1
|
Arumugam S, Kushvaha SK, Ravichandran P, Kumar J, Gorantla SMNVT, Mondal T, Roesky HW, Mondal KC. Carbene-Functionalized Bulky-Cyclopentadiene Rings. Chemistry 2025:e202404430. [PMID: 39847029 DOI: 10.1002/chem.202404430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/21/2025] [Accepted: 01/23/2025] [Indexed: 01/24/2025]
Abstract
A series of significantly bulky mono- and di-substituted cyclic alkyl-amino carbene (cAAC)- functionalized cyclopentadiene ring (Cp) compounds were synthesized. The functionalization of the Cp ring with cAAC ligands makes them significantly bulkier, while retaining their ligation properties. These compounds display interesting fluorescence properties. In these compounds, intra-molecular charge transfer is observed from electron-rich carbene to electron-deficient cyclopentadiene unit. These high yielding compounds have been characterized by X-ray single-crystal diffraction and their emission properties have been studied. Rotational conformers (via C-C bond rotation) play a pivotal role with possible different extent of intramolecular charge-transfer (ICT) from carbene to cyclopentadiene ring. Variable temperature-dependent NMR studies were performed along with NOSY, COSY and different 2D NMR techniques to estimate the energy barriers and 1,5-Hydrogen shift.
Collapse
Affiliation(s)
| | - Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | | | - Jayasree Kumar
- Department of Chemistry, Indian Institute of Technology Madras
| | | | - Totan Mondal
- University of Duisburg-Essen, Faculty of Chemistry, Theoretical Catalysis and Electrochemistry, Essen, Germany
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, Germany
| | | |
Collapse
|
2
|
Schuldt MP, Maximenko T, Rominger F, Mastalerz M. Revisiting Butafulvene Formation by Thermal Dimerization of Fluorene-Based Dialkynes - Effects of Aromatic Substituents. Chemistry 2025; 31:e202403049. [PMID: 39462208 DOI: 10.1002/chem.202403049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/23/2024] [Accepted: 10/25/2024] [Indexed: 10/29/2024]
Abstract
Butafulvenes, together with pentafulvenes and [3]radialenes, form a series of constitutional benzene isomers in which aromaticity changes significantly and can be strongly substituent dependent. Butafulvene, as a member of this series, is frequently proposed to be antiaromatic. Based on butafulvenes Hopf, Zimmerman and coworkers first time described, derivatives thereof were synthesized and the effects of substituents on both the stability of the intermediate isobenzenes and on their optoelectronic and (anti)aromatic properties are discussed.
Collapse
Affiliation(s)
- Moritz P Schuldt
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Tatjana Maximenko
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| |
Collapse
|
3
|
Akiyama T, Kusamoto T, Mashima K, Tsurugi H. Synthesis of Multisubstituted Cyclopentadiene Derivatives from 3,3-Disubstituted Cyclopropenes and Internal Alkynes Catalyzed by Low-Valent Niobium Complexes. J Am Chem Soc 2024; 146:33338-33348. [PMID: 39574321 DOI: 10.1021/jacs.4c06551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
A low-valent niobium species generated from NbCl5 and 1-methyl-3,6-bis(trimethylsilyl)-1,4-cyclohexadiene (Si-Me-CHD) in combination with PPh3 catalyzed a [2+2+1]-cycloaddition reaction of 3,3-disubstituted cyclopropenes and 2 equiv of diaryl/dialkylalkynes, leading to isomeric mixtures of multisubstituted cyclopentadienes 3-5. The initial catalyst activation process was a one-electron reduction of NbCl5 with Si-Me-CHD to provide [NbCl3(μ-Cl) (L)]2 (L = PMe2Ph (6), L = PPh3 (7)) in the presence of phosphine ligands. An NMR spectroscopic time course experiment using complex 7 as the catalyst revealed an induction period for the product formation, corresponding to an additional one-electron reduction of 7 by the substrates to give catalytically active η2-alkyne complexes of NbCl3. A combined computational and experimental study clarified the mechanism of this unprecedented [2+2+1]-cyclopentadiene synthesis; a rate-determining 1,2-insertion of cyclopropene into η2-alkyne niobium species to form cyclopropane-fused metallacyclopentene followed by ring-opening β-C elimination provides a dienylalkylidene intermediate prior to incorporation of the second alkyne through carbene/alkyne metathesis. We also demonstrated the synthetic utility of the multisubstituted cyclopentadienes as the cyclopentadienyl ligands by derivatizing to the corresponding lithium cyclopentadienide, which is applicable for the synthesis of ferrocene 10.
