1
|
Norris AC, Oberg C, Spangler LC, Scholes GD, Schlau-Cohen GS. Discovery of Multiple Light-Harvesting States of the Photosynthetic Protein PE545. J Am Chem Soc 2024; 146:27373-27381. [PMID: 39325132 DOI: 10.1021/jacs.4c06307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Cryptophytes are photosynthetic microalga that flourish in a remarkable diversity of natural environments by using pigment-containing proteins with absorption maxima tuned to each ecological niche. While this diversity in the absorption has been well established, the subsequent photophysics is highly sensitive to the local protein environment and so may exhibit similar variation. Thermal fluctuations of the protein conformation are expected to introduce photophysical heterogeneity of the pigments that may have evolved important functional properties in a manner similar to that of the absorption. However, such heterogeneity is averaged out in ensemble measurements and, therefore, has not yet been probed. Here, we report single-molecule measurements of phycoerythrin 545 (PE545), the prototypical cryptophyte antenna protein, in its native dimeric form. A conformational ensemble was resolved consisting of distinct photophysical states with different light-harvesting properties. Proteins that did not quench, partially quenched, or fully quenched absorbed light were observed. Light intensity increased the quenched-state population of the dimer, potentially as a mechanism to deal with the extreme light intensities found in aqueous environments. Cross-linking, which mimics local interactions, introduces this light-dependent functionality while also suppressing other conformational dynamics. The cellular organization can, therefore, actively modulate the protein conformation and dynamics, selecting for distinct levels of light harvesting. Thus, the complex conformational equilibrium provides an additional mechanism for cryptophytes and likely other photosynthetic organisms to optimize solar energy capture and conversion.
Collapse
Affiliation(s)
- Audrey C Norris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Catrina Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leah C Spangler
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gabriela S Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Botha JL, van Heerden B, Krüger TPJ. Advanced analysis of single-molecule spectroscopic data. BIOPHYSICAL REPORTS 2024; 4:100173. [PMID: 39097230 PMCID: PMC11374972 DOI: 10.1016/j.bpr.2024.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
We present Full SMS, a multipurpose graphical user interface (GUI)-based software package for analyzing single-molecule spectroscopy (SMS) data. SMS typically delivers multiparameter data-such as fluorescence brightness, lifetime, and spectra-of molecular- or nanometer-scale particles such as single dye molecules, quantum dots, or fluorescently labeled biological macromolecules. Full SMS allows an unbiased statistical analysis of fluorescence brightness through level resolution and clustering, analysis of fluorescence lifetimes through decay fitting, as well as the calculation of second-order correlation functions and the display of fluorescence spectra and raster-scan images. Additional features include extensive data filtering options, a custom HDF5-based file format, and flexible data export options. The software is open source and written in Python but GUI based so it may be used without any programming knowledge. A multiprocess architecture was employed for computational efficiency. The software is also designed to be easily extendable to include additional import data types and analysis capabilities.
Collapse
Affiliation(s)
- Joshua L Botha
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Bertus van Heerden
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa; Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa; National Institute of Theoretical and Computational Sciences (NITheCS), South Africa
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria, Gauteng, South Africa; Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, Gauteng, South Africa; National Institute of Theoretical and Computational Sciences (NITheCS), South Africa.
| |
Collapse
|
3
|
Dhar M, Berg MA. Efficient, nonparametric removal of noise and recovery of probability distributions from time series using nonlinear-correlation functions: Photon and photon-counting noise. J Chem Phys 2024; 161:034116. [PMID: 39028845 DOI: 10.1063/5.0212157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/28/2024] [Indexed: 07/21/2024] Open
Abstract
A preceding paper [M. Dhar, J. A. Dickinson, and M. A. Berg, J. Chem. Phys. 159, 054110 (2023)] shows how to remove additive noise from an experimental time series, allowing both the equilibrium distribution of the system and its Green's function to be recovered. The approach is based on nonlinear-correlation functions and is fully nonparametric: no initial model of the system or of the noise is needed. However, single-molecule spectroscopy often produces time series with either photon or photon-counting noise. Unlike additive noise, photon noise is signal-size correlated and quantized. Photon counting adds the potential for bias. This paper extends noise-corrected-correlation methods to these cases and tests them on synthetic datasets. Neither signal-size correlation nor quantization is a significant complication. Analysis of the sampling error yields guidelines for the data quality needed to recover the properties of a system with a given complexity. We show that bias in photon-counting data can be corrected, even at the high count rates needed to optimize the time resolution. Using all these results, we discuss the factors that limit the time resolution of single-molecule spectroscopy and the conditions that would be needed to push measurements into the submicrosecond region.
Collapse
Affiliation(s)
- Mainak Dhar
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| | - Mark A Berg
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
4
|
Cervantes-Salguero K, Kadrmas M, Ward BM, Lysne D, Wolf A, Piantanida L, Pascual G, Knowlton WB. Minimizing Structural Heterogeneity in DNA Self-Assembled Dye Templating via DNA Origami-Tuned Conformations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10195-10207. [PMID: 38690801 PMCID: PMC11100016 DOI: 10.1021/acs.langmuir.4c00470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
With recent advances in DNA-templated dye aggregation for leveraging and engineering molecular excitons, a need exists for minimizing structural heterogeneity. Holliday Junction complexes (HJ) are commonly used to covalently template dye aggregates on their core; however, the global conformation of HJ is detrimentally dynamic. Here, the global conformation of the HJ is selectively tuned by restricting its position and orientation by using a sheet-like DNA origami construct (DOC) physisorbed on glass. The HJ arms are fixed with four different designed interduplex angles (IDAs). Atomic force microscopy confirmed that the HJs are bound to the surface of DOC with tuned IDAs. Dye orientation distributions were determined by combining dipole imaging and super-resolution microscopy. All IDAs led to dye orientations having dispersed distributions along planes perpendicular to the HJ plane, suggesting that stacking occurred between the dye and the neighboring DNA bases. The dye-base stacking interpretation was supported by increasing the size of the core cavity. The narrowest IDA minimizes structural heterogeneity and suggests dye intercalation. A strong correlation is found between the IDA and the orientation of the dye along the HJ plane. These results show that the HJ imposes restrictions on the dye and that the dye-DNA interactions are always present regardless of global conformation. The implications of our results are discussed for the scalability of dye aggregates using DNA self-assembly. Our methodology provides an avenue for the solid-supported single-molecule characterization of molecular assemblies templated on biomolecules─such as DNA and protein templates involved in light-harvesting and catalysis─with tuned conformations and restricted in position and orientation.
Collapse
Affiliation(s)
- Keitel Cervantes-Salguero
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Madison Kadrmas
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Brett M. Ward
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Drew Lysne
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Amanda Wolf
- Biomolecular
Sciences Graduate Programs, Boise State
University, Boise, Idaho 83725, United States
| | - Luca Piantanida
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Gissela Pascual
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron
School of Materials Science and Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical and Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| |
Collapse
|
5
|
Al-Owaedi OA. Thermoelectric Properties of Porphyrin Nano Rings: A Theoretical and Modelling Investigation. Chemphyschem 2024; 25:e202300616. [PMID: 38084460 DOI: 10.1002/cphc.202300616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/01/2023] [Indexed: 03/02/2024]
Abstract
Propagation of De Broglie waves through nanomolecular junctions is greatly affected by molecular topology changes, which in turn plays a key role in determining the electronic and thermoelectric properties of source|molecule|drain junctions. The probing and realization of the constructive quantum interference (CQI) and a destructive quantum interference (DQI) are well established in this work. The critical role of quantum interference (QI) in governing and enhancing the transmission coefficient T(E), thermopower (S), power factor (P) and electronic figure of merit (ZelT) of porphyrin nanorings has been investigated using a combination of density functional theory (DFT) methods, a tight binding (Hückel) modelling (TBHM) and quantum transport theory (QTT). Remarkably, DQI not only dominates the asymmetric molecular pathways and lowering T(E), but also improves the thermoelectric properties.
