical transmittance confirmed the formation of micellar systems at a phospholipid: stabilizer ratio of 1:2 and vesicular systems at a ratio of 2:1 for the systems stabilized with anionic and nonionic surfactants. In contrast to this, the LeciPlex® formed with the cationic stabilizer Dioctadecyldimethylammonium bromide (DODAB), formed vesicles at both ratios. From these investigations, it was clear that the formulation space for LeciPlex® was diversified by the addition of cationic, anionic, and non-ionic stabilizers.
Collapse
Affiliation(s)
- Saurabh Katawale
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - Shivali Tank
- Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India
| | - Harshali Dhaygude
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - René Holm
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55 5230, Odense, Denmark
| | - Sanket Shah
- Therapeutics Development and Supply, Janssen Pharmaceutica NV, A Johnson & Johnson Company, Turnhoutseweg 30 2340, Beerse, Belgium
| | - Ujwala Shinde
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India
| | - Supriya Shidhaye
- Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India
| | - Vinod Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Mumbai 400 094, India
| | - Sugam Kumar
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085, India; Homi Bhabha National Institute, Mumbai 400 094, India
| | - Mangal Nagarsenker
- Department of Pharmaceutics, Bombay College of Pharmacy, Kalina, Santacruz, Mumbai 400 098, India; Department of Pharmaceutics, VES College of Pharmacy, Chembur, Mumbai 400 074, India.
| |
Collapse
|
38
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
39
|
Yu S, Li C, Zhao S, Chai M, Hou J, Lin R. Recent advances in the interfacial engineering of MOF-based mixed matrix membranes for gas separation. NANOSCALE 2024; 16:7716-7733. [PMID: 38536054 DOI: 10.1039/d4nr00096j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The membrane process stands as a promising and transformative technology for efficient gas separation due to its high energy efficiency, operational simplicity, low environmental impact, and easy up-and-down scaling. Metal-organic framework (MOF)-polymer mixed matrix membranes (MMMs) combine MOFs' superior gas-separation performance with polymers' processing versatility, offering the opportunity to address the limitations of pure polymer or inorganic membranes for large-scale integration. However, the incompatibility between the rigid MOFs and flexible polymer chains poses a challenge in MOF MMM fabrication, which can cause issues such as MOF agglomeration, sedimentation, and interfacial defects, substantially weakening membrane separation efficiency and mechanical properties, particularly gas separation. This review focuses on engineering MMMs' interfaces, detailing recent strategies for reducing interfacial defects, improving MOF dispersion, and enhancing MOF loading. Advanced characterisation techniques for understanding membrane properties, specifically the MOF-polymer interface, are outlined. Lastly, it explores the remaining challenges in MMM research and outlines potential future research directions.
Collapse
Affiliation(s)
- Shuwen Yu
- School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, 234000, China
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Conger Li
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Shuke Zhao
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
40
|
Liu Z, Yang Q, Zhu P, Liu Y, Tong X, Cao T, Tomson MB, Alvarez PJJ, Zhang T, Chen W. Cr(VI) Reduction and Sequestration by FeS Nanoparticles Formed in situ as Aquifer Material Coating to Create a Regenerable Reactive Zone. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7186-7195. [PMID: 38598770 DOI: 10.1021/acs.est.3c10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Remediation of large and dilute plumes of groundwater contaminated by oxidized pollutants such as chromate is a common and difficult challenge. Herein, we show that in situ formation of FeS nanoparticles (using dissolved Fe(II), S(-II), and natural organic matter as a nucleating template) results in uniform coating of aquifer material to create a regenerable reactive zone that mitigates Cr(VI) migration. Flow-through columns packed with quartz sand are amended first with an Fe2+ solution and then with a HS- solution to form a nano-FeS coating on the sand, which does not hinder permeability. This nano-FeS coating effectively reduces and immobilizes Cr(VI), forming Fe(III)-Cr(III) coprecipitates with negligible detachment from the sand grains. Preconditioning the sand with humic or fulvic acid (used as model natural organic matter (NOM)) further enhances Cr(VI) sequestration, as NOM provides additional binding sites of Fe2+ and mediates both nucleation and growth of FeS nanoparticles, as verified with spectroscopic and microscopic evidence. Reactivity can be easily replenished by repeating the procedures used to form the reactive coating. These findings demonstrate that such enhancement of attenuation capacity can be an effective option to mitigate Cr(VI) plume migration and exposure, particularly when tackling contaminant rebound post source remediation.