Collapse
Affiliation(s)
- Takuya Akiyama
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Tetsuro Kusamoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Kazushi Mashima
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hayato Tsurugi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Prapapongpan P, Vanthiya V, Kwon OS, Zakharov LN, Loesgen S, Blakemore PR. Total Synthesis of Chalaniline A: An Aminofulvene Fused Chromone from Vorinostat-Treated Fungus Chalara sp. 6661. J Org Chem 2024; 89:14601-14605. [PMID: 39310999 DOI: 10.1021/acs.joc.4c01855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Chalaniline A, an aminofulveno[1,2-b]chromone derivative previously isolated from a vorinostat-treated ascomycete Chalara sp., was prepared in nine steps from orcinol (3,5-dihydroxytoluene). In a key transformation, the tricyclic ring system of the target was generated by a pyrrolidine-catalyzed double annulation between α-(methylsulfinyl)-2,6-dihydroxy-4-methylacetophenone and the ketaldoester, methyl 2,5-dioxopentanoate. The resulting tertiary alcohol (coniochaetone H) was further converted to chalaniline A by operations including dehydration (to yield a hydroxyfulvene), Vilsmeier reaction, and enamine exchange.
Collapse
Affiliation(s)
- Pannaporn Prapapongpan
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Veerapattha Vanthiya
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Oh-Seok Kwon
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida 32080-8610, United States
| | - Lev N Zakharov
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| | - Sandra Loesgen
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, Florida 32080-8610, United States
| | - Paul R Blakemore
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331-4003, United States
| |
Collapse
|
5
|
Jenek NA, Helbig A, Boyt SM, Kaur M, Sanderson HJ, Reeksting SB, Kociok-Köhn G, Helten H, Hintermair U. Understanding and tuning the electronic structure of pentalenides. Chem Sci 2024; 15:12765-12779. [PMID: 39148775 PMCID: PMC11323301 DOI: 10.1039/d3sc04622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Here we report the first example of systematic tuning of the electronic properties of dianionic pentalenides through a straightforward synthetic protocol which allows the controlled variation of substituents in the 1,3,4,6-positions to produce nine new compounds, representing the largest pentalenide study to date. Both electron-withdrawing as well as electron-donating aromatics have been incorporated to achieve different polarisations of the bicyclic 10π aromatic core as indicated by characteristic 1H and 13C NMR shifts and evaluated by DFT calculations including nucleus-independent chemical shift (NICS) scans, anisotropy of the induced current density (ACID) calculations, and natural bond orbital (NBO) charge distribution analysis. The introduction of methyl substituents to the pentalenide core required positional control in the dihydropentalene precursor to avoid exocyclic deprotonation during the metalation. Frontier orbital analyses showed arylated pentalenides to be slightly weaker donors but much better acceptor ligands than unsubstituted pentalenide. The coordination chemistry potential of our new ligands has been exemplified by the straightforward synthesis of a polarised anti-dirhodium(i) complex.
Collapse
Affiliation(s)
- Niko A Jenek
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Andreas Helbig
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Stuart M Boyt
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mandeep Kaur
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Hugh J Sanderson
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Shaun B Reeksting
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Gabriele Kociok-Köhn
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Holger Helten
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
6
|
Bhowmick T, Orthaber A. Main Group Pentafulvenes: Challenges and Opportunities in Heavy Main Group Isolobal Substitution of Pentafulvene. Chemphyschem 2024; 25:e202300940. [PMID: 38709950 DOI: 10.1002/cphc.202300940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Heterofulvenes based on isolobal substitution of carbon fragments by (heavier) main group motifs provide a rich source of structurally interesting building blocks with electronic situations that can vastly differ from all-carbon congeners. Group 13, heavier 14 & 16 fulvenes are rare and pose significant stability challenges, while group 15 derivatives, particularly phosphorus and arsenic, have led to many derivatives with intriguing opto-electronic properties.
