1
|
Tian Z, Cui Z, Hu Y, Zhang J, Ruan L, Li J. Nickel-catalyzed silylation of aryl thianthrenium salts with silylzinc pivalates. Chem Commun (Camb) 2024; 60:14593-14596. [PMID: 39575901 DOI: 10.1039/d4cc05395h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
A nickel-catalyzed C-S silylation of aryl thianthrenium salts with salt-stabilized silylzinc pivalates is disclosed, thus allowing us to rapidly incorporate silyl motifs into aromatics in a site- and chemoselective fashion. This method is distinguished by its ample scope and facile derivatizations of the aryl silanes for increasing functional molecular complexity. Moreover, modular installation of silyl groups into pharmaceutically active molecules provides a new platform for the synthesis of sila-drugs.
Collapse
Affiliation(s)
- Zhenfeng Tian
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Zhili Cui
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Ying Hu
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Jiabin Zhang
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Liangjie Ruan
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| | - Jie Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123 Suzhou, China.
| |
Collapse
|
2
|
Yin T, Sui S, Li S, Chang J, Bai D. Nickel-catalyzed stereospecific reductive cross-coupling of vinyl chlorosilanes with axially chiral biaryl electrophiles. Chem Commun (Camb) 2024; 60:14204-14207. [PMID: 39530918 DOI: 10.1039/d4cc04293j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Enantioenriched organosilanes are important chiral molecules in materials science and organic synthesis. The synthesis of axially chiral organosilanes is particularly significant in terms of applications. Herein, we report a Ni-catalyzed reductive cross-electrophile coupling of vinyl chlorosilanes with sterically hindered chiral biaryl electrophiles for the synthesis of atropisomeric biaryl organosilanes. Various enantioenriched axially chiral vinylsilanes are accessible in high efficiency under mild conditions. The synthetic transformations and applications of new chiral silicon-containing alkene ligands are demonstrated.
Collapse
Affiliation(s)
- Tiantian Yin
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shiyuan Sui
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Shuqi Li
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Junbiao Chang
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| | - Dachang Bai
- State Key Laboratory of Antiviral Drugs, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, 453007, China.
| |
Collapse
|
3
|
Yan Y, Wei Q, Su Z, Hang NN, Hayashi T, Ming J. Carbon-silicon-switch effect in enantioselective construction of silicon-stereogenic center from silacyclohexadienones. Nat Commun 2024; 15:9915. [PMID: 39548103 PMCID: PMC11568255 DOI: 10.1038/s41467-024-54241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Carbon-silicon-switch strategy, replacing one specific carbon atom in organic molecules with a silicon, has garnered significant interest for developing new functional molecules. However, the influence of a reaction regarding its selectivity and reactivity by carbon-silicon-switch strategy has far less been investigated. Here we discover an unusual carbon-silicon-switch effect in the enantioselective construction of silicon-stereogenic center. It is found that there has been a significant change in the desymmetrization reaction of silacyclohexadienones using asymmetric conjugate addition or oxidative Heck reaction with aryl/alkyl nucleophiles when compared with their carbon analogues cyclohexadienones. Specifically, the carbon-silicon-switch leads to a reversal in enantioselectivity with arylzinc as the nucleophile by the same chiral catalyst, and results in totally different reactivity with arylboronic acid as the nucleophile. Control experiments and density functional theory (DFT) calculations have shown that the unusual carbon-silicon-switch effect comes from the unique stereoelectronic feature of silicon.
Collapse
Affiliation(s)
- Yu Yan
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Qi Wei
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Zhishan Su
- College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, China.
| | - Nan-Nan Hang
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Tamio Hayashi
- Department of Chemistry, National Taiwan Normal University, Taipei, Taiwan.
| | - Jialin Ming
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, College of Chemistry and Chemical Engineering, Chengdu University, Chengdu, China.
- Inner Mongolia Key Laboratory of Low Carbon Catalysis, College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China.
| |
Collapse
|
4
|
Nakamura K, Suzuki M, Yoshida S. Synthesis of Thiaphenanthridinones from Sulfinate Esters and 2-Borylanilines. Org Lett 2024; 26:9676-9681. [PMID: 39504126 PMCID: PMC11574856 DOI: 10.1021/acs.orglett.4c03420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A facile palladium-catalyzed synthesis of thiaphenanthridinones from sulfinate esters and 2-borylanilines is disclosed. Various sulfur analogs of phenanthridinones were synthesized by bromide-selective cross-coupling and cyclization in one step. Further transformations of the obtained thiaphenanthridinones allowed preparing a broad range of thiaphenanthridinone derivatives involving analogs of bioactive compounds.
Collapse
Affiliation(s)
- Keisuke Nakamura
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Minori Suzuki
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Suguru Yoshida
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
5
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
6
|
Fu B, Wang L, Chen K, Yuan X, Yin J, Wang S, Shi D, Zhu B, Guan W, Zhang Q, Xiong T. Enantioselective Copper-Catalyzed Sequential Hydrosilylation of Arylmethylenecyclopropanes. Angew Chem Int Ed Engl 2024; 63:e202407391. [PMID: 39023320 DOI: 10.1002/anie.202407391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024]
Abstract
Despite impressive advances in the construction of enantioenriched silacarbocycles featuring silicon-stereogenic centers via a selection of well-defined sila-synthons, the development of a more convenient and economic method with readily available starting materials is significantly less explored and remains a considerable challenge. Herein, we report the first example of copper-catalyzed sequential hydrosilylation of readily accessible methylenecyclopropanes (MCPs) and primary silanes, affording an efficient and convenient route to a wide range of chiral silacyclopentanes bearing consecutive silicon- and carbon-stereogenic centers with excellent enantio- and diastereoselectivities (generally ≥98 % ee, >25 : 1 dr). Mechanistic studies reveal that these reactions combine copper-catalyzed intermolecular ring-opening hydrosilylation of aryl MCPs and intramolecular asymmetric hydrosilylation of the resultant Z/E mixture of homoallylic silanes.
Collapse
Affiliation(s)
- Bin Fu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, 130024, China
| | - Lianghua Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Kexin Chen
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Xiuping Yuan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Jianjun Yin
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Simin Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dazhen Shi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Bo Zhu
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Wei Guan
- Institute of Functional Material Chemistry, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Tao Xiong
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
7
|
Shao Y, Ying CJ, Wan YC, Zhan LW, Li BD, Hou J. Synthesis of β-Silyl Amines via Merging Photoinduced Energy and Hydrogen Atom Transfer in Flow. Org Lett 2024; 26:8486-8491. [PMID: 39347616 DOI: 10.1021/acs.orglett.4c02998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The development of efficient methods for synthesizing β-silyl amines has long been a significant goal in organic synthesis. Previous methods mainly relied on the use of prefunctionalized substrates or special reagents. Herein, we present a visible-light-promoted synthesis approach for β-silyl amines, utilizing a combination of photoinduced energy and hydrogen atom transfer processes. Using flow chemistry technology, a variety of valuable skeletons, including β-silyl amines and α-amino esters, can be produced from readily available feedstocks such as hydrosilanes and simple alkanes. Moreover, the strategy's full-process fluidized production capability highlights its potential for industrial-scale manufacturing. Mechanistic studies revealed that oxime esters can act as radical precursors as well as hydrogen atom transfer reagents.