Collapse
Affiliation(s)
- Zhenhai Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Qihong Yang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Panpan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Yaqi Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Xin Tong
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Tianchi Cao
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Mason B Tomson
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Tong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China
| |
Collapse
|
41
|
DeLuca M, Duke D, Ye T, Poirier M, Ke Y, Castro C, Arya G. Mechanism of DNA origami folding elucidated by mesoscopic simulations. Nat Commun 2024; 15:3015. [PMID: 38589344 PMCID: PMC11001925 DOI: 10.1038/s41467-024-46998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
Many experimental and computational efforts have sought to understand DNA origami folding, but the time and length scales of this process pose significant challenges. Here, we present a mesoscopic model that uses a switchable force field to capture the behavior of single- and double-stranded DNA motifs and transitions between them, allowing us to simulate the folding of DNA origami up to several kilobases in size. Brownian dynamics simulations of small structures reveal a hierarchical folding process involving zipping into a partially folded precursor followed by crystallization into the final structure. We elucidate the effects of various design choices on folding order and kinetics. Larger structures are found to exhibit heterogeneous staple incorporation kinetics and frequent trapping in metastable states, as opposed to more accessible structures which exhibit first-order kinetics and virtually defect-free folding. This model opens an avenue to better understand and design DNA nanostructures for improved yield and folding performance.
Collapse
Affiliation(s)
- Marcello DeLuca
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27705, USA
| | - Daniel Duke
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27705, USA
| | - Tao Ye
- Department of Chemistry & Biochemistry, University of California, Merced, CA, 95343, USA
- Department of Materials and Biomaterials Science & Engineering, University of California, Merced, CA, 95343, USA
| | - Michael Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yonggang Ke
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA
| | - Carlos Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Gaurav Arya
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27705, USA.
| |
Collapse
|
42
|
Unruh T, Götz K, Vogel C, Fröhlich E, Scheurer A, Porcar L, Steiniger F. Mesoscopic Structure of Lipid Nanoparticle Formulations for mRNA Drug Delivery: Comirnaty and Drug-Free Dispersions. ACS NANO 2024; 18:9746-9764. [PMID: 38514237 DOI: 10.1021/acsnano.4c02610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Lipid nanoparticles (LNPs) produced by antisolvent precipitation (ASP) are used in formulations for mRNA drug delivery. The mesoscopic structure of such complex multicomponent and polydisperse nanoparticulate systems is most relevant for their drug delivery properties, medical efficiency, shelf life, and possible side effects. However, the knowledge on the structural details of such formulations is very limited. Essentially no such information is publicly available for pharmaceutical dispersions approved by numerous medicine agencies for the use in humans and loaded with mRNA encoding a mimic of the spike protein of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) as, e.g., the Comirnaty formulation (BioNTech/Pfizer). Here, we present a simple preparation method to mimic the Comirnaty drug-free LNPs including a comparison of their structural properties with those of Comirnaty. Strong evidence for the liquid state of the LNPs in both systems is found in contrast to the designation of the LNPs as solid lipid nanoparticles by BioNTech. An exceptionally detailed and reliable structural model for the LNPs i.a. revealing their unexpected narrow size distribution will be presented based on a combined small-angle X-ray scattering and photon correlation spectroscopy (SAXS/PCS) evaluation method. The results from this experimental approach are supported by light microscopy, 1H NMR spectroscopy, Raman spectroscopy, cryogenic electron microscopy (cryoTEM), and simultaneous SAXS/SANS studies. The presented results do not provide direct insights on particle formation or dispersion stability but should contribute significantly to better understanding the LNP drug delivery process, enhancing their medical benefit, and reducing side effects.