Collapse
Affiliation(s)
- Toma Bhowmick
- Department of Chemistry Ångström laboratories, Uppsala University, Box 523, 75120, Uppsala, Sweden
| | - Andreas Orthaber
- Department of Chemistry Ångström laboratories, Uppsala University, Box 523, 75120, Uppsala, Sweden
| |
Collapse
|
7
|
Li K, Del Rosal I, Zhao Y, Maron L, Zhu C. Planar Tetranuclear Uranium Hydride Cluster Supported by ansa-Bis(cyclopentadienyl) Ligands. Angew Chem Int Ed Engl 2024; 63:e202405494. [PMID: 38661015 DOI: 10.1002/anie.202405494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Polynuclear metal hydride clusters play important roles in various catalytic processes, with most of the reported polynuclear metal hydride clusters adopting a polyhedral three-dimensional structure. Herein, we report the first example of a planar tetranuclear uranium hydride cluster [(CpCMe2CMe2Cp)U]4(μ2-H)4(μ3-H)4 (U4H8). It was synthesized by reacting an ansa-bis(cyclopentadienyl) ligand-supported uranium chloride precursor [(CpCMe2CMe2Cp)U]3(μ2-Cl)3(μ3-Cl)2 with NaHBEt3. The presence of hydrides in U4H8 was confirmed by NMR spectroscopy and its reactivity with phenol and carbon tetrachloride. DFT calculations also facilitated the determination of the hydrides' positions in U4H8, featuring four bridging μ2-H ligands and four face-capping μ3-H ligands, with the four U centers arranged in a rhombic geometry. The U4H8 represents not only the first example of planar polynuclear actinide metal hydride cluster but also the uranium hydride cluster with the highest nuclearity reported to date.
Collapse
Affiliation(s)
- Kai Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Iker Del Rosal
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, Toulouse, 31077, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
8
|
Zurakowski JA, Durfy CS, Stocek NB, Fanchini G, Drover MW. Oxidatively-induced C(sp 3)-C(sp 3) bond formation at a tucked-in iron(iii) complex. Chem Sci 2024; 15:10359-10365. [PMID: 38994411 PMCID: PMC11234878 DOI: 10.1039/d4sc03292f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024] Open
Abstract
Carbon-carbon (C-C) bond formation is a cornerstone of synthetic chemistry, relying on routes such as transition-metal mediated cross-coupling for the introduction of new carbon-based functionality. For {[M] n+-C} (M = metal) structural units, studies that offer well-defined relationships between metal oxidation state, hydrocarbon strain, and {[M] n+-C} bond thermochemistry are thus informative, providing a means to reliably access new product classes. Here, we show that one-electron oxidation of the iron tucked-in complex [(η6-C5Me4[double bond, length as m-dash]CH2)Fe(dnppe)] (dnppe = 1,2-bis(di-n-propylphosphino)ethane) results in C(sp3)-C(sp3) bond formation giving unique {Fe2} dimers. Freeze-quenched CW X-band EPR spectroscopy allowed for spectroscopic identification of the reactive [(η6-C5Me4[double bond, length as m-dash]CH2)Fe(dnppe)]+ intermediate. Density functional theory (DFT) calculations reveal a primarily Fe-centered radical and a weak {[Fe]-C} bond (BDE[Fe]-C = 24.5 kcal mol-1, c.f. BDEC-C(ethane) = 90 kcal mol-1). For comparison, a structurally analogous Fe(iii) methyl complex was prepared, [Cp*Fe(dnppe)(CH3)]+ (Cp* = C5Me5 -), where C(sp3)-C(sp3) coupling was not observed, consistent with a larger calculated BDE[Fe]-C value of 47.8 kcal mol-1. These data are analogized to the simple hydrocarbons ethane and cyclopropane, where a strain-induced BDEC-C decrease of 33 kcal mol-1 is witnessed on cyclization.