Collapse
Affiliation(s)
- Yu Shao
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cheng-Jie Ying
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuan-Cui Wan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Le-Wu Zhan
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Bin-Dong Li
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Hou
- College of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Jin D, Sun X, Hinz A, Roesky PW. Unconventional Insertions of Internal Alkynes into a Mixed-Valent Silaiminyl-Silylene. Inorg Chem 2024; 63:18669-18675. [PMID: 39321031 DOI: 10.1021/acs.inorgchem.4c02384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
The reactivity of a mixed-valent silaiminyl-silylene [LSi-Si(NDipp)L] (L = PhC(NtBu)2, Dipp = 2,6-iPr-C6H3) toward various substituted internal alkynes was investigated. In contrast to previous reports that primarily yield [Si(μ-C2)Si]-modified rings via 1,2-addition of two silylenes in the center of the molecule, our study reveals a novel reaction pathway. The introduction of [R1-C≡C-R2] (R1 = Ph or SiMe3, R2 = Ph or C≡CSiMe3) gave unconventional insertion into one of the amidinate ligands, followed by migration of the {NtBu} group to bridge two Si atoms. This results in the formation of diverse expanded silacycles.
Collapse
Affiliation(s)
- Da Jin
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
| | - Xiaofei Sun
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
| | - Alexander Hinz
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
| | - Peter W Roesky
- Institute of Inorganic Chemistry (AOC), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, Karlsruhe 76131, Germany
| |
Collapse
|
9
|
Yang S, Qiu CY, Hu H, Jiang Y, Chen M. Visible-Light-Driven Synthesis of N-Alkyl α-Amino Acid Derivatives from Unactivated Alkyl Bromides and In Situ Generated Imines. Org Lett 2024; 26:8416-8423. [PMID: 39311501 DOI: 10.1021/acs.orglett.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
One-pot, multicomponent reactions are known for their green and efficient nature. We report a novel three-component reaction of alkyl amines, alkyl glyoxylates, and unactivated alkyl bromides under visible-light-induced palladium catalysis, yielding N-alkyl unnatural α-amino acid derivatives. This method offers mild conditions, broad substrate scope, and excellent functional group tolerance without requiring stoichiometric organometallic reagents. The approach has promising applications in protein engineering and drug discovery.
Collapse
Affiliation(s)
- Sen Yang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Chao-Ying Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Hao Hu
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Yan Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| | - Ming Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
10
|
Guo S, Wang W, Zhang Y. Radical-Chain Hydrosilylation of Alkenes Enabled by Triplet Energy Transfer. Chemistry 2024; 30:e202402051. [PMID: 38978189 DOI: 10.1002/chem.202402051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Development of mild, robust and metal-free catalytic approach for the hydrosilylation of alkenes is critical to the advancement of modern organosilicon chemistry given their powerful capacity in the construction of various C-Si bonds. Herein, we wish to disclose a visible light-triggered organophotocatalytic strategy, which proceeds via a triplet energy transfer (EnT)-enabled radical chain pathway. Notably, this redox-neutral protocol is capable of accommodating a broad spectrum of electron-deficient and -rich alkenes with excellent functional group compatibility. Electron-deficient alkenes are more reactive and the reaction could be finished within a couple of minutes even in PBS solution with extremely low concentration, which suggests its click-like potential in organic synthesis. The preparative power of the transformations has been further highlighted in a number of complex settings, including the late-stage functionalization and scale-up experiments. Furthermore, although only highly reactive (TMS)3SiH is suitable hydrosilane substrate, our studies revealed the great reactivity and versatility of (TMS)3Si- group in diverse C-Si and Si-Si bond cleavage-based transformations, enabling the rapid introduction of diverse functional groups and the facile construction of valuable quaternary silicon architectures.
Collapse
Affiliation(s)
- Shixun Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
11
|
Cen S, Li SS, Zhao Y, Zhao MX, Zhang Z. Catalytic Asymmetric Synthesis of Unnatural Axially Chiral Biaryl δ-Amino Acid Derivatives via a Chiral Phenanthroline-Potassium Catalyst-Enabled Dynamic Kinetic Resolution. Angew Chem Int Ed Engl 2024; 63:e202407920. [PMID: 38877853 DOI: 10.1002/anie.202407920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Indexed: 07/31/2024]
Abstract
Axially chiral biaryl δ-amino acids possess significantly different conformational properties and chiral environment from centrally chiral amino acids, therefore, have drawn considerable attention in the fields of synthetic and medicinal chemistry. Herein, a novel chiral phenanthroline-potassium catalyst has been developed by constructing a well-organized axially chiral ligand composed of one 1,10-phenanthroline unit and two axially chiral 1,1'-bi-2-naphthol (BINOL) units. In the presence of this catalyst, good to excellent yields and enantioselectivities (up to 99 % yield, 98 : 2 er) have been achieved in the ring-opening alcoholytic dynamic kinetic resolution of a variety of biaryl lactams, thereby providing an efficient protocol for catalytic asymmetric synthesis of unnatural axially chiral biaryl δ-amino acid derivatives.
Collapse
Affiliation(s)
- Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Shan-Shan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Mei-Xin Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
- Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
12
|
Shi Y, Qin Y, Li ZQ, Xu Y, Chen S, Zhang J, Li YA, Wu Y, Meng F, Zhong YW, Zhao D. Divergent Synthesis of Enantioenriched Silicon-Stereogenic Benzyl-, Vinyl- and Borylsilanes via Asymmetric Aryl to Alkyl 1,5-Palladium Migration. Angew Chem Int Ed Engl 2024; 63:e202405520. [PMID: 38896428 DOI: 10.1002/anie.202405520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Functionalization of Si-bound methyl group provides an efficient access to diverse organosilanes. However, the asymmetric construction of silicon-stereogenic architectures by functionalization of Si-bound methyl group has not yet been described despite recent significant progress in producing chiral silicon. Herein, we disclosed the enantioselective silylmethyl functionalization involving the aryl to alkyl 1,5-palladium migration to access diverse naphthalenes possessing an enantioenriched stereogenic silicon center, which are inaccessible before. It is worthy to note that the realization of asymmetric induction at the step of metal migration itself remains challenging. Our study constitutes the first enantioselective aryl to alkyl 1,5-palladium migration reaction. The key to the success is the discovery and fine-tuning of the different substituents of α,α,α,α-tetraaryl-1,3-dioxolane-4,5-dimethanol (TADDOL)-based phosphoramidites, which ensure the enantioselectivity and desired reactivity.
Collapse
Affiliation(s)
- Yufeng Shi
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Zhong-Qiu Li
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yize Xu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Shuhan Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jinyu Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-An Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yaxin Wu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Fei Meng
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yu-Wu Zhong
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
13
|
Cao K, Han J, Ye W, Hu D, Ye Z, Yang J, Zhang J, Chen F. Enantioselective Aminosilylation of Alkenes by Palladium/Ming-Phos-Catalyzed Tandem Narasaka-Heck/Silylation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403470. [PMID: 38970207 PMCID: PMC11425962 DOI: 10.1002/advs.202403470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/08/2024] [Indexed: 07/08/2024]
Abstract
A Pd-catalyzed enantioselective aminosilylation of alkenes via tandem Aza-Heck/silylation reaction under Pd/Sadphos catalysis is disclosed. A wide array of oxime esters and silicon reagents are tolerated, furnishing the chiral pyrrolines bearing one quaternary or two contiguous stereocenters in good yield with high enantioselectivity. Not only terminal alkenes but also tri-substituented internal alkenes successfully participate in the reaction, delivering vicinal stereocenters in complete diastereoselectivity and high enantioselectivity. DFT study is conducted to probe the reaction pathway and the origin of the enantioselectivity, which revealed that the stereoinduction arises from the weak interaction between the aromatic ring of the substrate fragment and naphthyl group in the ligand.