Collapse
Affiliation(s)
- Tobias Unruh
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Klaus Götz
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Carola Vogel
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
- Interdisciplinary Center for Nanostructured Films (IZNF) and Center for Nanoanalysis and Electron Microscopy (CENEM), Cauerstraße 3, 91058 Erlangen, Germany
| | - Erik Fröhlich
- Institute for Crystallography and Structural Physics, Physics Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudtstraße 3, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Lehrstuhl für Anorganische und Allgemeine Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | - Lionel Porcar
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Frank Steiniger
- Electron Microscopy Center, Jena University Hospital, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
43
|
Fink Z, Wu X, Kim PY, McGlasson A, Abdelsamie M, Emrick T, Sutter-Fella CM, Ashby PD, Helms BA, Russell TP. Mixed Nanosphere Assemblies at a Liquid-Liquid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308560. [PMID: 37994305 DOI: 10.1002/smll.202308560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/23/2023] [Indexed: 11/24/2023]
Abstract
The in-plane packing of gold (Au), polystyrene (PS), and silica (SiO2) spherical nanoparticle (NP) mixtures at a water-oil interface is investigated in situ by UV-vis reflection spectroscopy. All NPs are functionalized with carboxylic acid such that they strongly interact with amine-functionalized ligands dissolved in an immiscible oil phase at the fluid interface. This interaction markedly increases the binding energy of these nanoparticle surfactants (NPSs). The separation distance between the Au NPSs and Au surface coverage are measured by the maximum plasmonic wavelength (λmax) and integrated intensities as the assemblies saturate for different concentrations of non-plasmonic (PS/SiO2) NPs. As the PS/SiO2 content increases, the time to reach intimate Au NP contact also increases, resulting from their hindered mobility. λmax changes within the first few minutes of adsorption due to weak attractive inter-NP forces. Additionally, a sharper peak in the reflection spectrum at NP saturation reveals tighter Au NP packing for assemblies with intermediate non-plasmonic NP content. Grazing incidence small angle X-ray scattering (GISAXS) and scanning electron microscopy (SEM) measurements confirm a decrease in Au NP domain size for mixtures with larger non-plasmonic NP content. The results demonstrate a simple means to probe interfacial phase separation behavior using in situ spectroscopy as interfacial structures densify into jammed, phase-separated NP films.
Collapse
Affiliation(s)
- Zachary Fink
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Xuefei Wu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alex McGlasson
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Maged Abdelsamie
- Material Science and Engineering Department, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Intelligent Manufacturing and Robotics, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Todd Emrick
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | | | - Paul D Ashby
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| |
Collapse
|
44
|
Reus MA, Reb LK, Kosbahn DP, Roth SV, Müller-Buschbaum P. INSIGHT: in situ heuristic tool for the efficient reduction of grazing-incidence X-ray scattering data. J Appl Crystallogr 2024; 57:509-528. [PMID: 38596722 PMCID: PMC11001412 DOI: 10.1107/s1600576723011159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 04/11/2024] Open
Abstract
INSIGHT is a Python-based software tool for processing and reducing 2D grazing-incidence wide- and small-angle X-ray scattering (GIWAXS/GISAXS) data. It offers the geometric transformation of the 2D GIWAXS/GISAXS detector image to reciprocal space, including vectorized and parallelized pixel-wise intensity correction calculations. An explicit focus on efficient data management and batch processing enables full control of large time-resolved synchrotron and laboratory data sets for a detailed analysis of kinetic GIWAXS/GISAXS studies of thin films. It processes data acquired with arbitrarily rotated detectors and performs vertical, horizontal, azimuthal and radial cuts in reciprocal space. It further allows crystallographic indexing and GIWAXS pattern simulation, and provides various plotting and export functionalities. Customized scripting offers a one-step solution to reduce, process, analyze and export findings of large in situ and operando data sets.
Collapse
Affiliation(s)
- Manuel A. Reus
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Lennart K. Reb
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - David P. Kosbahn
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
| | - Stephan V. Roth
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
- Royal Institute of Technology (KTH), Teknikringen 56–58, 100 44 Stockholm, Sweden
| | - Peter Müller-Buschbaum
- Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Straße 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstraße 1, 85748 Garching, Germany
| |
Collapse
|
45
|
Lyu X, Wang H, Liu X, He L, Do C, Seifert S, Winans RE, Cheng L, Li T. Solvation Structure of Methanol-in-Salt Electrolyte Revealed by Small-Angle X-ray Scattering and Simulations. ACS NANO 2024; 18:7037-7045. [PMID: 38373167 DOI: 10.1021/acsnano.3c10469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The solvation structure of water-in-salt electrolytes was thoroughly studied, and two competing structures─anion solvated structure and anion network─were well-defined in recent publications. To further reveal the solvation structure in those highly concentrated electrolytes, particularly the influence of solvent, methanol was chosen as the solvent for this proposed study. In this work, small-angle X-ray scattering, small-angle neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy were utilized to obtain the global and local structural information. With the concentration increment, the anion network formed by TFSI- became the dominant structure. Meanwhile, the hydrogen bonds among methanol were interrupted by the TFSI- anion and formed a new connection with them. Molecular dynamic simulations with two different force fields (GAFF and OPLS-AA) are tested, and GAFF agreed with synchrotron small-angle X-ray scattering/wide-angle X-ray scattering (SAXS/WAXS) results well and provided insightful information about molecular/ion scale solvation structure. This article not only deepens the understanding of the solvation structure in highly concentrated solutions, but more importantly, it provides additional strong evidence for utilizing SAXS/WAXS to validate molecular dynamics simulations.