Collapse
Affiliation(s)
- Oday A Al-Owaedi
- Department of Laser Physics, University of Babylon, Babylon, Hilla, 51001, Iraq
- Al-Zahrawi University College, Holy Karbala, Karbala, 56001, Iraq
| |
Collapse
|
6
|
Assefa GT, Botha JL, van Heerden B, Kyeyune F, Krüger TPJ, Gwizdala M. ApcE plays an important role in light-induced excitation energy dissipation in the Synechocystis PCC6803 phycobilisomes. PHOTOSYNTHESIS RESEARCH 2024; 160:17-29. [PMID: 38407779 PMCID: PMC11006782 DOI: 10.1007/s11120-024-01078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 02/27/2024]
Abstract
Phycobilisomes (PBs) play an important role in cyanobacterial photosynthesis. They capture light and transfer excitation energy to the photosynthetic reaction centres. PBs are also central to some photoprotective and photoregulatory mechanisms that help sustain photosynthesis under non-optimal conditions. Amongst the mechanisms involved in excitation energy dissipation that are activated in response to excessive illumination is a recently discovered light-induced mechanism that is intrinsic to PBs and has been the least studied. Here, we used single-molecule spectroscopy and developed robust data analysis methods to explore the role of a terminal emitter subunit, ApcE, in this intrinsic, light-induced mechanism. We isolated the PBs from WT Synechocystis PCC 6803 as well as from the ApcE-C190S mutant of this strain and compared the dynamics of their fluorescence emission. PBs isolated from the mutant (i.e., ApcE-C190S-PBs), despite not binding some of the red-shifted pigments in the complex, showed similar global emission dynamics to WT-PBs. However, a detailed analysis of dynamics in the core revealed that the ApcE-C190S-PBs are less likely than WT-PBs to enter quenched states under illumination but still fully capable of doing so. This result points to an important but not exclusive role of the ApcE pigments in the light-induced intrinsic excitation energy dissipation mechanism in PBs.
Collapse
Affiliation(s)
- Gonfa Tesfaye Assefa
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Joshua L Botha
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
| | - Bertus van Heerden
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Farooq Kyeyune
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Department of Physics, Faculty of Science, Kyambogo University, P.O. Box 1, Kyambogo, Kampala, Uganda
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa
- National Institute for Theoretical and Computational Sciences (NITheCS), Stellenbosch, South Africa
| | - Michal Gwizdala
- Department of Physics, University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Lynnwood Road, Pretoria, 0002, South Africa.
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels, 08860, Spain.
| |
Collapse
|
7
|
Zazubovich V, Jankowiak R. High-Resolution Frequency-Domain Spectroscopic and Modeling Studies of Photosystem I (PSI), PSI Mutants and PSI Supercomplexes. Int J Mol Sci 2024; 25:3850. [PMID: 38612659 PMCID: PMC11011720 DOI: 10.3390/ijms25073850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.
Collapse
Affiliation(s)
- Valter Zazubovich
- Department of Physics, Concordia University, Montreal, QC H4B 1R6, Canada
| | - Ryszard Jankowiak
- Department of Chemistry, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Zhang X, Taniguchi R, Nagao R, Tomo T, Noguchi T, Ye S, Shibata Y. Access to the Antenna System of Photosystem I via Single-Molecule Excitation-Emission Spectroscopy. J Phys Chem B 2024; 128:2664-2674. [PMID: 38456814 DOI: 10.1021/acs.jpcb.3c07789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
In the development of single-molecule spectroscopy, the simultaneous detection of the excitation and emission spectra has been limited. The fluorescence excitation spectrum based on background-free signals is compatible with the fluorescence-emission-based detection of single molecules and can provide insight into the variations in the input energy of the different terminal emitters. Here, we implement single-molecule excitation-emission spectroscopy (SMEES) for photosystem I (PSI) via a cryogenic optical microscope. To this end, we extended our line-focus-based excitation-spectral microscope system to the cryogenic temperature-compatible version. PSI is one of the two photosystems embedded in the thylakoid membrane in oxygen-free photosynthetic organisms. PSI plays an essential role in electron transfer in the photosynthesis reaction. PSIs of many organisms contain a few red-shifted chlorophylls (Chls) with much lower excitation energies than ordinary antenna Chls. The fluorescence emission spectrum originates primarily from the red-shifted Chls, whereas the excitation spectrum is sensitive to the antenna Chls that are upstream of red-shifted Chls. Using SMEES, we obtained the inclining two-dimensional excitation-emission matrix (2D-EEM) of PSI particles isolated from a cyanobacterium, Thermosynechococcus vestitus (equivalent to elongatus), at about 80 K. Interestingly, by decomposing the inclining 2D-EEMs within time course observation, we found prominent variations in the excitation spectra of the red-shifted Chl pools with different emission wavelengths, strongly indicating the variable excitation energy transfer (EET) pathway from the antenna to the terminal emitting pools. SMEES helps us to directly gain information about the antenna system, which is fundamental to depicting the EET within pigment-protein complexes.
Collapse
Affiliation(s)
- Xianjun Zhang
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
- Division for Interdisciplinary Advanced Research and Education, Tohoku University, Sendai 980-8578, Japan
| | - Rin Taniguchi
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Ryo Nagao
- Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | - Tatsuya Tomo
- Department of Physics, Graduate School of Sciences, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Takumi Noguchi
- Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Shen Ye
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
9
|
Zhang C, Hu H, Ma C, Li Y, Wang X, Li D, Movsesyan A, Wang Z, Govorov A, Gan Q, Ding T. Quantum plasmonics pushes chiral sensing limit to single molecules: a paradigm for chiral biodetections. Nat Commun 2024; 15:2. [PMID: 38169462 PMCID: PMC10762144 DOI: 10.1038/s41467-023-42719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 10/19/2023] [Indexed: 01/05/2024] Open
Abstract
Chiral sensing of single molecules is vital for the understanding of chirality and their applications in biomedicine. However, current technologies face severe limitations in achieving single-molecule sensitivity. Here we overcome these limitations by designing a tunable chiral supramolecular plasmonic system made of helical oligoamide sequences (OS) and nanoparticle-on-mirror (NPoM) resonator, which works across the classical and quantum regimes. Our design enhances the chiral sensitivity in the quantum tunnelling regime despite of the reduced local E-field, which is due to the strong Coulomb interactions between the chiral OSs and the achiral NPoMs and the additional enhancement from tunnelling electrons. A minimum of four molecules per single-Au particle can be detected, which allows for the detection of an enantiomeric excess within a monolayer, manifesting great potential for the chiral sensing of single molecules.
Collapse
Affiliation(s)
- Chi Zhang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, 430205, Wuhan, China
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, LE, 73010, Italy
| | - Chunmiao Ma
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Yawen Li
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Xujie Wang
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China
| | - Dongyao Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Artur Movsesyan
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, 610054, Chengdu, China
| | - Alexander Govorov
- Department of Physics and Astronomy, Ohio University, Athens, OH, 45701, USA
| | - Quan Gan
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Tao Ding
- Key Laboratory of Artificial Micro/Nano Structure of Ministry of Education, School of Physics and Technology, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
10
|
Mazal H, Wieser FF, Sandoghdar V. Insights into protein structure using cryogenic light microscopy. Biochem Soc Trans 2023; 51:2041-2059. [PMID: 38015555 PMCID: PMC10754291 DOI: 10.1042/bst20221246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Fluorescence microscopy has witnessed many clever innovations in the last two decades, leading to new methods such as structured illumination and super-resolution microscopies. The attainable resolution in biological samples is, however, ultimately limited by residual motion within the sample or in the microscope setup. Thus, such experiments are typically performed on chemically fixed samples. Cryogenic light microscopy (Cryo-LM) has been investigated as an alternative, drawing on various preservation techniques developed for cryogenic electron microscopy (Cryo-EM). Moreover, this approach offers a powerful platform for correlative microscopy. Another key advantage of Cryo-LM is the strong reduction in photobleaching at low temperatures, facilitating the collection of orders of magnitude more photons from a single fluorophore. This results in much higher localization precision, leading to Angstrom resolution. In this review, we discuss the general development and progress of Cryo-LM with an emphasis on its application in harnessing structural information on proteins and protein complexes.
Collapse
Affiliation(s)
- Hisham Mazal
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Li M, Shi Q, Song N, Xiao Y, Wang L, Chen Z, James TD. Current trends in the detection and removal of heavy metal ions using functional materials. Chem Soc Rev 2023; 52:5827-5860. [PMID: 37531220 DOI: 10.1039/d2cs00683a] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The shortage of freshwater resources caused by heavy metal pollution is an acute global issue, which has a great impact on environmental protection and human health. Therefore, the exploitation of new strategies for designing and synthesizing green, efficient, and economical materials for the detection and removal of heavy metal ions is crucial. Among the various methods for the detection and removal of heavy ions, advanced functional systems including nanomaterials, polymers, porous materials, and biomaterials have attracted considerable attention over the past several years due to their capabilities of real-time detection, excellent removal efficiency, anti-interference, quick response, high selectivity, and low limit of detection. In this tutorial review, we review the general design principles underlying the aforementioned functional materials, and in particular highlight the fundamental mechanisms and specific examples of detecting and removing heavy metal ions. Additionally, the methods which enhance water purification quality using these functional materials have been reviewed, also current challenges and opportunities in this exciting field have been highlighted, including the fabrication, subsequent treatment, and potential future applications of such functional materials. We envision that this tutorial review will provide invaluable guidance for the design of functional materials tailored towards the detection and removal of heavy metals, thereby expediting the development of high-performance materials and fostering the development of more efficient approaches to water pollution remediation.