Collapse
Affiliation(s)
- Kangning Cao
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University ShanghaiShanghai200433China
| | - Jie Han
- School of Chemical & Environmental ScienceShaanxi University of TechnologyHanzhong723001China
| | - Wenshao Ye
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Dejun Hu
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Zihao Ye
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Junfeng Yang
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
| | - Junliang Zhang
- Department of ChemistryFudan University 2005 Songhu RoadShanghai200438China
- School of Chemistry and Chemical EngineeringHenan Normal UniversityXinxiangHenan453007China
- Zhuhai Fudan Innovation InstituteZhuhai519000China
| | - Fener Chen
- Engineering Center of Catalysis and Synthesis for Chiral MoleculesDepartment of ChemistryFudan University ShanghaiShanghai200433China
| |
Collapse
|
14
|
Ye ZT, Wu ZW, Zhang XX, Zhou J, Yu JS. Organocatalytic enantioselective construction of Si-stereocenters: recent advances and perspectives. Chem Soc Rev 2024; 53:8546-8562. [PMID: 39091219 DOI: 10.1039/d4cs00417e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Silicon-stereogenic chiral organosilanes have found increasing applications in synthetic chemistry, medicinal chemistry, and materials science. In this context, various asymmetric catalytic methods have been established for the diverse synthesis of silicon-stereogenic silanes. In particular, asymmetric organocatalysis is emerging as an important and complementary synthetic tool for the enantioselective construction of silicon-stereocenters, along with the rapid development of chiral-metal catalyzed protocols. Its advent provides a powerful platform to achieve functionalized silicon-stereogenic organosilanes with structural diversity, and should lead to great development in chiral organosilicon chemistry. In this Tutorial Review, we highlight these latest achievements from two aspects: desymmetrizations of prochiral tetraorganosilanes and dynamic kinetic asymmetric transformations of racemic organosilanes by employing five organocatalytic activation modes. The advantages, limitations and synthetic value of each protocol, as well as the synthetic opportunities still open for further exploration, are also discussed.
Collapse
Affiliation(s)
- Zhong-Tian Ye
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Zhong-Wei Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China.
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, P. R. China
| |
Collapse
|
15
|
Bag R, Sharma NK. Pd-Catalyzed Picolinamide-Directed C(sp 2)-H Sulfonylation of Amino Acids/Peptides with Sodium Sulfinates. J Org Chem 2024; 89:10127-10147. [PMID: 38924796 DOI: 10.1021/acs.joc.4c00988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This report describes a Pd-catalyzed picolinamide-directed site-selective C(sp2)-H sulfonylation of amino acids and peptides with sodium sulfinates in moderate to good yields. Sulfonylation of levodopa and dopamine drug molecules and late-stage directed peptide sulfonylation are studied for the first time. Broad substrate scope having various functionalities, late-stage drug modifications, and various post synthetic utilities such as chalcogenation, bromination, olefination, and arylation are potential advantages.
Collapse
Affiliation(s)
- Raghunath Bag
- National Institute of Science Education and Research (NISER)─Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| | - Nagendra K Sharma
- National Institute of Science Education and Research (NISER)─Bhubaneswar, Jatni-Campus, Bhubaneswar 752050, India
- Homi Bhabha National Institute (HBNI), Anushaktinagar, Mumbai 400 094, India
| |
Collapse
|
16
|
Chowdhury R, Dubey AK, Ghosh R. Synthesis of Functionalized Organosilicon Compounds/Distal Ketones via Ring-Opening Giese Addition of Cycloalkanols under Organophotocatalytic Conditions. J Org Chem 2024; 89:7187-7200. [PMID: 38669476 DOI: 10.1021/acs.joc.4c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Visible-light-induced organophotocatalyzed ring-opening followed by remote Giese addition of tertiary cycloalkanols with β-silylmethylene malonates has been developed under mild reaction conditions for the synthesis of organosilicon compounds, bearing a ketone group distally substituted with a silyl group with an additional dialkyl malonate functional handle in moderate to good yields (34-72%). The protocol also worked well with diverse Michael acceptors, such as alkylidene/benzylidene malonates, trifluoro methylidene malonate, benzylidene malononitrile, α-cyano-enone, and α-cyano vinyl sulfone, and delivered desired valuable distally functionalized ketones. To showcase the potential of the method, various synthetic transformations of the obtained product were also demonstrated.
Collapse
Affiliation(s)
- Raghunath Chowdhury
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Akhil K Dubey
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rajib Ghosh
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
17
|
Pecchini P, Fochi M, Bartoccini F, Piersanti G, Bernardi L. Enantioselective organocatalytic strategies to access noncanonical α-amino acids. Chem Sci 2024; 15:5832-5868. [PMID: 38665517 PMCID: PMC11041364 DOI: 10.1039/d4sc01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Organocatalytic asymmetric synthesis has evolved over the years and continues to attract the interest of many researchers worldwide. Enantiopure noncanonical amino acids (ncAAs) are valuable building blocks in organic synthesis, medicinal chemistry, and chemical biology. They are employed in the elaboration of peptides and proteins with enhanced activities and/or improved properties compared to their natural counterparts, as chiral catalysts, in chiral ligand design, and as chiral building blocks for asymmetric syntheses of complex molecules, including natural products. The linkage of ncAA synthesis and enantioselective organocatalysis, the subject of this perspective, tries to imitate the natural biosynthetic process. Herein, we present contemporary and earlier developments in the field of organocatalytic activation of simple feedstock materials, providing potential ncAAs with diverse side chains, unique three-dimensional structures, and a high degree of functionality. These asymmetric organocatalytic strategies, useful for forging a wide range of C-C, C-H, and C-N bonds and/or combinations thereof, vary from classical name reactions, such as Ugi, Strecker, and Mannich reactions, to the most advanced concepts such as deracemisation, transamination, and carbene N-H insertion. Concurrently, we present some interesting mechanistic studies/models, providing information on the chirality transfer process. Finally, this perspective highlights, through the diversity of the amino acids (AAs) not selected by nature for protein incorporation, the most generic modes of activation, induction, and reactivity commonly used, such as chiral enamine, hydrogen bonding, Brønsted acids/bases, and phase-transfer organocatalysis, reflecting their increasingly important role in organic and applied chemistry.
Collapse
Affiliation(s)
- Pietro Pecchini
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Mariafrancesca Fochi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| | - Francesca Bartoccini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Giovanni Piersanti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo Piazza Rinascimento 6 61029 Urbino PU Italy
| | - Luca Bernardi
- Department of Industrial Chemistry "Toso Montanari", Center for Chemical Catalysis C3 & INSTM RU Bologna V. Gobetti 85 40129 Bologna Italy
| |
Collapse
|
18
|
Zhang Z, Lu L, Li G, Sheng X, Zhang Y, Yang L, Zhao J, Xie L, Li J, Sun K. Radical cascade silylation/cyclization of 1,7-dienes to access silyl-substituted benzo[ b]azepin-2-ones. Chem Commun (Camb) 2024; 60:4206-4209. [PMID: 38523529 DOI: 10.1039/d4cc00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A novel silyl radical-induced cascade silylation/cyclization of 1,7-dienes has been realized employing readily available hydrosilanes as a silicon source and Cu(I) salt as a catalyst. This protocol introduces diverse silicon fragments into a challenging 7-membered ring structure and provides an efficient approach to a wide array of biologically important silyl-substituted benzo[b]azepin-2-ones. Several control experiments suggest that the reaction undergoes a free radical process. The gram-scale synthesis and late-stage transformations further demonstrate the scalability and applicability of the reaction in organic synthesis.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Lichao Lu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Guiling Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Xiaoyu Sheng
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Yijia Zhang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Lin Yang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Jiaqi Zhao
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Lei Xie
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Jiazhu Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Kai Sun
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, P. R. China.
| |
Collapse
|
19
|
Lin R, Shan Y, Li Y, Wei X, Zhang Y, Lin Y, Gao Y, Fang W, Zhang JJ, Wu T, Cai L, Chen Z. Organo-Photoredox Catalyzed gem-Difluoroallylation of Glycine and Glycine Residue in Peptides. J Org Chem 2024; 89:4056-4066. [PMID: 38449357 DOI: 10.1021/acs.joc.3c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
An organo-photoredox catalyzed gem-difluoroallylation of glycine with α-trifluoromethyl alkenes via direct C(sp3)-H functionalization of glycine and C-F bond activation of α-trifluoromethyl alkenes has been described. As a consequence, a broad range of gem-difluoroalkene-containing unnatural amino acids are afforded in moderate to excellent yields. This reaction exhibits multiple merits such as readily available starting materials, broad substrate scope, and mild reaction conditions. The feasibility of this reaction has been highlighted by the late-stage modification of several peptides as well as the improved in vitro antifungal activity of compound 3v toward Valsa mali compared to that with commercial azoxystrobin.