Collapse
Affiliation(s)
- Joseph A Zurakowski
- Department of Chemistry, Western University 1151 Richmond Street London ON N8K 3G6 Canada
- Department of Chemistry and Biochemistry, University of Windsor 401 Sunset Avenue Windsor ON N9B 3P4 Canada
| | - Connor S Durfy
- Department of Chemistry, Western University 1151 Richmond Street London ON N8K 3G6 Canada
| | - Noah B Stocek
- Department of Physics and Astronomy, Western University 1151 Richmond Street London ON N6A 3K7 Canada
| | - Giovanni Fanchini
- Department of Chemistry, Western University 1151 Richmond Street London ON N8K 3G6 Canada
- Department of Physics and Astronomy, Western University 1151 Richmond Street London ON N6A 3K7 Canada
| | - Marcus W Drover
- Department of Chemistry, Western University 1151 Richmond Street London ON N8K 3G6 Canada
| |
Collapse
|
9
|
Qu Y, Xi Z, Sun Z, Yang L, Liu R, Dong B, Wu B, Yang XJ. Activation of cyclopentadiene derivatives by an α-diimine-ligated Mg-Mg-bonded compound. Dalton Trans 2024; 53:10065-10069. [PMID: 38847200 DOI: 10.1039/d4dt01038h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Heteroleptic, bimetallic (Mg/K) cyclopentadienyl complexes (2-4) were synthesized by the reaction of the Mg-Mg-bonded compound [K(THF)3]2[LMg-MgL] (1, L = [(2,6-iPr2C6H3)NC(CH3)]22-) with cyclopentadiene derivatives, 6,6-dimethylfulvene, 6-(dimethylamino)fulvene, or 1,2,3,4-tetramethyl-1,3-cyclopentadiene. The reactions proceed through diverse pathways, including hydrogen abstraction, C-C coupling, and dehydrogenation, depending on the property of the polyene substrate, thus providing an access to alkali/alkaline earth metal cyclopentadienyl complexes.
Collapse
Affiliation(s)
- Yao Qu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Zhixian Xi
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Zhenzhou Sun
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Li Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Rui Liu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Ben Dong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Biao Wu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Xiao-Juan Yang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
10
|
Shephard ACG, Delon A, Chevreux S, Martinez A, Guo Z, Deacon GB, Lemercier G, McClenaghan N, Jonusauskas G, Junk PC, Jaroschik F. Divalent ansa-Octaphenyllanthanocenes: Synthesis, Structures, and Eu II Luminescence. Inorg Chem 2024; 63:9395-9405. [PMID: 37310150 DOI: 10.1021/acs.inorgchem.3c01062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reductive dimerization of fulvenes using low-valent metal precursors is a straightforward one-step approach to access ethylene-bridged metallocenes. This process has so far mainly been employed with fulvenes carrying one or two substituents in the exocyclic position. In this work, a new synthesis of the unsubstituted exocyclic 1,2,3,4-tetraphenylfulvene (1), its full structural characterization by NMR spectroscopy and single-crystal X-ray diffraction, as well as some photophysical properties and its first use in reductive dimerization are described. This fulvene reacted with different lanthanoid metals in thf to provide the divalent ansa-octaphenylmetallocenes [Ln(C5Ph4CH2)2(thf)n] (Ln = Sm, n = 2 (2); Ln = Eu, n = 2 (3); and Ln = Yb, n = 1 (4)). These complexes were characterized by X-ray diffraction, laser desorption/ionization time of flight mass spectrometry, and, in the case of Sm and Yb, multinuclear NMR spectroscopy, showing the influence of the ansa-bridge on solution and solid-state structures compared to previously reported unbridged metallocenes. Furthermore, the luminescence properties of the Eu ansa complex 3 were studied in solution and the solid state, revealing significant differences with the known octa- and deca-phenyleuropocenes, [Eu(C5Ph4H)2(dme)] and [Eu(C5Ph5)2].