Collapse
Affiliation(s)
- Meng Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Quanyu Shi
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Ningxin Song
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Yumeng Xiao
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, P. R. China.
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Material Science and Engineering College, Northeast Forestry University, Hexing Road 26, Harbin 150040, P. R. China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, P. R. China
| |
Collapse
|
12
|
Dai J, Wilhelm KB, Bischoff AJ, Pereira JH, Dedeo MT, García-Almedina DM, Adams PD, Groves JT, Francis MB. A Membrane-Associated Light-Harvesting Model is Enabled by Functionalized Assemblies of Gene-Doubled TMV Proteins. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207805. [PMID: 36811150 DOI: 10.1002/smll.202207805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/26/2023] [Indexed: 05/18/2023]
Abstract
Photosynthetic light harvesting requires efficient energy transfer within dynamic networks of light-harvesting complexes embedded within phospholipid membranes. Artificial light-harvesting models are valuable tools for understanding the structural features underpinning energy absorption and transfer within chromophore arrays. Here, a method for attaching a protein-based light-harvesting model to a planar, fluid supported lipid bilayer (SLB) is developed. The protein model consists of the tobacco mosaic viral capsid proteins that are gene-doubled to create a tandem dimer (dTMV). Assemblies of dTMV break the facial symmetry of the double disk to allow for differentiation between the disk faces. A single reactive lysine residue is incorporated into the dTMV assemblies for the site-selective attachment of chromophores for light absorption. On the opposing dTMV face, a cysteine residue is incorporated for the bioconjugation of a peptide containing a polyhistidine tag for association with SLBs. The dual-modified dTMV complexes show significant association with SLBs and exhibit mobility on the bilayer. The techniques used herein offer a new method for protein-surface attachment and provide a platform for evaluating excited state energy transfer events in a dynamic, fully synthetic artificial light-harvesting system.
Collapse
Affiliation(s)
- Jing Dai
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Kiera B Wilhelm
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Amanda J Bischoff
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jose H Pereira
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Michel T Dedeo
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | | | - Paul D Adams
- Technology Division, Joint BioEnergy Institute, Emeryville, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Matthew B Francis
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
13
|
Ma L, Li X, Petersen RB, Peng A, Huang K. Probing the interactions between amyloidogenic proteins and bio-membranes. Biophys Chem 2023; 296:106984. [PMID: 36889133 DOI: 10.1016/j.bpc.2023.106984] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/01/2023]
Abstract
Protein misfolding diseases (PMDs) in humans are characterized by the deposition of protein aggregates in tissues, including Alzheimer's disease, Parkinson's disease, type 2 diabetes, and amyotrophic lateral sclerosis. Misfolding and aggregation of amyloidogenic proteins play a central role in the onset and progression of PMDs, and these processes are regulated by multiple factors, especially the interaction between proteins and bio-membranes. Bio-membranes induce conformational changes in amyloidogenic proteins and affect their aggregation; on the other hand, the aggregates of amyloidogenic proteins may cause membrane damage or dysfunction leading to cytotoxicity. In this review, we summarize the factors that affect the binding of amyloidogenic proteins and membranes, the effects of bio-membranes on the aggregation of amyloidogenic proteins, mechanisms of membrane disruption by amyloidogenic aggregates, technical approaches for detecting these interactions, and finally therapeutic strategies targeting membrane damage caused by amyloidogenic proteins.
Collapse
Affiliation(s)
- Liang Ma
- Department of Pharmacy, Wuhan Mental Health Center, Wuhan, China; Department of Pharmacy, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Xi Li
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mount Pleasant, MI, USA
| | - Anlin Peng
- Department of Pharmacy, The Third Hospital of Wuhan, Tongren Hospital of Wuhan University, Wuhan, China.
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Singh D, Punia B, Chaudhury S. Theoretical Tools to Quantify Stochastic Fluctuations in Single-Molecule Catalysis by Enzymes and Nanoparticles. ACS OMEGA 2022; 7:47587-47600. [PMID: 36591158 PMCID: PMC9798497 DOI: 10.1021/acsomega.2c06316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/02/2022] [Indexed: 06/11/2023]
Abstract
Single-molecule microscopic techniques allow the counting of successive turnover events and the study of the time-dependent fluctuations of the catalytic activities of individual enzymes and different sites on a single heterogeneous nanocatalyst. It is important to establish theoretical methods to obtain the statistical measurements of such stochastic fluctuations that provide insight into the catalytic mechanism. In this review, we discuss a few theoretical frameworks for evaluating the first passage time distribution functions using a self-consistent pathway approach and chemical master equations, to establish a connection with experimental observables. The measurable probability distribution functions and their moments depend on the molecular details of the reaction and provide a way to quantify the molecular mechanisms of the reaction process. The statistical measurements of these fluctuations should provide insight into the enzymatic mechanism.
Collapse
Affiliation(s)
- Divya Singh
- School
of Chemistry, Tel Aviv University, Tel Aviv6997801, Israel
| | - Bhawakshi Punia
- Department
of Chemistry, Indian Institute of Science
Education and Research, Dr. Homi Bhabha Road, Pune411008, Maharashtra, India
| | - Srabanti Chaudhury
- Department
of Chemistry, Indian Institute of Science
Education and Research, Dr. Homi Bhabha Road, Pune411008, Maharashtra, India
| |
Collapse
|
15
|
Gu K, Liu S, Liu C. Surface Preparation for Single-Molecule Fluorescence Imaging in Organic Solvents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15848-15857. [PMID: 36475684 DOI: 10.1021/acs.langmuir.2c02828] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of single-molecule techniques provides opportunities to investigate the properties and heterogeneities of individual molecules, which are almost impossible to be obtained in ensemble measurements. Recently, single-molecule fluorescence microscopy is being applied more and more to study chemical reactions in organic solvents. However, little has been done to optimize the surface preparation procedures for single-molecule fluorescence imaging in organic solvents. In this work, we developed a method to prepare the surface for single-molecule fluorescence imaging in organic solvents with a well-controlled surface density of chemically immobilized dye molecules and a low density of nonspecifically adsorbed impurities. We also compared the surfaces prepared by two different procedures and studied the impacts of the polarities of the solvent and the surface functionality on the quality of prepared surface. We found that higher polarities of both the solvent and the surface functionality provided better control of the surface density of chemically immobilized dyes and helped reduce the nonspecific adsorption of both dyes and fluorescent impurities in organic solvents. We further performed single-molecule fluorescence imaging in DMF and investigated the photophysical properties of dyes and fluorescent impurities, which could be used to filter out false counts in single-molecule fluorescence measurements.
Collapse
Affiliation(s)
- Kai Gu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Shuzhen Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Chunming Liu
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
- Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
16
|
Infrared nanospectroscopic imaging of DNA molecules on mica surface. Sci Rep 2022; 12:18972. [PMID: 36348038 PMCID: PMC9643503 DOI: 10.1038/s41598-022-23637-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Significant efforts have been done in last two decades to develop nanoscale spectroscopy techniques owning to their great potential for single-molecule structural detection and in addition, to resolve open questions in heterogeneous biological systems, such as protein-DNA complexes. Applying IR-AFM technique has become a powerful leverage for obtaining simultaneous absorption spectra with a nanoscale spatial resolution for studied proteins, however the AFM-IR investigation of DNA molecules on surface, as a benchmark for a nucleoprotein complexes nanocharacterization, has remained elusive. Herein, we demonstrate methodological approach for acquisition of AFM-IR mapping modalities with corresponding absorption spectra based on two different DNA deposition protocols on spermidine and Ni2+ pretreated mica surface. The nanoscale IR absorbance of distinctly formed DNA morphologies on mica are demonstrated through series of AFM-IR absorption maps with corresponding IR spectrum. Our results thus demonstrate the sensitivity of AFM-IR nanospectroscopy for a nucleic acid research with an open potential to be employed in further investigation of nucleoprotein complexes.