Collapse
Affiliation(s)
- Ruofan Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yujie Shan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Xian Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yue Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yuqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Yiman Gao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Jing-Jing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ting Wu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Key Lab of Biomass Energy and Material, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resource, Key Lab of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Lab for Biomass Chemical Utilization, Nanjing, Jiangsu 210042, China
| | - Lingchao Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| |
Collapse
|
20
|
Li R, Yin S, Xie L, Li X, Jia J, Zhao L, He CY. Catalyst-free decarboxylative cross-coupling of N-hydroxyphthalimide esters with tert-butyl 2-(trifluoromethyl)acrylate and its application. Org Biomol Chem 2024; 22:2279-2283. [PMID: 38407278 DOI: 10.1039/d3ob02103c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Here, we demonstrate a practical method toward the facile synthesis of CF3-containing amino acids through visible light promoted decarboxylative cross-coupling of a redox-active ester with tert-butyl 2-(trifluoromethyl)acrylate. The reaction was driven by the photochemical activity of electron donor-acceptor (EDA) complexes that were formed by the non-covalent interaction between a Hantzsch ester and a redox-active ester. The advantages of this protocol are its synthetic simplicity, rich functional group tolerance, and a cost-effective reaction system.
Collapse
Affiliation(s)
- Rui Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Susu Yin
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Lang Xie
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xuefei Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jia Jia
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Liang Zhao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Chun-Yang He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China.
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, P.R. China
| |
Collapse
|
21
|
Wang W, Xuan L, Chen Q, Fan R, Zhao F, Dong J, Wang H, Yan Q, Zhou H, Chen FE. Copper-Catalyzed Asymmetric Remote C(sp 3)-H Alkylation of N-Fluorocarboxamides with Glycine Derivatives and Peptides. J Am Chem Soc 2024; 146:6307-6316. [PMID: 38381876 DOI: 10.1021/jacs.4c00023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Saturated hydrocarbon bonds are ubiquitous in organic molecules; to date, the selective functionalization of C(sp3)-H bonds continues to pose a notorious difficulty, thereby garnering significant attention from the synthetic chemistry community. During the past several decades, a wide array of powerful new methodologies has been developed to enantioselectively modify C(sp3)-H bonds that is successfully applied in asymmetric formation of diverse bonds, including C-C, C-N, and C-O bonds; nevertheless, the asymmetric C(sp3)-H alkylation is elusive and, therefore, far less explored. In this work, we report a direct and robust strategy to construct highly valuable enantioenriched unnatural α-amino acid (α-AA) cognates and peptides by a copper-catalyzed enantioselective remote C(sp3)-H alkylation of N-fluorocarboxamides and readily accessible glycine esters under ambient conditions. The key to success lies in the optically active Cu catalyst generated through the coordination of glycine derivatives to enantiopure bisphosphine/Cu(I) species, which is beneficial to the single electronic reduction of N-fluorocarboxamides and the subsequent stereodetermining alkylation. More importantly, all types (primary, secondary, tertiary, and even α-oxy) of δ-C(sp3)-H bonds could be site- and stereospecifically activated by the kinetically favored 1,5-hydrogen atom transfer (1,5-HAT) step.
Collapse
Affiliation(s)
- Wei Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Liangming Xuan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qinlin Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Rundong Fan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Fei Zhao
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jianghu Dong
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Haifeng Wang
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Qiongjiao Yan
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hui Zhou
- College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, P. R. China
| | - Fen-Er Chen
- Pharmaceutical Research Institute, School of Chemical Engineering & Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, P. R. China
- Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, P. R. China
| |
Collapse
|
22
|
Ding XX, Ren BQ, Li BT, Pang ZJ, Xu YJ, Dong L. Pd(II)-Catalyzed β-C(sp 3)-H Alkynylation of Alanine in Di- and Tripeptides with Asn as an Endogenous Directing Group. J Org Chem 2024; 89:3390-3402. [PMID: 38377557 DOI: 10.1021/acs.joc.3c02823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The introduction of alkyne moieties into peptides remains in demand as it represents a promising approach for further structural diversification of peptides. Herein, we describe the Pd(II)-catalyzed C(sp3)-H alkynylation of Ala-Asn-embedded di- and tripeptides using Asn as the endogenous lead group. In addition, a key building block for the glycopeptide Tyc4PG-14 and Tyc4PG-15 was produced by our methodology.
Collapse
Affiliation(s)
- Xing-Xing Ding
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Bo-Quan Ren
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Bing-Tong Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhao-Jiong Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Gan WE, Wu YS, Wu B, Fang CY, Cao J, Xu Z, Xu LW. Copper-Catalyzed Asymmetric Synthesis of Silicon-Stereogenic Benzoxasiloles. Angew Chem Int Ed Engl 2024; 63:e202317973. [PMID: 38179840 DOI: 10.1002/anie.202317973] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
A Cu-catalyzed asymmetric synthesis of silicon-stereogenic benzoxasiloles has been realized via intramolecular Si-O coupling of [2-(hydroxymethyl)phenyl]silanes. Cu(I)/difluorphos is found to be an efficient catalytic system for enantioselective Si-C bond cleavage and Si-O bond formation. In addition, kinetic resolution of racemic substituted [2-(hydroxymethyl)phenyl]silanes using Cu(I)/ PyrOx (pyridine-oxazoline ligands) as the catalytic system is developed to afford carbon- and silicon-stereogenic benzoxasiloles. Ring-opening reactions of chiral benzoxasiloles with organolithiums and Grignard reagents yield various enantioenriched functionalized tetraorganosilanes.
Collapse
Affiliation(s)
- Wan-Er Gan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Yong-Shun Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Bin Wu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Chun-Yuan Fang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Jian Cao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Zheng Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
| | - Li-Wen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, P. R. China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, P. R. China
| |
Collapse
|
24
|
Zhang Z, Li L, Xu H, Lee CLK, Jia Z, Loh TP. Silicon-Containing Thiol-Specific Bioconjugating Reagent. J Am Chem Soc 2024; 146:1776-1782. [PMID: 38198597 DOI: 10.1021/jacs.3c12050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A new bioconjugation reagent containing silicon has been developed for the selective reaction with thiols. The inclusion of silicon significantly improves chemoselectivity and suppresses retro processes, thereby exceeding the capabilities of traditional reagents. The method is versatile and compatible with a broad range of thiols and unsaturated carbonyl compounds and yields moderate to high results. These reactions can be conducted under biocompatible conditions, thereby making them suitable for protein bioconjugation. The resulting conjugates display good stability in the presence of various biomolecules, which suggests their potential application for the synthesis of antibody-drug conjugates. Furthermore, the presence of a silicon moiety within the conjugated products opens up new avenues for drug release and bridging inorganics with other disciplines. This new class of silicon-containing thiol-specific bioconjugation reagents has significant implications for researchers working in bioanalytical science and medicinal chemistry and leads to innovative opportunities for advancing the field of bioconjugation research and medicinal chemistry.