Collapse
Affiliation(s)
- Angus C G Shephard
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
| | - Aymeric Delon
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
- Université de Reims Champagne-Ardenne, ICMR, UMR 7312, Reims 56187, France
| | - Sylviane Chevreux
- Université de Reims Champagne-Ardenne, ICMR, UMR 7312, Reims 56187, France
| | - Agathe Martinez
- Université de Reims Champagne-Ardenne, ICMR, UMR 7312, Reims 56187, France
| | - Zhifang Guo
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
| | - Glen B Deacon
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Gilles Lemercier
- Université de Reims Champagne-Ardenne, ICMR, UMR 7312, Reims 56187, France
| | - Nathan McClenaghan
- Université Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255, Talence F-33400, France
| | | | - Peter C Junk
- College of Science and Engineering, James Cook University, Townsville 4811, Australia
| | - Florian Jaroschik
- ICGM, Université Montpellier, CNRS, ENSCM, Montpellier 34090, France
| |
Collapse
|
11
|
Kadiyam RK, Sangolkar AA, Faizan M, Pawar R. Bispericyclic Ambimodal Dimerization of Pentafulvene: The Origin of Asynchronicity and Kinetic Selectivity of the Endo Transition State. J Org Chem 2024; 89:6813-6825. [PMID: 38661667 DOI: 10.1021/acs.joc.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The propensity of fulvenes to undergo dimerization has long been known, although the in-depth mechanism and electronic behavior during dimerization are still elusive. Herein, we made an attempt to gain insights into the reactivity of pentafulvene for Diels-Alder (DA) and [6 + 4]-cycloadditions via conventional and ambimodal routes. The result emphasizes that pentafulvene dimerization preferentially proceeds through a unique bifurcation mechanism where two DA pathways merge together to produce two degenerate [4 + 2]-cycloadducts from a single TS. Despite the [6 + 4]-cycloadduct being thermodynamically preferred, [4 + 2]-cycloaddition reactions are kinetically driven. Singlet biradicaloid is involved in through-space 6e- delocalization as a secondary orbital interaction that originates asynchronicity and stabilizes the bispericyclic transition state (TS). The transformation of various actively participating intrinsic bonding orbitals (IBOs) unambiguously forecasts the formation of multiple products from a single TS and rationalizes the mechanism of ambimodal reactions that are rather difficult to probe with other analyses. The changes in active IBOs clearly distinguish the conventional reactions from bifurcation reactions and can be employed to characterize and confirm the ambimodal mechanism. This report gains a crucial theoretical insight into the mechanism of bifurcation, the origin of asynchronicity, and electronic behavior in ambimodal TS, which will certainly be of enormous value for future studies.
Collapse
Affiliation(s)
- Rama Krishna Kadiyam
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Akanksha Ashok Sangolkar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Mohmmad Faizan
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| | - Ravinder Pawar
- Laboratory of Advanced Computation and Theory for Materials and Chemistry, Department of Chemistry, National Institute of Technology Warangal (NITW), Warangal, Telangana 506004, India
| |
Collapse
|
12
|
Choi H, Yoo S, Song H, Lee E. IZCp and PZCp: Redox Non-innocent Cyclopentadienyl Ligands as Electron Reservoirs for Sandwich Complexes. Inorg Chem 2024; 63:6427-6434. [PMID: 38534011 DOI: 10.1021/acs.inorgchem.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A long-sustained effort of systematic steric and electronic modification of cyclopentadienyl (Cp) ligands has enabled them to find wide-ranging, valuable applications. Herein, we present two novel Cp ligands: imidazolium- and pyrrolinium-substituted zwitterionic Cps (IZCp and PZCp), whose key utility is redox non-innocence─the ability to participate cooperatively with the metal center in redox reactions. Through the simple metalation of ZCps, the Cr(0) and Mo(0) half-sandwich complexes (IZCp)Cr(CO)3, (PZCp)Cr(CO)3, (IZCp)Mo(CO)3, and (PZCp)Mo(CO)3, respectively, as well as the Ru(II) sandwich complexes [(IZCp)RuCp]PF6 and [(PZCp)RuCp]PF6 were prepared. The sandwich complexes were fully characterized and showed by cyclic voltammetry reversible one-electron reduction at E1/2 potentials ranging from -1.7 to -2.7 V vs Fc/Fc+. These values are unusually low and have not been observed with other Cp ligands due to the instability of the reduced complexes. Density functional theory (DFT) calculations for the reduced sandwich derivatives with IZCp and PZCp showed their spin densities to be highly delocalized over their ZCp ligand moieties (70-90%). Electron paramagnetic resonance (EPR) analysis of the isolated K[(PZCp)Mo(CO)3] and (PZCp)RuCp also indicated a high degree of ligand-localized radical character. Thus, the IZCp and PZCp ligands act as electron reservoirs to sustain these sandwich complexes in highly reduced states. At the same time, the CO stretching frequencies of K[(PZCp)Mo(CO)3]: νCO 1871, 1748, and 1699 cm-1, rank the [PZCp]- ligand as the strongest electron-donating Cp ligand among the reported CpMo(CO)3 derivatives, whose νCO > 1746 cm-1. In addition, these redox non-innocent Cps were obtained in high yields and found to be practically air- and moisture-stable, unlike typical Cps.