Collapse
|
17
|
Pfeifer L, Hoang NV, Crespi S, Pshenichnikov MS, Feringa BL. Dual-function artificial molecular motors performing rotation and photoluminescence. SCIENCE ADVANCES 2022; 8:eadd0410. [PMID: 36332022 PMCID: PMC9635830 DOI: 10.1126/sciadv.add0410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Molecular machines have caused one of the greatest paradigm shifts in chemistry, and by powering artificial mechanical molecular systems and enabling autonomous motion, they are expected to be at the heart of exciting new technologies. One of the biggest challenges that still needs to be addressed is designing the involved molecules to combine different orthogonally controllable functions. Here, we present a prototype of artificial molecular motors exhibiting the dual function of rotary motion and photoluminescence. Both properties are controlled by light of different wavelengths or by exploiting motors' outstanding two-photon absorption properties using low-intensity near-infrared light. This provides a noninvasive way to both locate and operate these motors in situ, essential for the application of molecular machines in complex (bio)environments.
Collapse
Affiliation(s)
- Lukas Pfeifer
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Nong V. Hoang
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Stefano Crespi
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Maxim S. Pshenichnikov
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| |
Collapse
|
18
|
Yang W, Wei Z, Nie Y, Tian Y. Optical Detection and Imaging of Nonfluorescent Matter at the Single-Molecule/Particle Level. J Phys Chem Lett 2022; 13:9618-9631. [PMID: 36214484 DOI: 10.1021/acs.jpclett.2c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Since the first optical detection of single molecules in 1989, single-molecule spectroscopy has developed rapidly and been widely applied in many areas. However, the vast majority of matter is extremely inefficient at emitting photons in our physical world, which seriously limits the applications of optical methods based on photoluminescence. In addition to indirect detection by fluorescence labeling, many efforts have been made to directly image nonfluorescent matter at the single-particle or single-molecule level in different ways based on the absorption or scattering interaction between light and matter. Herein, we review five popular methods for imaging nonfluorescent particles/molecules, including dark-field microscopy (DFM), surface plasmon resonance microscopy (SPRM), surface enhanced Raman microscopy (SERM), interferometric scattering microscopy (iSCAT), and photothermal microscopy (PTM). After summarizing the principles and applications of these methods, we compare the advantages and disadvantages of each method and describe further potential development and applications.
Collapse
Affiliation(s)
- Weiqing Yang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Zhihong Wei
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Yan Nie
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| | - Yuxi Tian
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Jiangsu Key Laboratory of Vehicle Emissions Control, Nanjing University, Nanjing210023, China
| |
Collapse
|
19
|
Moya R, Norris AC, Spangler LC, Scholes GD, Schlau-Cohen GS. Observation of conformational dynamics in single light-harvesting proteins from cryptophyte algae. J Chem Phys 2022; 157:035102. [PMID: 35868944 PMCID: PMC9894659 DOI: 10.1063/5.0095763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Photosynthetic organisms use pigment-protein complexes to capture the sunlight that powers most life on earth. Within these complexes, the position of the embedded pigments is all optimized for light harvesting. At the same time, the protein scaffold undergoes thermal fluctuations that vary the structure, and, thus, photophysics, of the complexes. While these variations are averaged out in ensemble measurements, single-molecule spectroscopy provides the ability to probe these conformational changes. We used single-molecule fluorescence spectroscopy to identify the photophysical substates reflective of distinct conformations and the associated conformational dynamics in phycoerythrin 545 (PE545), a pigment-protein complex from cryptophyte algae. Rapid switching between photophysical states was observed, indicating that ensemble measurements average over a conformational equilibrium. A highly quenched conformation was also identified, and its population increased under high light. This discovery establishes that PE545 has the characteristics to serve as a photoprotective site. Finally, unlike homologous proteins from the evolutionarily related cyanobacteria and red algae, quenching was not observed upon photobleaching, which may allow for robust photophysics without the need for rapid repair or replacement machinery. Collectively, these observations establish the presence of a rich and robust set of conformational states of PE545. Cryptophytes exhibit particularly diverse energetics owing to the variety of microenvironments in which they survive, and the conformational states and dynamics reported here may provide photophysical flexibility that contributes to their remarkable ability to flourish under diverse conditions.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Leah C. Spangler
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Gregory D. Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA,Author to whom correspondence should be addressed:
| |
Collapse
|
20
|
van Heerden B, Vickers NA, Krüger TPJ, Andersson SB. Real-Time Feedback-Driven Single-Particle Tracking: A Survey and Perspective. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107024. [PMID: 35758534 PMCID: PMC9308725 DOI: 10.1002/smll.202107024] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 04/07/2022] [Indexed: 05/14/2023]
Abstract
Real-time feedback-driven single-particle tracking (RT-FD-SPT) is a class of techniques in the field of single-particle tracking that uses feedback control to keep a particle of interest in a detection volume. These methods provide high spatiotemporal resolution on particle dynamics and allow for concurrent spectroscopic measurements. This review article begins with a survey of existing techniques and of applications where RT-FD-SPT has played an important role. Each of the core components of RT-FD-SPT are systematically discussed in order to develop an understanding of the trade-offs that must be made in algorithm design and to create a clear picture of the important differences, advantages, and drawbacks of existing approaches. These components are feedback tracking and control, ranging from simple proportional-integral-derivative control to advanced nonlinear techniques, estimation to determine particle location from the measured data, including both online and offline algorithms, and techniques for calibrating and characterizing different RT-FD-SPT methods. Then a collection of metrics for RT-FD-SPT is introduced to help guide experimentalists in selecting a method for their particular application and to help reveal where there are gaps in the techniques that represent opportunities for further development. Finally, this review is concluded with a discussion on future perspectives in the field.
Collapse
Affiliation(s)
- Bertus van Heerden
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Nicholas A Vickers
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
| | - Tjaart P J Krüger
- Department of Physics, University of Pretoria, Pretoria, 0002, South Africa
- Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Sean B Andersson
- Department of Mechanical Engineering, Boston University, Boston, MA, 02215, USA
- Division of Systems Engineering, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
21
|
Preprocess dependence of optical properties of ensembles and single siphonaxanthin-containing major antenna from the marine green alga Codium fragile. Sci Rep 2022; 12:8461. [PMID: 35589761 PMCID: PMC9120457 DOI: 10.1038/s41598-022-11572-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
The siphonaxanthin-siphonein-Chl-a/b-protein (SCP) is the light-harvesting complex of the marine alga Codium fragile. Its structure resembles that of the major light-harvesting complexes of higher plants, LHC II, yet it features a reversed Chl a:Chl b ratio and it accommodates other variants of carotenoids. We have recorded the fluorescence emission spectra and fluorescence lifetimes from ensembles and single SCP complexes for three different scenarios of handling the samples. While the data obtained from ensembles of SCP complexes yield equivalent results, those obtained from single SCP complexes featured significant differences as a function of the sample history. We ascribe this discrepancy to the different excitation intensities that have been used for ensemble and single complex spectroscopy, and conclude that the SCP complexes undergo an aging process during storage. This process is manifested as a lowering of energetic barriers within the protein, enabling thermal activation of conformational changes at room temperature. This in turn leads to the preferential population of a red-shifted state that features a significant decrease of the fluorescence lifetime.
Collapse
|
22
|
Photoprotective conformational dynamics of photosynthetic light-harvesting proteins. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2022; 1863:148543. [PMID: 35202576 DOI: 10.1016/j.bbabio.2022.148543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/21/2022]
Abstract
Under high light conditions, excess energy can damage the machinery of oxygenic photosynthesis. Plants have evolved a series of photoprotective processes, including conformational changes of the light-harvesting complexes that activate dissipation of energy as heat. In this mini-review, we will summarize our recent work developing and applying single-molecule methods to investigate the conformational states of the light-harvesting complexes. Through these measurements, we identified dissipative conformations and how they depend on conditions that mimic high light. Our studies revealed an equilibrium between the light-harvesting and dissipative conformations, and that the nature of the equilibrium varies with cellular environment, between proteins, and between species. Finally, we conclude with an outlook on open questions and implications for photosynthetic yields.
Collapse
|
23
|
Cignoni E, Slama V, Cupellini L, Mennucci B. The atomistic modeling of light-harvesting complexes from the physical models to the computational protocol. J Chem Phys 2022; 156:120901. [DOI: 10.1063/5.0086275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The function of light-harvesting complexes is determined by a complex network of dynamic interactions among all the different components: the aggregate of pigments, the protein, and the surrounding environment. Complete and reliable predictions on these types of composite systems can be only achieved with an atomistic description. In the last few decades, there have been important advances in the atomistic modeling of light-harvesting complexes. These advances have involved both the completeness of the physical models and the accuracy and effectiveness of the computational protocols. In this Perspective, we present an overview of the main theoretical and computational breakthroughs attained so far in the field, with particular focus on the important role played by the protein and its dynamics. We then discuss the open problems in their accurate modeling that still need to be addressed. To illustrate an effective computational workflow for the modeling of light harvesting complexes, we take as an example the plant antenna complex CP29 and its H111N mutant.