Collapse
Affiliation(s)
- Xingyi Lyu
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Haimeng Wang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Xinyi Liu
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Lilin He
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Soenke Seifert
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Randall E Winans
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Lei Cheng
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
46
|
Narayanan T. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Adv Colloid Interface Sci 2024; 325:103114. [PMID: 38452431 DOI: 10.1016/j.cis.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Recent progress in synchrotron based X-ray scattering methods applied to colloid science is reviewed. An important figure of merit of these techniques is that they enable in situ investigations of colloidal systems under the desired thermophysical and rheological conditions. An ensemble averaged simultaneous structural and dynamical information can be derived albeit in reciprocal space. Significant improvements in X-ray source brilliance and advances in detector technology have overcome some of the limitations in the past. Notably coherent X-ray scattering techniques have become more competitive and they provide complementary information to laboratory based real space methods. For a system with sufficient scattering contrast, size ranges from nm to several μm and time scales down to μs are now amenable to X-ray scattering investigations. A wide variety of sample environments can be combined with scattering experiments further enriching the science that could be pursued by means of advanced X-ray scattering instruments. Some of these recent progresses are illustrated via representative examples. To derive quantitative information from the scattering data, rigorous data analysis or modeling is required. Development of powerful computational tools including the use of artificial intelligence have become the emerging trend.
Collapse
|
47
|
Monge N, Deschamps A, Amini MR. Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning. Acta Crystallogr A Found Adv 2024; 80:202-212. [PMID: 38420992 PMCID: PMC10913671 DOI: 10.1107/s2053273324000950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and size of nanoparticles in solution. A multitude of models, describing the SAXS intensity resulting from nanoparticles of various shapes, have been developed by the scientific community and are used for data analysis. Choosing the optimal model is a crucial step in data analysis, which can be difficult and time-consuming, especially for non-expert users. An algorithm is proposed, based on machine learning, representation learning and SAXS-specific preprocessing methods, which instantly selects the nanoparticle model best suited to describe SAXS data. The different algorithms compared are trained and evaluated on a simulated database. This database includes 75 000 scattering spectra from nine nanoparticle models, and realistically simulates two distinct device configurations. It will be made freely available to serve as a basis of comparison for future work. Deploying a universal solution for automatic nanoparticle model selection is a challenge made more difficult by the diversity of SAXS instruments and their flexible settings. The poor transferability of classification rules learned on one device configuration to another is highlighted. It is shown that training on several device configurations enables the algorithm to be generalized, without degrading performance compared with configuration-specific training. Finally, the classification algorithm is evaluated on a real data set obtained by performing SAXS experiments on nanoparticles for each of the instrumental configurations, which have been characterized by transmission electron microscopy. This data set, although very limited, allows estimation of the transferability of the classification rules learned on simulated data to real data.
Collapse
Affiliation(s)
- Nicolas Monge
- Xenocs, Grenoble, France
- SIMaP, University of Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
- LIG, University of Grenoble Alpes, CNRS, Grenoble, France
| | - Alexis Deschamps
- SIMaP, University of Grenoble Alpes, CNRS, Grenoble INP, Grenoble, France
| | | |
Collapse
|
48
|
Ding Y, Zhao T, Fang J, Song J, Dong H, Liu J, Li S, Zhao M. Recent developments in the use of nanocrystals to improve bioavailability of APIs. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1958. [PMID: 38629192 DOI: 10.1002/wnan.1958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/12/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Nanocrystals refer to materials with at least one dimension smaller than 100 nm, composing of atoms arranged in single crystals or polycrystals. Nanocrystals have significant research value as they offer unique advantages over conventional pharmaceutical formulations, such as high bioavailability, enhanced targeting selectivity and controlled release ability and are therefore suitable for the delivery of a wide range of drugs such as insoluble drugs, antitumor drugs and genetic drugs with broad application prospects. In recent years, research on nanocrystals has been progressively refined and new products have been launched or entered the clinical phase of studies. However, issues such as safety and stability still stand that need to be addressed for further development of nanocrystal formulations, and significant gaps do exist in research in various fields in this pharmaceutical arena. This paper presents a systematic overview of the advanced development of nanocrystals, ranging from the preparation approaches of nanocrystals with which the bioavailability of poorly water-soluble drugs is improved, critical properties of nanocrystals and associated characterization techniques, the recent development of nanocrystals with different administration routes, the advantages and associated limitations of nanocrystal formulations, the mechanisms of physical instability, and the enhanced dissolution performance, to the future perspectives, with a final view to shed more light on the future development of nanocrystals as a means of optimizing the bioavailability of drug candidates. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Yidan Ding