Collapse
Affiliation(s)
- Hyeonjeong Choi
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Seunghyuk Yoo
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Hayoung Song
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| |
Collapse
|
13
|
Singh S, Saini R, Joshi A, Singh N, Singh RP. Desymmetric homologating annulation to access chiral pentafulvenes and their application in bioimaging. Nat Commun 2024; 15:2101. [PMID: 38453892 PMCID: PMC10920648 DOI: 10.1038/s41467-024-45346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 01/16/2024] [Indexed: 03/09/2024] Open
Abstract
The architectural design of polycyclic/multisubstituted pentafulvenes has demonstrated great potential for the development of electrochromic materials and biologically active motifs. Unfortunately, the enantioselective construction of such distinctive cores with all carbon quaternary chiral centers has remained untouched to date. Herein, we disclose an enantioselective homologating annulation of cyclopent-4-ene-dione with 3-cyano-4-methylcoumarins through L-tert-leucine derived thiourea catalysis, affording a wide range of enantioenriched polycyclic multisubstituted embedded aminopentafulvenes with excellent stereocontrol (up to 99:1 er) and chemical yields up to 87%. A detailed photophysical and cytotoxicity analysis of racemic and chiral homologated adducts unveils the exceptional behavior of chiral adducts over their racemic analogs, highlighting the importance of stereoselectivity of the developed scaffolds. A cellular uptake experiment in a mammalian fibroblast cell line confirmed the potential of developed polycyclic aminopentafulvene cores as a highly promising labeling dye that can be utilized for bioimaging without any adverse effects.
Collapse
Affiliation(s)
- Sanjay Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ravi Saini
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India
| | - Akshay Joshi
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ravi P Singh
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
14
|
Zhao M, Xu S, He C, Zhou Y. Synthesis, Structures and Photophysical Properties of Asymmetric Fulvene-[b]-fused BODIPYs. Chemistry 2024; 30:e202303930. [PMID: 38117253 DOI: 10.1002/chem.202303930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Herein, we developed a one-pot procedure to synthesize novel fulvene-[b]-fused BODIPYs from α-(2-alkynylphenyl)-pyrrole and acylpyrrole, using 5-exo cyclization as the key transformation. Compared to benzene-[b]-fused BODIPYs, although they have similar chemical compositions, their structures and properties significantly differ from each other, which can be attributed to the less aromaticity of the fulvene linker than benzene. Notably, fulvene-[b]-fused BODIPY 1 b exhibits helical-twisted core skeleton, intensified red-shifted absorption, and peak fluorescence. In addition, the pathway of this one-pot reaction and the mechanism of POCl3 mediated 5-exo cyclization have been proposed by a combining experimental and computational study.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| | - Shaoyu Xu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| | - Chun He
- Apeloa Pharmaceutical Co., Ltd Dongyang, Zhejiang, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Mishra G, Sasmal M, Chakraborty A, Thirupathi B. Synthesis of Highly Functionalized Spirocycles and Pentafulvene-Containing Dyes Involving 2-(2'-ketoalkyl)-1,3-indandiones. Chemistry 2023; 29:e202301976. [PMID: 37817469 DOI: 10.1002/chem.202301976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/28/2023] [Accepted: 10/11/2023] [Indexed: 10/12/2023]
Abstract
Synthesis of highly functionalized spiro[4.4]nonane and spiro[4.5]decane motifs by the reaction of dimethylacetylenedicarboxylate (DMAD) with 2-(2'-ketoalkyl)-1,3-indandiones and 2-(3'-ketoalkyl)-1,3-indandiones, respectively, has been developed by utilizing a catalytic amount of DABCO. The tertiary hydroxy-containing spiro[4.4]nonane products were converted into fully conjugated pentafulvene π-systems in an acidic medium through dehydration and unprecedented C-C bond rearrangement.