Collapse
Affiliation(s)
- Zhenguo Zhang
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Lanyang Li
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Hailun Xu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Chi-Lik Ken Lee
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research, 1 Pesek Road, Singapore 627833, Singapore
| | - Zhenhua Jia
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China
- Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
25
|
Shen B, Pan D, Xie W, Li XX, Yu S, Huang G, Li X. Rhodium-Catalyzed Enantioselective Formal [4+1] Cyclization of Benzyl Alcohols and Benzaldimines: Facile Access to Silicon-Stereogenic Heterocycles. Angew Chem Int Ed Engl 2024; 63:e202315230. [PMID: 37938113 DOI: 10.1002/anie.202315230] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
The carbon-to-silicon switch in formation of bioactive sila-heterocycles with a silicon-stereogenic center has garnered significant interest in drug discovery. However, metal-catalyzed synthesis of such scaffolds is still in its infancy. Herein, a rhodium-catalyzed enantioselective formal [4+1] cyclization of benzyl alcohols and benzaldimines has been realized by enantioselective difunctionalization of a secondary silane reagent, affording chiral-at-silicon cyclic silyl ethers and sila-isoindolines, respectively. Mechanistic studies reveal a dual role of the rhodium-hydride catalyst. The coupling system proceeds via rhodium-catalyzed enantio-determining dehydrogenative OH silylation of the benzyl alcohol or hydrosilylation of the imine to give an enantioenriched silyl ether or silazane intermediate, respectively. The same rhodium catalyst also enables subsequent intramolecular cyclative C-H silylation directed by the pendent Si-H group. Experimental and DFT studies have been conducted to explore the mechanism of the OH bond silylation of benzyl alcohol, where the Si-O reductive elimination from a Rh(III) hydride intermediate has been established as the enantiodetermining step.
Collapse
Affiliation(s)
- Bingxue Shen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Wanying Xie
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Xiao-Xi Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Songjie Yu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xingwei Li
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, China
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, China
| |
Collapse
|
26
|
Hayashi D, Tsuda T, Shintani R. Palladium-Catalyzed Skeletal Rearrangement of Substituted 2-Silylaryl Triflates via 1,5-C-Pd/C-Si Bond Exchange. Angew Chem Int Ed Engl 2023; 62:e202313171. [PMID: 37935641 DOI: 10.1002/anie.202313171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/05/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023]
Abstract
A palladium-catalyzed skeletal rearrangement of 2-(2-allylarylsilyl)aryl triflates has been developed to give highly fused tetrahydrophenanthrosilole derivatives via unprecedented 1,5-C-Pd/C-Si bond exchange. The reaction pathways can be switched toward 4-membered ring-forming C(sp2 )-H alkylation by tuning the reaction conditions to give completely different products, fused dihydrodibenzosilepin derivatives, from the same starting materials. The inspection of the reaction conditions revealed the importance of carboxylates in promoting the C-Pd/C-Si bond exchange.
Collapse
Affiliation(s)
- Daigo Hayashi
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tomohiro Tsuda
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Ryo Shintani
- Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
27
|
Wang GQ, Wang T, Zhang Y, Zhou YX, Yang D, Han P, Jing LH. Photoredox Metal-Free Synthesis of Unnatural β-Silyl-α-Amino Acids via Hydrosilylation. Chem Asian J 2023:e202300805. [PMID: 37906443 DOI: 10.1002/asia.202300805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
An efficient, practical and metal-free methodology for the synthesis of β-silyl-α-amino acid motifs via photoredox and hydrogen atom transfer (HAT) process is described. This protocol enables the direct hydrosilylation of dehydroalanine derivatives and tolerates a wide array of functional groups and synthetic handles, leading to valuable β-silyl-α-amino acids with moderate to good yields.
Collapse
Affiliation(s)
- Guo-Qin Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Ting Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Yue Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Yuan-Xia Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Pan Han
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P.R. China
| |
Collapse
|
28
|
Huang Z, Lin Q, Li J, Xu S, Lv S, Xie F, Wang J, Li B. Ruthenium-Catalyzed Dehydrogenative Intermolecular O-H/Si-H/C-H Silylation: Synthesis of ( E)-Alkenyl Silyl-Ether and Silyl-Ether Heterocycle. Molecules 2023; 28:7186. [PMID: 37894665 PMCID: PMC10609488 DOI: 10.3390/molecules28207186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Selective dehydrogenative silylation is one of the most valuable tools for synthesizing organosilicon compounds. In this study, a regio- and stereoselective ruthenium-catalyzed dehydrogenative intermolecular silylation was firstly developed to access (E)-alkenyl silyl-ether derivatives and silyl-ether heterocycles with good functional group tolerance. Furthermore, two pathways for RuH2(CO)(PPh3)3/NBE-catalyzed dehydrogenative intermolecular silylation of alcohols and alkenes as well as intermolecular silylation of naphthol derivatives were investigated with H2SiEt2 as the hydrosilane reagent.
Collapse
Affiliation(s)
- Ziwei Huang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
- Guangdong Wamo New Material Technology Co., Ltd., Jiangmen 529020, China
| | - Qiao Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Jiefang Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Shanshan Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Shaohuan Lv
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Feng Xie
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China;
| | - Bin Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (Z.H.); (Q.L.); (J.L.); (S.X.); (S.L.)
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, China
| |
Collapse
|
29
|
Guo J, Liu S, Jing J, Fan Y, Fu Y, Liu S, Wang W, Gao L, Song Z. Controllable Si-C Bond Formation from Trihydrosilanes En Route to Synthesis of 1,4-Azasilinanes with Diverse Silyl Functionalities. Org Lett 2023; 25:7428-7433. [PMID: 37791679 DOI: 10.1021/acs.orglett.3c03014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A B(C6F5)3-catalyzed controllable inter/intra-/intermolecular Si-C bond formation process has been developed from trihydrosilane and dienamide with alkenes, anilines, or aryl iodides. A variety of 1,4-azasilinanes have been generated with diverse exo-cyclic heteroleptic disubstitutions on silicon, thereby expanding the range of silaazacyclic rings available for the discovery of silicon-containing drugs.
Collapse
Affiliation(s)
- Jiawei Guo
- Shaanxi Key Laboratory of Catalysis, School of Chemistry & Environmental Science, Shaanxi University of Technology, Hanzhong, 723001, People's Republic of China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shunfa Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jun Jing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yingdong Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shiyang Liu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, People's Republic of China
| |
Collapse
|
30
|
Li F, Xu Y, Xu Y, Xie H, Wu J, Wang C, Li Z, Wang Z, Wang L. Engineering of Dual-Function Vitreoscilla Hemoglobin: A One-Pot Strategy for the Synthesis of Unnatural α-Amino Acids. Org Lett 2023; 25:7115-7119. [PMID: 37737085 DOI: 10.1021/acs.orglett.3c02537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Despite a well-developed and growing body of work on the directed evolution of hemoproteins, the potential of hemoproteins to catalyze non-natural reactions remains underexplored. This paper reports a new biocatalytic strategy for the one-pot synthesis of unnatural α-amino acids. Engineered variants of dual-function Vitreoscilla hemoglobin were found to efficiently catalyze N-H insertion and C-H sp3 alkylation, providing moderate to excellent yields (57%-95%) of unnatural α-amino acid derivatives and turnover numbers (1425-2375).