Collapse
Affiliation(s)
- Edoardo Cignoni
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Vladislav Slama
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
24
|
A single-molecule stochastic theory of protein-ligand binding in the presence of multiple unfolding/folding and ligand binding pathways. Biophys Chem 2022; 285:106803. [DOI: 10.1016/j.bpc.2022.106803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 11/19/2022]
|
25
|
Determination of two-photon absorption in nucleobase analogues: a QR-DFT perspective. Photochem Photobiol Sci 2022; 21:529-543. [PMID: 35179700 DOI: 10.1007/s43630-022-00182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 01/27/2022] [Indexed: 10/19/2022]
Abstract
With the prevalence of fluorescence spectroscopy in biological systems, and the benefits of two-photon absorption techniques, presented here is an assessment of the two-photon accessibility of modern fluorescent nucleobase analogues utilising quadratic response DFT. Due to the complex environment experienced by these nucleobases, the two-photon spectra of each analogue has been assessed in the presence of both [Formula: see text]-stacked and hydrogen-bonding interactions involving the canonical nucleobases. Findings suggest that the [Formula: see text]-stacking environment provides a more significant effect on the spectra of the analogues studies than a hydrogen-bonding environment; analogue structures presenting high two-photon cross-section values for one or more states coincide with polycyclic extensions to preserved canonical base structure, as observed in the qA family of analogues, while analogue structures more closely resembling the structure of the base in question present a much more muted spectra in comparison. Results from this investigation have also allowed for the derivation of a number of design rules for the development of potential, two-photon specific, analogues for future use in both imaging and potential photochemical activation.
Collapse
|
26
|
Kondo T, Mutoh R, Arai S, kurisu G, Oh-oka H, Fujiyoshi S, Matsushita M. Energy transfer fluctuation observed by single-molecule spectroscopy of red-shifted bacteriochlorophyll in the homodimeric photosynthetic reaction center. J Chem Phys 2022; 156:105102. [DOI: 10.1063/5.0077290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Toru Kondo
- Department of Life Science and Technology, Tokyo Institute of Technology, Japan
| | | | - Shun Arai
- Tokyo Institute of Technology, Japan
| | | | | | | | | |
Collapse
|
27
|
Moya R, Norris AC, Kondo T, Schlau-Cohen GS. Observation of robust energy transfer in the photosynthetic protein allophycocyanin using single-molecule pump-probe spectroscopy. Nat Chem 2022; 14:153-159. [PMID: 34992285 PMCID: PMC9977402 DOI: 10.1038/s41557-021-00841-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/20/2021] [Indexed: 01/26/2023]
Abstract
Photosynthetic organisms convert sunlight to electricity with near unity quantum efficiency. Absorbed photoenergy transfers through a network of chromophores positioned within protein scaffolds, which fluctuate due to thermal motion. The resultant variation in the individual energy transfer steps has not yet been measured, and so how the efficiency is robust to this variation has not been determined. Here, we describe single-molecule pump-probe spectroscopy with facile spectral tuning and its application to the ultrafast dynamics of single allophycocyanin, a light-harvesting protein from cyanobacteria. We disentangled the energy transfer and energetic relaxation from nuclear motion using the spectral dependence of the dynamics. We observed an asymmetric distribution of timescales for energy transfer and a slower and more heterogeneous distribution of timescales for energetic relaxation, which was due to the impact of the protein environment. Collectively, these results suggest that energy transfer is robust to protein fluctuations, a prerequisite for efficient light harvesting.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Toru Kondo
- Department of Life Science and Technology, Tokyo Institute of Technology,PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA,To whom correspondence should be addressed;
| |
Collapse
|
28
|
Squires A, Wang Q, Dahlberg P, Moerner WE. A bottom-up perspective on photodynamics and photoprotection in light-harvesting complexes using anti-Brownian trapping. J Chem Phys 2022; 156:070901. [DOI: 10.1063/5.0079042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Quan Wang
- Genomics, Princeton University, United States of America
| | | | - W. E. Moerner
- Department of Chemistry, Stanford University, United States of America
| |
Collapse
|
29
|
Wang L, Liu Q, Wackenhut F, Brecht M, Adam PM, Gierschner J, Meixner AJ. Monitoring tautomerization of single hypericin molecules in a tunable optical λ/2 microcavity. J Chem Phys 2022; 156:014203. [PMID: 34998354 DOI: 10.1063/5.0078117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Hypericin tautomerization that involves the migration of the labile protons is believed to be the primary photophysical process relevant to its light-activated antiviral activity. Despite the difficulty in isolating individual tautomers, it can be directly observed in single-molecule experiments. We show that the tautomerization of single hypericin molecules in free space is observed as an abrupt flipping of the image pattern accompanied with fluorescence intensity fluctuations, which are not correlated with lifetime changes. Moreover, the study can be extended to a λ/2 Fabry-Pérot microcavity. The modification of the local photonic environment by a microcavity is well simulated with a theoretical model that shows good agreement with the experimental data. Inside a microcavity, the excited state lifetime and fluorescence intensity of single hypericin molecules are correlated, and a distinct jump of the lifetime and fluorescence intensity reveals the temporal behavior of the tautomerization with high sensitivity and high temporal resolution. The observed changes are also consistent with time-dependent density functional theory calculations. Our approach paves the way to monitor and even control reactions for a wider range of molecules at the single molecule level.
Collapse
Affiliation(s)
- Liangxuan Wang
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Quan Liu
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Frank Wackenhut
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Marc Brecht
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| | - Pierre-Michel Adam
- Laboratoire Lumiére, Nanomatériaux et Nanotechnologies (L2n), CNRS ERL 7004, Université de Technologie de Troyes, 10004 Troyes, France
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA in Nanoscience, C/ Faraday 9, Ciudad Universitaria Cantoblanco, 28049 Madrid, Spain
| | - Alfred J Meixner
- Institute of Physical and Theoretical Chemistry, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
30
|
Kondo T, Shibata Y. Recent advances in single-molecule spectroscopy studies on light-harvesting processes in oxygenic photosynthesis. Biophys Physicobiol 2022. [PMCID: PMC9173860 DOI: 10.2142/biophysico.bppb-v19.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Photosynthetic light-harvesting complexes (LHCs) play a crucial role in concentrating the photon energy from the sun that otherwise excites a typical pigment molecule, such as chlorophyll-a, only several times a second. Densely packed pigments in the complexes ensure efficient energy transfer to the reaction center. At the same time, LHCs have the ability to switch to an energy-quenching state and thus play a photoprotective role under excessive light conditions. Photoprotection is especially important for oxygenic photosynthetic organisms because toxic reactive oxygen species can be generated through photochemistry under aerobic conditions. Because of the extreme complexity of the systems in which various types of pigment molecules strongly interact with each other and with the surrounding protein matrixes, there has been long-standing difficulty in understanding the molecular mechanisms underlying the flexible switching between the light-harvesting and quenching states. Single-molecule spectroscopy studies are suitable to reveal the conformational dynamics of LHCs reflected in the fluorescence properties that are obscured in ordinary ensemble measurements. Recent advanced single-molecule spectroscopy studies have revealed the dynamical fluctuations of LHCs in their fluorescence peak position, intensity, and lifetime. The observed dynamics seem relevant to the conformational plasticity required for the flexible activations of photoprotective energy quenching. In this review, we survey recent advances in the single-molecule spectroscopy study of the light-harvesting systems of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology
| | - Yutaka Shibata
- Department of Chemistry, Graduate School of Science, Tohoku University
| |
Collapse
|
31
|
Guo L, Zhu Q, Liu H, Zhao J, Lu W, Wang J. Untargeted LC-MS-based metabonomic analysis of the effect of photoperiod on the testes of broiler roosters. J Anim Physiol Anim Nutr (Berl) 2021; 106:1086-1096. [PMID: 34569089 DOI: 10.1111/jpn.13642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
Photoperiod is an important factor that stimulates the reproductive performance of broiler breeder roosters. However, the mechanism by which photoperiod affects the reproductive performance of broiler breeder roosters has not been fully studied. To study the effects of different photoperiods on the reproductive performance of broiler breeder roosters, 120 Arbor Acres broiler breeder roosters aged 20 weeks were randomly assigned to three groups (n = 40), and the three groups were treated with different photoperiod regimes: control (CTR; 12.5 h of light and 11.5 h of dark, 12.5 L: 11.5 D), short day (SD; 16 L: 8 D) and long day (LD; 8 L: 16 D). Serum and testes were collected after 4 weeks of feeding, and testosterone-related indices were detected. We found that testosterone synthesis in the testes of broiler roosters was boosted with prolonged of photoperiod. Subsequently, metabonomics was used to identify the differential endogenous metabolites that may affect the function of the testes in breeder roosters. We found compared with other groups, the concentrations of creatine, uridine monophosphate, phosphoribosyl pyrophosphate, dCMP, α-D-glucose and citric acid in the SD group decreased significantly (p < 0.05), and glyoxylic acid, D-ribose 5-phosphate, deoxyuridine and orotic acid in the SD group increased significantly (p < 0.05), while the CTR group and LD group showed no significant difference (p > 0.05). The concentrations of linoleic acid and α-linolenic acid in the LD group were increased significantly (p < 0.05) than those in the CTR and SD groups. Compared with the CTR group, the concentrations of histamine in the SD and LD groups were significant increased (p < 0.05). The 13 of the different metabolites could be used as candidate biomarkers for different photoperiods affecting testosterone synthesis, may be used to molecular breeding of high reproductive performance broiler roosters.