Collapse
Affiliation(s)
- Gitanjali Mishra
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Mukesh Sasmal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Arundhuti Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| | - Barla Thirupathi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Berhampur, Transit Campus, Govt. ITI Building, NH 59, Engineering School Road, Ganjam-District, 760 010, Berhampur, Odisha, India
| |
Collapse
|
16
|
Zhu L, Kinjo R. Crystalline 2π Aromatic Azadiboriridinylium: A BN Analogue of Cyclopropenylium Cation. Angew Chem Int Ed Engl 2023; 62:e202312949. [PMID: 37828652 DOI: 10.1002/anie.202312949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
N-Substitution of a thermally unstable diboratriazole 1 with a trimethylsilyl group affords a remarkably stable diboratriazole derivative 2. Ring contraction of 2 with an N-heterocyclic carbene accompanied by the release of N2 as well as 1,4-hydrogen shift affords a carbene-stabilized azadiboriridine 3. Abstraction of the H-B3mem hydride in 3 with methyl trifluoromethanesulfonate leads to the isolation of a hitherto unknown azadiboriridinylium 4, the first BN analogue of cyclopropenylium cation. X-ray diffraction analysis and computational studies confirmed the delocalization of π electrons over the B2 N three-membered ring, indicating the 2π aromatic feature. Compound 4 undergoes ring expansion reactions with azobenzene and pyridazine to furnish triazadiborolidinylium species 5 and 6, the latter of which possesses a cationic B2 N3 ring with a pronounced 6π aromatic property. Moreover, the reaction of 4 with a diazo compound produces a cationic B2 N3 C pentafulvene derivative 7.
Collapse
Affiliation(s)
- Lizhao Zhu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore
| | - Rei Kinjo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Nanyang Link 21, Singapore, 637371, Singapore
| |
Collapse
|
17
|
Goyal K, Kukier GA, Chen X, Turlik A, Houk KN, Sarpong R. Rearrangement of a carboxy-substituted spiro[4.4]nonatriene to annulated fulvenes through a Pd(ii)-mediated 1,5-vinyl shift. Chem Sci 2023; 14:11809-11817. [PMID: 37920349 PMCID: PMC10619539 DOI: 10.1039/d3sc03222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023] Open
Abstract
A novel synthesis of aryl-substituted, enantioenriched fulvenes from an oxidative Heck cascade and rearrangement of a carboxy-substituted spiro[4.4]nonatriene is disclosed. Mechanistic investigations with density functional theory (DFT) calculations and empirical results support the net transformation occurring through a novel Pd(ii)-mediated 1,5-vinyl shift from a vinyl-palladium intermediate that terminates with protodepalladation. This spiro-to-fused bicycle conversion tolerates a range of electron-rich and deficient arylboronic acids to give a range of mono- and diaryl substituted annulated fulvenes in moderate to good yields and enantiomeric ratios. Overall, this work connects two classes of molecules with a rich history in physical organic chemistry.