Collapse
Affiliation(s)
- Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Yuelin Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Zhi Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130023, P. R. China
| |
Collapse
|
31
|
Chen H, Hu X, Wang W, Gao L, Song Z. Recent Progress in the Synthesis of Silaspiranes. Chemistry 2023:e202302371. [PMID: 37739927 DOI: 10.1002/chem.202302371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/22/2023] [Indexed: 09/24/2023]
Abstract
Silaspiranes bearing a spiro-silicon center are promising ring frameworks for the synthesis of novel spirocyclic molecules possessing unique properties. Development of efficient methods towards these ring structures has therefore attracted considerable attentions of synthetic chemists. This minireview highlights the representative advances in the field, and is categorized into four parts according to the ring formation strategies: cyclization, annulation, ring expansion and cycloaddition.
Collapse
Affiliation(s)
- Hua Chen
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Xuejiao Hu
- College of Pharmaceutical Science and, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, 310014, Hangzhou, P. R. China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
- Key Laboratory of Organosilicon Chemistry and, Material Technology of Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and, Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 610064, Chengdu, P. R. China
| |
Collapse
|
32
|
Wu M, Chen YW, Lu Q, Wang YB, Cheng JK, Yu P, Tan B. Organocatalytic Si-C Aryl Bond Functionalization-Enabled Atroposelective Synthesis of Axially Chiral Biaryl Siloxanes. J Am Chem Soc 2023; 145:20646-20654. [PMID: 37695885 DOI: 10.1021/jacs.3c07839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Chiral organosilanes are valuable chemical entities in the development of functional organic materials, asymmetric catalysis, and medicinal chemistry. As an important strategy for constructing chiral organosilanes, the asymmetric functionalization of the Si-CAryl bond typically relies on transition-metal catalysis. Herein, we present an efficient method for atroposelective synthesis of biaryl siloxane atropisomers via organocatalytic Si-C bond functionalization of dinaphthosiloles with silanol nucleophiles. The reaction proceeds through an asymmetric protonation and simultaneous Si-C bond cleavage/silanolysis sequence in the presence of a newly developed chiral Brønsted acid catalyst. The versatile nature of the Si-C bond streamlines the derivatization of axially chiral products into other functional atropisomers, thereby expanding the applicability of this method.
Collapse
Affiliation(s)
- Ming Wu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yi-Wei Chen
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qian Lu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jun Kee Cheng
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
33
|
Li Y, Wang Y, Fang F, Zhang Y, Li C, Yu T, Chen Q, Wang J, Liu H. Constructing N-Acyl/ N-Sulfonyl Aza-Sulfur Derivatives from Amides/Sulfonamides and Thiophthalimides via Oxidant Regulation. Org Lett 2023; 25:6018-6023. [PMID: 37540077 DOI: 10.1021/acs.orglett.3c02166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Here, we have constructed five distinct types of N-acyl or N-sulfonyl aza-sulfur scaffolds using readily available (sulfon)amides and thiophthalimides with precise regulation of oxidants. Our novel methods feature one-pot mild reaction conditions and simple operation, thereby making them highly convenient for the late-stage diversification of various amide drugs, bioactive molecules, and peptides.
Collapse
Affiliation(s)
- Yazhou Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Yongkun Wang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Feifei Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Yu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Tao Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Qiangqiang Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiang Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- Lingang Laboratory, Shanghai 200031, China
| | - Hong Liu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
34
|
Liang XX, Zhu C, Zhang W, Du YN, Xu L, Liu L, Zhang Y, Han MY. Nucleophilic Allylation of Acylsilanes in Water: An Effective Alternative to Functionalized Tertiary α-Silylalcohols. J Org Chem 2023; 88:12087-12099. [PMID: 37497648 DOI: 10.1021/acs.joc.3c00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A nucleophilic allylation of acylsilanes in water was developed, generating versatile functionalized tertiary α-silyl alcohols in high yields. With the assistance of hydrogen bonding, a reaction model of less reactive acylsilane was achieved. Unlike the conventional strategy, transition metals and an additional Lewis acid catalyst were not required, and rate acceleration was observed in water.
Collapse
Affiliation(s)
- Xiu-Xia Liang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Chen Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Wang Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Ya-Nan Du
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lei Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Lihua Liu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yicheng Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Man-Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
35
|
Uchikura T, Nakamura H, Sakai H, Akiyama T. 2-Silylated Dihydroquinazolinone as a Photocatalytic Energy Transfer Enabled Radical Hydrosilylation Reagent. Chemistry 2023; 29:e202301090. [PMID: 37269182 DOI: 10.1002/chem.202301090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
The hydrosilylation of alkenes is one of the most important methods for the synthesis of organosilicon compounds. In addition to the platinum-catalyzed hydrosilylation, silyl radical addition reactions are notable as economic reactions. An efficient and widely applicable silyl radical addition reaction was developed by using 2-silylated dihydroquinazolinone derivatives under photocatalytic conditions. Electron-deficient alkenes and styrene derivatives underwent hydrosilylation to give addition products in good to high yields. Mechanistic studies indicated that the photocatalyst functioned not as a photoredox catalyst but as an energy transfer catalyst. DFT calculations clarified that the triplet excited state of 2-silylated dihydroquinazolinone derivatives released a silyl radical through the homolytic cleavage of a carbon-silicon bond, and this was followed by the hydrogen atom transfer pathway, not the redox pathway.
Collapse
Affiliation(s)
- Tatsuhiro Uchikura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, 171-8588, Toshima-ku, Tokyo, Japan
| | - Haruka Nakamura
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, 171-8588, Toshima-ku, Tokyo, Japan
| | - Hinata Sakai
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, 171-8588, Toshima-ku, Tokyo, Japan
| | - Takahiko Akiyama
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1, Mejiro, 171-8588, Toshima-ku, Tokyo, Japan
| |
Collapse
|
36
|
Wang P, Liu J, Zhu X, Yan Z, Yan J, Jiang J, Fu M, Ge J, Zhu Q, Zheng Y. Modular synthesis of clickable peptides via late-stage maleimidation on C(7)-H tryptophan. Nat Commun 2023; 14:3973. [PMID: 37407547 DOI: 10.1038/s41467-023-39703-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Cyclic peptides have attracted tremendous attention in the pharmaceutical industry owing to their excellent cell penetrability, stability, thermostability, and drug-like properties. However, the currently available facile methodologies for creating such peptides are rather limited. Herein, we report an efficient and direct peptide cyclization via rhodium(III)-catalyzed C(7)-H maleimidation. Notably, this catalytical system has excellent regioselectivity and high tolerance of functional groups which enable late-stage cyclization of peptides. This architecture of cyclic peptides exhibits higher bioactivity than its parent linear peptides. Moreover, the Trp-substituted maleimide displays excellent reactivity toward Michael addition, indicating its potential as a click functional group for applications in chemical biology and medicinal chemistry. As a proof of principle, RGD-GFLG-DOX, which is a peptide-drug-conjugate, is constructed and it displays a strong binding affinity and high antiproliferative activity toward integrin-αvβ3 overexpressed cancer cell lines. The proposed strategy for rapid preparation of stapled peptides would be a robust tool for creating peptide-drug conjugates.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaomei Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhengqing Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiahui Yan
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jitong Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Manlin Fu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qing Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
37
|
Zhao Y, Wan Y, Yuan Q, Wei J, Zhang Y. Photocatalytic C-Si Bond Formations Using Pentacoordinate Silylsilicates as Silyl Radical Precursors: Synthetic Tricks Using Old Reagents. Org Lett 2023; 25:1386-1391. [PMID: 36861978 DOI: 10.1021/acs.orglett.3c00096] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A visible-light-induced photocatalytic C-Si formation strategy has been disclosed by uncovering the reactivity of Martin's spirosilane-derived pentacoordinate silylsilicates as silyl radical precursors. The hydrosilylation of a broad spectrum of alkenes and alkynes, as well as the C-H silylation of heteroarenes, has been demonstrated. Remarkably, Martin's spirosilane was stable and could be recovered via a simple workup process. Furthermore, the reaction proceeded well using water as the solvent or low-energy green LEDs as an alternative energy source.