Collapse
Affiliation(s)
- Lewei Guo
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qingyu Zhu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hongyu Liu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jing Zhao
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Wenfa Lu
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Jun Wang
- Joint Laboratory of Modern Agricultural Technology International Cooperation, Ministry of Education, Jilin Agricultural University, Changchun, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
32
|
Moya R, Kondo T, Norris AC, Schlau-Cohen GS. Spectrally-tunable femtosecond single-molecule pump-probe spectroscopy. OPTICS EXPRESS 2021; 29:28246-28256. [PMID: 34614960 PMCID: PMC8687097 DOI: 10.1364/oe.432995] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 05/27/2023]
Abstract
Single-molecule spectroscopy has been extensively used to investigate heterogeneity in static and dynamic behaviors on millisecond and second timescales. More recently, single-molecule pump-probe spectroscopy emerged as a method to access heterogeneity on the femtosecond and picosecond timescales. Here, we develop a single-molecule pump-probe apparatus that is easily tunable across the visible region and demonstrate its utility on the widely-used fluorescent dye, Atto647N. A spectrally-independent, bimodal distribution of energetic relaxation time constants is found, where one peak corresponds to electronic dephasing (∼ 100 fs) and the other to intravibrational relaxation (∼ 300 fs). The bimodal nature indicates that relaxation within each individual molecule is dominated by only one of these processes. Both peaks of the distribution are narrow, suggesting little heterogeneity is present for either process. As illustrated here, spectrally-tunable single-molecule pump-probe spectroscopy will enable investigation of the heterogeneity in a wide range of biological and material systems.
Collapse
Affiliation(s)
- Raymundo Moya
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Life Science and Technology, Tokyo Institute of Technology, Japan
- PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Audrey C. Norris
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
33
|
Manna P, Davies T, Hoffmann M, Johnson MP, Schlau-Cohen GS. Membrane-dependent heterogeneity of LHCII characterized using single-molecule spectroscopy. Biophys J 2021; 120:3091-3102. [PMID: 34214527 DOI: 10.1016/j.bpj.2021.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/16/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022] Open
Abstract
In green plants, light harvesting complex of Photosystem II (LHCII) absorbs and transports excitation energy toward the photosynthetic reaction centers and serves as a site for energy-dependent nonphotochemical quenching (qE), the photoprotective dissipation of energy as heat. LHCII is thought to activate dissipation through conformational changes that change the photophysical behaviors. Understanding this balance requires a characterization of how the conformations of LHCII, and thus its photophysics, are influenced by individual factors within the membrane environment. Here, we used ensemble and single-molecule fluorescence to characterize the excited-state lifetimes and switching kinetics of LHCII embedded in nanodisc- and liposome-based model membranes of various sizes and lipid compositions. As the membrane area decreased, the quenched population and the rate of conformational dynamics both increased because of interactions with other proteins, the aqueous solution, and/or disordered lipids. Although the conformational states and dynamics were similar in both thylakoid and asolectin lipids, photodegradation increased with thylakoid lipids, likely because of their charge and pressure properties. Collectively, these findings demonstrate the ability of membrane environments to tune the conformations and photophysics of LHCII.
Collapse
Affiliation(s)
- Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Thomas Davies
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | - Madeline Hoffmann
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Matthew P Johnson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
34
|
Wang H, Yang C, Tang H, Li Y. Stochastic Collision Electrochemistry from Single G-Quadruplex/Hemin: Electrochemical Amplification and MicroRNA Sensing. Anal Chem 2021; 93:4593-4600. [PMID: 33660976 DOI: 10.1021/acs.analchem.0c05055] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Stochastic collision electrochemistry is a hot topic in single molecule/particle research, which provides an opportunity to investigate the details of the single molecule/particle reaction mechanism that is always masked in ensemble-averaged measurements. In this work, we develop an electrochemical amplification strategy to monitor the electrocatalytic behavior of single G-quadruplex/hemin (GQH) for the reaction between hydrogen peroxide and hydroquinone (HQ) through the collision upon a gold nanoelectrode. The intrinsic peroxidase activities of single GQH were investigated by stochastic collision electrochemical measurements, giving further insights into understanding biocatalytic processes. Based on the unique catalytic activity of GQH, we have also designed a hybridization chain reaction strategy to detect miRNA-15 with good selectivity and sensitivity. This work provided a meaningful strategy to investigate the electrochemical amplification and the broad application for nucleic acid sensing at the single molecule/particle level.
Collapse
Affiliation(s)
- Hao Wang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Cheng Yang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Haoran Tang
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Yongxin Li
- Anhui Key Laboratory of Chemo/Biosensing, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| |
Collapse
|
35
|
Gao F, Sá M, Teles (Cabanelas, ITD) I, Wijffels RH, Barbosa MJ. Production and monitoring of biomass and fucoxanthin with brown microalgae under outdoor conditions. Biotechnol Bioeng 2021; 118:1355-1365. [PMID: 33325031 PMCID: PMC7986402 DOI: 10.1002/bit.27657] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/25/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022]
Abstract
The effect of light on biomass and fucoxanthin (Fx) productivities was studied in two microalgae, Tisochrysis lutea and Phaeodactylum tricornutum. High and low biomass concentrations (1.1 and 0.4 g L-1 ) were tested in outdoor pilot-scale flat-panel photobioreactors at semi-continuous cultivation mode. Fluorescence spectroscopy coupled with chemometric modeling was used to develop prediction models for Fx content and for biomass concentration to be applied for both microalgae species. Prediction models showed high R2 for cell concentration (.93) and Fx content (.77). Biomass productivity was lower for high biomass concentration than low biomass concentration, for both microalgae (1.1 g L-1 : 75.66 and 98.14 mg L-1 d-1 , for T. lutea and P. tricornutum, respectively; 0.4 g L-1 : 129.9 and 158.47 mg L-1 d-1 , T. lutea and P. tricornutum). The same trend was observed in Fx productivity (1.1 g L-1 : 1.14 and 1.41 mg L-1 d-1 , T. lutea and P. tricornutum; 0.4 g L-1 : 2.09 and 1.73 mg L-1 d-1 , T. lutea and P. tricornutum). These results show that biomass and Fx productivities can be set by controlling biomass concentration under outdoor conditions and can be predicted using fluorescence spectroscopy. This monitoring tool opens new possibilities for online process control and optimization.
Collapse
Affiliation(s)
- Fengzheng Gao
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenThe Netherlands
| | - Marta Sá
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenThe Netherlands
| | - Iago Teles (Cabanelas, ITD)
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenThe Netherlands
| | - René H. Wijffels
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenThe Netherlands
- Aquaculture, Faculty Biosciences and AquacultureNord UniversityBodøNorway
| | - Maria J. Barbosa
- Agrotechnology and Food Sciences, Bioprocess Engineering, AlgaePARCWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
36
|
Zhou H, Qin C, Han S, Zhang L, Chen R, Zhang G, Liu Y, Wu Z, Li S, Xiao L, Jia S. Visualizing Quantum Coherence Based on Single-Molecule Coherent Modulation Microscopy. NANO LETTERS 2021; 21:1477-1483. [PMID: 33507086 DOI: 10.1021/acs.nanolett.0c04626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Massive magical phenomena in nature are closely related to quantum effects at the microscopic scale. However, the lack of straightforward methods to observe the quantum coherent dynamics in integrated biological systems limits the study of essential biological mechanisms. In this work, we developed a single-molecule coherent modulation (SMCM) microscopy by combining the superior features of single-molecule microscopy with ultrafast spectroscopy. By introducing the modem technology and defining the coherent visibility, we realized visualization and real-time observation of the decoherence process of a single molecule influenced by the microenvironment for the first time. In particular, we applied this technique to observe the quantum coherent properties of the entire chlorella cells and found the correlation between the coherent visibility and metabolic activities, which may have potential applications in molecular diagnostics and precision medicine.