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Tongyi Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jianing Fang
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiexin Song
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Haobo Dong
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Jiarui Liu
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
| | - Sijin Li
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| | - Min Zhao
- China Medical University-Queen's University Belfast Joint College (CQC), China Medical University, Shenyang, China
- School of Pharmacy, Queen's University Belfast, Belfast, UK
| |
Collapse
|
49
|
Ukleev V, Khassanov A, Snigireva I, Konovalov O, Vorobiev A. Mesoscale self-organization of polydisperse magnetic nanoparticles at the water surface. J Chem Phys 2024; 160:074703. [PMID: 38364006 DOI: 10.1063/5.0190550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/24/2024] [Indexed: 02/18/2024] Open
Abstract
In this study, we investigated the self-ordering process in Langmuir films of polydisperse iron oxide nanoparticles on a water surface, employing in situ x-ray scattering, surface pressure-area isotherm analysis, and Brewster angle microscopy. X-ray reflectometry confirmed the formation of a monolayer, while grazing incidence small-angle x-ray scattering revealed short-range lateral correlations with a characteristic length equal to the mean particle size. Remarkably, our findings indicated that at zero surface pressure, the particles organized into submicrometer clusters, merging upon compression to form a homogeneous layer. These layers were subsequently transferred to a solid substrate using the Langmuir-Schaefer technique and further characterized via scanning electron microscopy and polarized neutron reflectometry. Notably, our measurements revealed a second characteristic length in the lateral correlations, orders of magnitude longer than the mean particle diameter, with polydisperse particles forming circular clusters densely packed in a hexagonal lattice. Furthermore, our evidence suggests that the lattice constant of this mesocrystal depends on the characteristics of the particle size distribution, specifically the mean particle size and the width of the size distribution. In addition, we observed internal size separation within these clusters, where larger particles were positioned closer to the center of the cluster. Finally, polarized neutron reflectometry measurements provided valuable insights into the magnetization profile across the layer.
Collapse
Affiliation(s)
- Victor Ukleev
- Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Artoem Khassanov
- Institute of Polymer Materials of the Department of Materials Science Friedrich-Alexander University Erlangen-Nürnberg Martensstrasse 7, D-91058 Erlangen, Germany
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble CEDEX 9, France
| | - Irina Snigireva
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble CEDEX 9, France
| | - Oleg Konovalov
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble CEDEX 9, France
| | - Alexei Vorobiev
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS40220, F-38043 Grenoble CEDEX 9, France
- Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden
| |
Collapse
|
50
|
Zhou J, Song D, Mergelsberg ST, Wang Y, Adhikari NM, Lahiri N, Zhao Y, Chen P, Wang Z, Zhang X, Rosso KM. Facet-dependent dispersion and aggregation of aqueous hematite nanoparticles. SCIENCE ADVANCES 2024; 10:eadi7494. [PMID: 38354235 PMCID: PMC10866548 DOI: 10.1126/sciadv.adi7494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Nanoparticle aggregates in solution controls surface reactivity and function. Complete dispersion often requires additive sorbents to impart a net repulsive interaction between particles. Facet engineering of nanocrystals offers an alternative approach to produce monodisperse suspensions simply based on facet-specific interaction with solvent molecules. Here, we measure the dispersion/aggregation of three morphologies of hematite (α-Fe2O3) nanoparticles in varied aqueous solutions using ex situ electron microscopy and in situ small-angle x-ray scattering. We demonstrate a unique tendency of (104) hematite nanoparticles to maintain a monodisperse state across a wide range of solution conditions not observed with (001)- and (116)-dominated particles. Density functional theory calculations reveal an inert, densely hydrogen-bonded first water layer on the (104) facet that favors interparticle dispersion. Results validate the notion that nanoparticle dispersions can be controlled through morphology for specific solvents, which may help in the development of various nanoparticle applications that rely on their interfacial area to be highly accessible in stable suspensions.
Collapse
Affiliation(s)
| | | | | | - Yining Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Narendra M. Adhikari
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nabajit Lahiri
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Yatong Zhao
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ping Chen
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zheming Wang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Xin Zhang
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Kevin M. Rosso
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|