Collapse
Affiliation(s)
- Yumo Zhao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yi Wan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiyang Yuan
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Jinlian Wei
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
38
|
Inagaki T, Ando T, Sakurai S, Yamanaka M, Tobisu M. Palladium-catalyzed addition of acylsilanes across alkynes via the activation of a C-Si bond. Chem Sci 2023; 14:2706-2712. [PMID: 36908943 PMCID: PMC9993849 DOI: 10.1039/d3sc00181d] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023] Open
Abstract
Palladium-catalyzed addition of a C-Si bond in acylsilanes across the triple bonds in an alkyne bearing a carbonyl group at one terminal is reported. The reaction proceeds with excellent regioselectivity, in which a silyl group is incorporated into the carbon α to the carbonyl group, allowing for straightforward access to a variety of functionalized alkenylsilane derivatives. Catalytic synthesis of indanones by annulation between acylsilanes and alkynes with an identical catalytic system is also reported.
Collapse
Affiliation(s)
- Tetsuya Inagaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Osaka Japan
| | - Takahiro Ando
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Osaka Japan
| | - Shun Sakurai
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Osaka Japan
| | - Masahiro Yamanaka
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University Nishi-Ikebukuro, Toshima-ku Tokyo 171-8501 Japan
| | - Mamoru Tobisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University Suita 565-0871 Osaka Japan .,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI) Suita Osaka 565-0871 Japan
| |
Collapse
|
39
|
Bodin S, Previti S, Jestin E, Vimont D, Ait-Arsa I, Lamare F, Rémond E, Hindié E, Cavelier F, Morgat C. Design, Synthesis, and Biological Evaluation of the First Radio-Metalated Neurotensin Analogue Targeting Neurotensin Receptor 2. ACS OMEGA 2023; 8:6994-7004. [PMID: 36844603 PMCID: PMC9948202 DOI: 10.1021/acsomega.2c07814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 05/28/2023]
Abstract
Neurotensin receptor 2 (NTS2) is a well-known mediator of central opioid-independent analgesia. Seminal studies have highlighted NTS2 overexpression in a variety of tumors including prostate cancer, pancreas adenocarcinoma, and breast cancer. Herein, we describe the first radiometalated neurotensin analogue targeting NTS2. JMV 7488 (DOTA-(βAla)2-Lys-Lys-Pro-(D)Trp-Ile-TMSAla-OH) was prepared using solid-phase peptide synthesis, then purified, radiolabeled with 68Ga and 111In, and investigated in vitro on HT-29 cells and MCF-7 cells, respectively, and in vivo on HT-29 xenografts. [68Ga]Ga-JMV 7488 and [111In]In-JMV 7488 were quite hydrophilic (logD7.4 = -3.1 ± 0.2 and -2.7 ± 0.2, respectively, p < 0.0001). Saturation binding studies showed good affinity toward NTS2 (K D = 38 ± 17 nM for [68Ga]Ga-JMV 7488 on HT-29 and 36 ± 10 nM on MCF-7 cells; K D = 36 ± 4 nM for [111In]In-JMV 7488 on HT-29 and 46 ± 1 nM on MCF-7 cells) and good selectivity (no NTS1 binding up to 500 nM). On cell-based evaluation, [68Ga]Ga-JMV 7488 and [111In]In-JMV 7488 showed high and fast NTS2-mediated internalization of 24 ± 5 and 25 ± 11% at 1 h for [111In]In-JMV 7488, respectively, along with low NTS2-membrane binding (<8%). Efflux was as high as 66 ± 9% at 45 min for [68Ga]Ga-JMV 7488 on HT-29 and increased for [111In]In-JMV 7488 up to 73 ± 16% on HT-29 and 78 ± 9% on MCF-7 cells at 2 h. Maximum intracellular calcium mobilization of JMV 7488 was 91 ± 11% to that of levocabastine, a known NTS2 agonist on HT-29 cells demonstrating the agonist behavior of JMV 7488. In nude mice bearing HT-29 xenograft, [68Ga]Ga-JMV 7488 showed a moderate but promising significant tumor uptake in biodistribution studies that competes well with other nonmetalated radiotracers targeting NTS2. Significant uptake was also depicted in lungs. Interestingly, mice prostate also demonstrated [68Ga]Ga-JMV 7488 uptake although the mechanism was not NTS2-mediated.
Collapse
Affiliation(s)
- Sacha Bodin
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Santo Previti
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Emmanuelle Jestin
- Cyclotron
Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, France
| | - Delphine Vimont
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Imade Ait-Arsa
- Cyclotron
Réunion Océan Indien CYROI, 2 rue Maxime Rivière, 97490 Sainte Clotilde, France
| | - Frédéric Lamare
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| | - Emmanuelle Rémond
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Elif Hindié
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
- Institut
Universitaire de France, 1 rue Descartes, 75231 Paris, France
| | - Florine Cavelier
- Institut
des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université
de Montpellier, ENSCM, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | - Clément Morgat
- Department
of Nuclear Medicine, University Hospital
of Bordeaux, 33076 Bordeaux, France
- University
of Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux F-33000, France
| |
Collapse
|
40
|
Zhang XX, Gao Y, Zhang YX, Zhou J, Yu JS. Highly Enantioselective Construction of Multifunctional Silicon-Stereogenic Silacycles by Asymmetric Enamine Catalysis. Angew Chem Int Ed Engl 2023; 62:e202217724. [PMID: 36625565 DOI: 10.1002/anie.202217724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
We report the first highly enantioselective construction of silicon-stereocenters by asymmetric enamine catalysis. An unprecedented desymmetric intramolecular aldolization of prochiral siladials was thus developed for the facile access of multifunctional silicon-stereogenic silacycles in high to excellent enantioselectivity. With an enal moiety, these adducts could be readily elaborated for the diverse synthesis of silicon-stereogenic compounds, and for late-stage modification.
Collapse
Affiliation(s)
- Xue-Xin Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Yang Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Yan-Xue Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Process, East China Normal University, Shanghai, 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 571158, China
| |
Collapse
|
41
|
Liu T, Yang M, He J, Li S, Zhang Y. Direct synthesis of sila-benzoazoles through hydrosilylation and rearrangement cascade reaction of benzoazoles and silanes. Nat Commun 2023; 14:703. [PMID: 36759604 PMCID: PMC9911738 DOI: 10.1038/s41467-023-36360-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Sila-isosteres have attracted increasing attention due to their potential application in a variety of fields and their different properties compared to their carbon-containing analogs. However, the preparation of these silicon-containing compound remains challenging and thus the development of alternative synthetic methodologies is desirable. Here, we employ B(C6F5)3 as catalyst to enable the synthesis of highly functionalized sila-benzoazoles via hydrosilylation and rearrangement cascade reaction of benzoazoles and commercially available silanes. This strategy also exhibits remarkable features such as 100% atom-economy, good functional group tolerance, broad substrate scope, easy scale-up and good catalytic performance, demonstrating its potential application in sila-isostere synthesis.