Collapse
Affiliation(s)
- Haitao Zhou
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, Shanxi Province 030001, China
| | - Chengbing Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuangping Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lei Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Ruiyun Chen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guofeng Zhang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yaoming Liu
- Scientific Instrument Center, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhifang Wu
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, Shanxi Province 030001, China
| | - Sijin Li
- Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Molecular Imaging Precision Medical Collaborative Innovation Center, Taiyuan, Shanxi Province 030001, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
37
|
Supramolecular chlorophyll aggregates inspired from specific light-harvesting antenna “chlorosome”: Static nanostructure, dynamic construction process, and versatile application. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100385] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
38
|
Díaz Mirón G, González Lebrero MC. Fluorescence Quantum Yields in Complex Environments from QM-MM TDDFT Simulations: The Case of Indole in Different Solvents. J Phys Chem A 2020; 124:9503-9512. [PMID: 33166141 DOI: 10.1021/acs.jpca.0c06631] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence is commonly exploited to probe microscopic properties. An important example is tryptophan in protein environments, where variations in fluorescence quantum yield, and in absorption and emission maxima, are used as indicators of changes in the environment. Modeling the fluorescence quantum yield requires the determination of both radiative and nonradiative decay constants, both on the potential energy surface of the excited fluorophore. Furthermore, the inclusion of complex environments implies their accurate representation as well as extensive configurational sampling. In this work, we present and test various methodologies based on time-dependent density functional theory (TDDFT) and quantum mechanics/molecular mechanics (QM/MM) dynamics that take all of these requirements into account to provide a quantitative prediction of the effect of the environment on the fluorescence quantum yield of indole, a tryptophan fluorophore. This investigation paves the way for applications to the realistic spectroscopic characterization of the local protein environment of tryptophan from computer simulations.
Collapse
Affiliation(s)
- Gonzalo Díaz Mirón
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina.,Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Buenos Aires, C1428EHA Buenos Aires, Argentina
| | - Mariano C González Lebrero
- Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, C1053 Buenos Aires, Argentina.,Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET Buenos Aires, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
39
|
Lapillo M, Cignoni E, Cupellini L, Mennucci B. The energy transfer model of nonphotochemical quenching: Lessons from the minor CP29 antenna complex of plants. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148282. [DOI: 10.1016/j.bbabio.2020.148282] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022]
|
40
|
Kriete B, Bondarenko AS, Alessandri R, Patmanidis I, Krasnikov VV, Jansen TLC, Marrink SJ, Knoester J, Pshenichnikov MS. Molecular versus Excitonic Disorder in Individual Artificial Light-Harvesting Systems. J Am Chem Soc 2020; 142:18073-18085. [PMID: 32985187 PMCID: PMC7582617 DOI: 10.1021/jacs.0c07392] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Indexed: 11/28/2022]
Abstract
Natural light-harvesting antennae employ a dense array of chromophores to optimize energy transport via the formation of delocalized excited states (excitons), which are critically sensitive to spatio-energetic variations of the molecular structure. Identifying the origin and impact of such variations is highly desirable for understanding and predicting functional properties yet hard to achieve due to averaging of many overlapping responses from individual systems. Here, we overcome this problem by measuring the heterogeneity of synthetic analogues of natural antennae-self-assembled molecular nanotubes-by two complementary approaches: single-nanotube photoluminescence spectroscopy and ultrafast 2D correlation. We demonstrate remarkable homogeneity of the nanotube ensemble and reveal that ultrafast (∼50 fs) modulation of the exciton frequencies governs spectral broadening. Using multiscale exciton modeling, we show that the dominance of homogeneous broadening at the exciton level results from exchange narrowing of strong static disorder found for individual molecules within the nanotube. The detailed characterization of static and dynamic disorder at the exciton as well as the molecular level presented here opens new avenues in analyzing and predicting dynamic exciton properties, such as excitation energy transport.
Collapse
Affiliation(s)
- Björn Kriete
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Anna S. Bondarenko
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Riccardo Alessandri
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Ilias Patmanidis
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Victor V. Krasnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Thomas L. C. Jansen
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Groningen
Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Jasper Knoester
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Maxim S. Pshenichnikov
- Zernike
Institute for Advanced Materials, University
of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
41
|
Schultz JF, Li S, Jiang S, Jiang N. Optical scanning tunneling microscopy based chemical imaging and spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:463001. [PMID: 32702674 DOI: 10.1088/1361-648x/aba8c7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Through coupling optical processes with the scanning tunneling microscope (STM), single-molecule chemistry and physics have been investigated at the ultimate spatial and temporal limit. Electrons and photons can be used to drive interactions and reactions in chemical systems and simultaneously probe their characteristics and consequences. In this review we introduce and review methods to couple optical imaging and spectroscopy with scanning tunneling microscopy. The integration of the STM and optical spectroscopy provides new insights into individual molecular adsorbates, surface-supported molecular assemblies, and two-dimensional materials with subnanoscale resolution, enabling the fundamental study of chemistry at the spatial and temporal limit. The inelastic scattering of photons by molecules and materials, that results in unique and sensitive vibrational fingerprints, will be considered with tip-enhanced Raman spectroscopy. STM-induced luminescence examines the intrinsic luminescence of organic adsorbates and their energy transfer and charge transfer processes with their surroundings. We also provide a survey of recent efforts to probe the dynamics of optical excitation at the molecular level with scanning tunneling microscopy in the context of light-induced photophysical and photochemical transformations.
Collapse
Affiliation(s)
- Jeremy F Schultz
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, United States of America
- Kavli Energy NanoScience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Song Jiang
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - Nan Jiang
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, United States of America
| |
Collapse
|
42
|
Wang S, Scholes GD, Hsu LY. Coherent-to-Incoherent Transition of Molecular Fluorescence Controlled by Surface Plasmon Polaritons. J Phys Chem Lett 2020; 11:5948-5955. [PMID: 32619095 DOI: 10.1021/acs.jpclett.0c01680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the coherent-to-incoherent transition of molecular fluorescence of a chromophore above a silver surface (including bulk and thin-film systems) and explore the distance dependence of fluorescence rate enhancement. In the framework of macroscopic quantum electrodynamics, we generalize our previous theory to include multiple vibrational modes. The present theory can accurately describe quantum dynamics from the coherent limit to the incoherent limit. Moreover, we introduce a new concept Incoherent Index to quantify the degree of quantum coherence and demonstrate that the coherent-to-incoherent transition can be controlled by the dielectric environment and the molecule-silver distance. In addition, our theory indicates that strong molecule-photon (polariton) coupling can be achieved by virtue of small Huang-Rhys factors, large transition dipole moments, and appropriate dielectric material design. The present study provides a new direction for engineering light-matter interactions in polaritonic chemistry.
Collapse
Affiliation(s)
- Siwei Wang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| |
Collapse
|
43
|
Reddy KK, Bandal H, Satyanarayana M, Goud KY, Gobi KV, Jayaramudu T, Amalraj J, Kim H. Recent Trends in Electrochemical Sensors for Vital Biomedical Markers Using Hybrid Nanostructured Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902980. [PMID: 32670744 PMCID: PMC7341105 DOI: 10.1002/advs.201902980] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/12/2020] [Indexed: 05/09/2023]
Abstract
This work provides a succinct insight into the recent developments in electrochemical quantification of vital biomedical markers using hybrid metallic composite nanostructures. After a brief introduction to the biomarkers, five types of crucial biomarkers, which require timely and periodical monitoring, are shortlisted, namely, cancer, cardiac, inflammatory, diabetic and renal biomarkers. This review emphasizes the usage and advantages of hybrid nanostructured materials as the recognition matrices toward the detection of vital biomarkers. Different transduction methods (fluorescence, electrophoresis, chemiluminescence, electrochemiluminescence, surface plasmon resonance, surface-enhanced Raman spectroscopy) reported for the biomarkers are discussed comprehensively to present an overview of the current research works. Recent advancements in the electrochemical (amperometric, voltammetric, and impedimetric) sensor systems constructed with metal nanoparticle-derived hybrid composite nanostructures toward the selective detection of chosen vital biomarkers are specifically analyzed. It describes the challenges involved and the strategies reported for the development of selective, sensitive, and disposable electrochemical biosensors with the details of fabrication, functionalization, and applications of hybrid metallic composite nanostructures.