Collapse
Affiliation(s)
- Tianwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012, China
| | - Mo Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012, China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun, Jilin, 130012, China.
| |
Collapse
|
42
|
Fan Y, Jing J, Tong R, Tu X, Gao L, Wang W, Song Z. Intramolecular Ring Expansion of 3-Silaazetidine with Alkynes Enabled by Pd-Catalyzed Si-C Bond Activation. Org Lett 2023; 25:455-460. [PMID: 36472378 DOI: 10.1021/acs.orglett.2c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An intramolecular ring expansion of in situ formed 3-silaazetidine with internal alkynes has been developed via Pd-catalyzed Si-C bond activation. The reaction gives rise to 6,5- and 6,6-fused bicyclic 1,3-azasilines, in which the silicon atom locates at the ring junction position.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Jun Jing
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruiqi Tong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyu Tu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
43
|
Jiao J, Yang W, Wang X. α-Aminocarbene-Mediated Si-H Insertion: Deoxygenative Silylation of Aromatic Amides with Silanes. J Org Chem 2023; 88:594-601. [PMID: 36521058 DOI: 10.1021/acs.joc.2c02649] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
While metal carbene-mediated Si-H insertion reactions have become a powerful strategy to build new C-Si bonds, the utilization of α-aminocarbene intermediates generated from readily available precursors in the Si-H insertion reaction remains a longstanding challenge. Herein, we develop a practical and general strategy to synthesize α-aminosilanes through a deoxygenative cross-coupling of amides and silanes mediated by Sm/SmI2. Given the simplicity and versatility, this methodology represents a fascinating example for the effective utilization of inert amides as α-aminocarbene precursors in organic synthesis.
Collapse
Affiliation(s)
- Jiwen Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Wenhan Yang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
44
|
Han B, Li W, Chen S, Zhang Z, Zhao X, Zhang Y, Zhu L. Recent Advances in Copper-Catalyzed Silyl Addition of Unsaturated Compounds. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202207043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
45
|
Previti S, Desgagné M, Tourwé D, Cavelier F, Sarret P, Ballet S. Opening the amino acid toolbox for peptide-based NTS2-selective ligands as promising lead compounds for pain management. J Pept Sci 2022; 29:e3471. [PMID: 36539999 DOI: 10.1002/psc.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Chronic pain is one of the most critical health issues worldwide. Despite considerable efforts to find therapeutic alternatives, opioid drugs remain the gold standard for pain management. The administration of μ-opioid receptor (MOR) agonists is associated with detrimental and limiting adverse effects. Overall, these adverse effects strongly overshadow the effectiveness of opioid therapy. In this context, the development of neurotensin (NT) ligands has shown to be a promising approach for the management of chronic and acute pain. NT exerts its opioid-independent analgesic effects through the binding of two G protein-coupled receptors (GPCRs), NTS1 and NTS2. In the last decades, modified NT analogues have been proven to provide potent analgesia in vivo. However, selective NTS1 and nonselective NTS1/NTS2 ligands cause antinociception associated with hypothermia and hypotension, whereas selective NTS2 ligands induce analgesia without altering the body temperature and blood pressure. In light of this, various structure-activity relationship (SAR) studies provided findings addressing the binding affinity of ligands towards NTS2. Herein, we comprehensively review peptide-based NTS2-selective ligands as a robust alternative for future pain management. Particular emphasis is placed on SAR studies governing the desired selectivity and associated in vivo results.
Collapse
Affiliation(s)
- Santo Previti
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michael Desgagné
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dirk Tourwé
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| | - Florine Cavelier
- Institut des Biomolécules Max Mousseron, IBMM, UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
46
|
Chen H, Peng J, Pang Q, Du H, Huang L, Gao L, Lan Y, Yang C, Song Z. Enantioselective Synthesis of Spirosilabicyclohexenes by Asymmetric Dual Ring Expansion of Spirosilabicyclobutane with Alkynes. Angew Chem Int Ed Engl 2022; 61:e202212889. [DOI: 10.1002/anie.202212889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/19/2022]
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Ju Peng
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Liying Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| | - Yu Lan
- School of Chemistry and Chemical Engineering Chongqing Key Laboratory of Theoretical and Computational Chemistry Chongqing University Chongqing 400030 China
- Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou Henan 450001 China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology College of Chemistry Sichuan University Chengdu 610064 China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology West China School of Pharmacy Sichuan University Chengdu 610041 China
| |
Collapse
|
47
|
Lin W, You L, Yuan W, He C. Cu-Catalyzed Enantioselective Hydrogermylation: Asymmetric Synthesis of Unnatural β-Germyl α-Amino Acids. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Weidong Lin
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Lijun You
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Yuan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
48
|
Plöger S, Studer A. Visible-Light-Mediated Radical Silyl-Oximation of Activated Alkenes Using tert-Butyl Nitrite and Silanes. Org Lett 2022; 24:8568-8572. [DOI: 10.1021/acs.orglett.2c03644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Stefanie Plöger
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| |
Collapse
|
49
|
Kashif Khan R, Meanwell NA, Hager HH. Pseudoprolines as stereoelectronically tunable proline isosteres. Bioorg Med Chem Lett 2022; 75:128983. [PMID: 36096342 DOI: 10.1016/j.bmcl.2022.128983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/18/2022]
Abstract
The cyclic structure of proline (Pro) confers unique conformational properties on this natural amino acid that influences polypeptide structure and function. Pseudoprolines are a family of Pro isosteres that incorporate a heteroatom, most prominently oxygen or sulfur but also silicon and selenium, to replace the Cβ or Cγ carbon atom of the pyrrolidine ring. These readily synthetically accessible structural motifs can facilitate facile molecular editing in a fashion that allows modulation of the amide bond topology of dipeptide elements and influence over ring pucker. While the properties of pseudoprolines have been exploited most prominently in the design of oligopeptide analogues, they have potential application in the design and optimization of small molecules. In this Digest, we summarize the physicochemical properties of pseudoprolines and illustrate their potential in drug discovery by surveying examples of applications in the design of bioactive molecules.
Collapse
Affiliation(s)
- R Kashif Khan
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 100 Binney Street, Cambridge, MA 02142, USA.
| | - Nicholas A Meanwell
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, P.O. Box 4000, Princeton, NJ 08543-4000, USA.
| | - Harry H Hager
- Small Molecule Drug Discovery, Bristol Myers Squibb Research and Early Development, 200 Cambridgepark Drive, Cambridge, MA 02140, USA.
| |
Collapse
|
50
|
Arai R, Nagashima Y, Koshikawa T, Tanaka K. Photocatalytic Generations of Secondary and Tertiary Silyl Radicals from Silylboranes Using an Alkoxide Cocatalyst. J Org Chem 2022. [PMID: 36214474 DOI: 10.1021/acs.joc.2c01885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Silyl radicals are valuable species to prepare diverse organosilicon compounds. However, unlike stable tertiary silyl radicals, the use of secondary silyl radicals has been problematic in silylation reactions due to their instability. Here, we present photocatalytic in situ generations of both secondary and tertiary silyl radicals by one-electron oxidation of ate complexes, formed from silylboranes and an alkoxide cocatalyst, achieving highly efficient hydrosilylation and deuterosilylation of electron-rich alkenes and dienes as well as electron-deficient alkenes. The theoretical studies show that anionic borate complexes activated with an alkoxide have lower oxidation potentials than neutral borate complexes, allowing the formation of secondary silyl radicals. The calculated reaction pathways reveal that anionic conditions using the conjugate acid-base pair of NaOEt (cocatalyst) and EtOH (solvent) are the key to expanding the scope of silyl radicals and alkenes.
Collapse
Affiliation(s)
- Ryo Arai
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| | - Takumi Koshikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| |
Collapse
|