Collapse
Affiliation(s)
- K. Koteshwara Reddy
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Harshad Bandal
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| | - Moru Satyanarayana
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | - Kotagiri Yugender Goud
- Department of ChemistryNational Institute of Technology WarangalWarangalTelangana506004India
| | | | - Tippabattini Jayaramudu
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - John Amalraj
- Laboratory of Materials ScienceInstituto de Química de Recursos NaturalesUniversidad de TalcaP.O. Box 747Talca3460000Chile
| | - Hern Kim
- Smart Living Innovation Technology CentreDepartment of Energy Science and TechnologyMyongji UniversityYonginGyeonggi‐do17058Republic of Korea
| |
Collapse
|
44
|
Kondo T, Mutoh R, Tabe H, Kurisu G, Oh-Oka H, Fujiyoshi S, Matsushita M. Cryogenic Single-Molecule Spectroscopy of the Primary Electron Acceptor in the Photosynthetic Reaction Center. J Phys Chem Lett 2020; 11:3980-3986. [PMID: 32352789 DOI: 10.1021/acs.jpclett.0c00891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photosynthetic reaction center (RC) converts light energy into electrochemical energy. The RC of heliobacteria (hRC) is a primitive homodimeric RC containing 58 bacteriochlorophylls and 2 chlorophyll as. The chlorophyll serves as the primary electron acceptor (Chl a-A0) responsible for light harvesting and charge separation. The single-molecule spectroscopy of Chl a-A0 can be used to investigate heterogeneities of the RC photochemical function, though the low fluorescence quantum yield (0.1%) makes it difficult. Here, we show the fluorescence excitation spectroscopy of individual Chl a-A0s in single hRCs at 6 K. The fluorescence quantum yield and absorption cross section of Chl a-A0 increase 2- and 4-fold, respectively, compared to those at room temperature. The two Chl a-A0s in single hRCs are identified as two distinct peaks in the fluorescence excitation spectrum, exhibiting different excitation polarization dependences. The spectral changes caused by photobleaching indicate the energy transfer across subunits in the hRC.
Collapse
Affiliation(s)
- Toru Kondo
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Risa Mutoh
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroaki Tabe
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirozo Oh-Oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Satoru Fujiyoshi
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| | - Michio Matsushita
- Department of Physics, Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan
| |
Collapse
|
45
|
Gao Y, Nie W, Wang X, Fan F, Li C. Advanced space- and time-resolved techniques for photocatalyst studies. Chem Commun (Camb) 2020; 56:1007-1021. [DOI: 10.1039/c9cc07128h] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Nanoparticle photocatalysts present the obvious characteristic of heterogeneity in structure, energy, and function at spatial and temporal scales.
Collapse
Affiliation(s)
- Yuying Gao
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Wei Nie
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Xiuli Wang
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Fengtao Fan
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| | - Can Li
- State Key Laboratory of Catalysis
- Dalian National Laboratory for Clean Energy
- The Collaborative Innovation Centre of Chemistry for Energy Materials (iChEM)
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
| |
Collapse
|
46
|
Li M, Xi N, Wang Y, Liu L. Atomic Force Microscopy as a Powerful Multifunctional Tool for Probing the Behaviors of Single Proteins. IEEE Trans Nanobioscience 2020; 19:78-99. [DOI: 10.1109/tnb.2019.2954099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
47
|
Cupellini L, Bondanza M, Nottoli M, Mennucci B. Successes & challenges in the atomistic modeling of light-harvesting and its photoregulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1861:148049. [PMID: 31386831 DOI: 10.1016/j.bbabio.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/10/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Light-harvesting is a crucial step of photosynthesis. Its mechanisms and related energetics have been revealed by a combination of experimental investigations and theoretical modeling. The success of theoretical modeling is largely due to the application of atomistic descriptions combining quantum chemistry, classical models and molecular dynamics techniques. Besides the important achievements obtained so far, a complete and quantitative understanding of how the many different light-harvesting complexes exploit their structural specificity is still missing. Moreover, many questions remain unanswered regarding the mechanisms through which light-harvesting is regulated in response to variable light conditions. Here we show that, in both fields, a major role will be played once more by atomistic descriptions, possibly generalized to tackle the numerous time and space scales on which the regulation takes place: going from the ultrafast electronic excitation of the multichromophoric aggregate, through the subsequent conformational changes in the embedding protein, up to the interaction between proteins.
Collapse
Affiliation(s)
- Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, Pisa 56124, Italy.
| |
Collapse
|
48
|
Microsecond and millisecond dynamics in the photosynthetic protein LHCSR1 observed by single-molecule correlation spectroscopy. Proc Natl Acad Sci U S A 2019; 116:11247-11252. [PMID: 31101718 DOI: 10.1073/pnas.1821207116] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Biological systems are subjected to continuous environmental fluctuations, and therefore, flexibility in the structure and function of their protein building blocks is essential for survival. Protein dynamics are often local conformational changes, which allows multiple dynamical processes to occur simultaneously and rapidly in individual proteins. Experiments often average over these dynamics and their multiplicity, preventing identification of the molecular origin and impact on biological function. Green plants survive under high light by quenching excess energy, and Light-Harvesting Complex Stress Related 1 (LHCSR1) is the protein responsible for quenching in moss. Here, we expand an analysis of the correlation function of the fluorescence lifetime by improving the estimation of the lifetime states and by developing a multicomponent model correlation function, and we apply this analysis at the single-molecule level. Through these advances, we resolve previously hidden rapid dynamics, including multiple parallel processes. By applying this technique to LHCSR1, we identify and quantitate parallel dynamics on hundreds of microseconds and tens of milliseconds timescales, likely at two quenching sites within the protein. These sites are individually controlled in response to fluctuations in sunlight, which provides robust regulation of the light-harvesting machinery. Considering our results in combination with previous structural, spectroscopic, and computational data, we propose specific pigments that serve as the quenching sites. These findings, therefore, provide a mechanistic basis for quenching, illustrating the ability of this method to uncover protein function.
Collapse
|
49
|
Zeininger L, Weyandt E, Savagatrup S, Harvey KS, Zhang Q, Zhao Y, Swager TM. Waveguide-based chemo- and biosensors: complex emulsions for the detection of caffeine and proteins. LAB ON A CHIP 2019; 19:1327-1331. [PMID: 30896702 PMCID: PMC6482465 DOI: 10.1039/c9lc00070d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on a new modular sensing approach in which complex emulsions serve as efficient transducers in optical evanescent field-based sensing devices. Specifically, we leverage the tunable refractive index upon chemically triggered changes in droplet morphology or orientation. Variations in the optical coupling result in readily detectable changes in the light transmitted from a waveguide.
Collapse
Affiliation(s)
- Lukas Zeininger
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Jang SJ. Robust and Fragile Quantum Effects in the Transfer Kinetics of Delocalized Excitons between B850 Units of LH2 Complexes. J Phys Chem Lett 2018; 9:6576-6583. [PMID: 30383380 DOI: 10.1021/acs.jpclett.8b02641] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aggregates of light harvesting 2 (LH2) complexes form the major exciton-relaying domain in the photosynthetic unit of purple bacteria. Application of a generalized master equation to pairs of the B850 units of LH2 complexes, where excitons predominantly reside, provides quantitative information on how the inter-LH2 exciton transfer depends on the distance, relative rotational angle, and the relative energies of the two LH2s. The distance dependence demonstrates significant enhancement of the rate due to quantum delocalization of excitons, the qualitative nature of which remains robust against the disorder. The angle dependence reflects isotropic nature of exciton transfer, which remains similar for the ensemble of disorder. The variation of the rate on relative excitation energies of LH2 exhibits resonance peaks, which, however, is fragile as the disorder becomes significant. Overall, the average transfer times between two LH2s are estimated to be in the range of 4-25 ps for physically plausible inter-LH2 distances.
Collapse
Affiliation(s)
- Seogjoo J Jang
- Department of Chemistry and Biochemistry , Queens College, City University of New York , 65-30 Kissena Boulevard , Queens , New York 11367 , United States
| |
Collapse
|