Collapse
Affiliation(s)
- Karan Goyal
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Garrett A Kukier
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Xiangyang Chen
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Aneta Turlik
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles CA 90095 USA
| | - Richmond Sarpong
- Department of Chemistry, University of California Berkeley CA 94720 USA
| |
Collapse
|
18
|
Wieczorkiewicz PA, Zborowski KK, Krygowski TM, Szatylowicz H. Substituent Effect versus Aromaticity─A Curious Case of Fulvene Derivatives. J Org Chem 2023; 88:14775-14780. [PMID: 37773323 PMCID: PMC10594647 DOI: 10.1021/acs.joc.3c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 10/01/2023]
Abstract
A computational study on amino- and nitro-substituted penta- and heptafulvenes reveals the interplay between the aromaticity and the substituent effect (SE). Ring substitution alone has little influence on the aromaticity, but in combination with an exo substituent of opposite properties, it substantially enhances the cyclic π-electron delocalization. Despite the SE being stronger for β substitution, only γ substitution leads to higher aromaticity. An explanation is provided by the electron density of delocalized bonds (EDDB) method, which proves to be a valuable tool in analyzing both cyclic delocalization and the SE.
Collapse
Affiliation(s)
- Pawel A. Wieczorkiewicz
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Krzysztof K. Zborowski
- Faculty
of Chemistry, Jagiellonian University in
Kraków, Gronostajowa
2, Kraków 30-387, Poland
| | - Tadeusz M. Krygowski
- Department
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Halina Szatylowicz
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| |
Collapse
|
19
|
Chen J, Huang L, Wu L, Zhang Y, Zhang R, Li Y, Zhao Y, Wang L, Feng D, Kira M, Lin Z, Li Z. Isolable Tetragold(0) Clusters with Polarity-Tunable exo-Au-Au Bond via Intramolecular σ-Aromatization. Angew Chem Int Ed Engl 2023; 62:e202311230. [PMID: 37596803 DOI: 10.1002/anie.202311230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/20/2023]
Abstract
Intramolecular π-aromatization is a trait of many organic compounds that enhances the stability of their structures and polarizes related C-C π bonds. In contrast, rare study is focused on this phenomenon in metal clusters. Many existing homometallic clusters exhibit aromaticity, often characterized by nonpolar metal-metal bonds and a high degree of symmetry. However, synthesizing low-symmetric homometallic clusters with high-polar metal-metal bonds is challenging due to their limited thermodynamic stability. Herein, we report a facile strategy for the synthesis of [Au(μ2 -ER2 )]3 -AuPMe3 (E=Ge, Sn; R2 =1,1,4,4-tetrakis(trimethylsilyl)butane-1,4-diyl) clusters and reveal a novel stabilization mode, intramolecular σ-aromatization. Our electronic structure analyses show that these low-symmetric clusters possess a ten-electron σ-aromatic system, which is achieved via intramolecular σ-aromatization. Moreover, the strength of σ-aromaticity gives rise to a polarity-tunable exo-Au-Au bond.
Collapse
Affiliation(s)
- Jiaxin Chen
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Lu Huang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lifang Wu
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Rong Zhang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yinhuan Li
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Yunqing Zhao
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Liliang Wang
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Dewei Feng
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Mitsuo Kira
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhifang Li
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
20
|
Zurakowski JA, Drover MW. Cooperative bond activations by a tucked-in iron complex. Chem Commun (Camb) 2023; 59:11349-11352. [PMID: 37656426 DOI: 10.1039/d3cc03325b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Herein, we report the first example of a 'tucked-in' iron diphosphine complex, formed through deprotonation of a Cp*-(CH̲3) (Cp* = C5Me5-) group by n-butyllithium. The reactivity of this complex was demonstrated by activation of organic and metal-containing substates, including CO2, benzaldehyde, Br-AuI-PPh3, B(C6F5)3, and HBCy2 (Cy = cyclohexyl).
Collapse
Affiliation(s)
- Joseph A Zurakowski
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, ON, N9B 3P4, Canada.
| | - Marcus W Drover
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, ON, N9B 3P4, Canada.
| |
Collapse
|
21
|
Lindner MM, Alachraf MW, Mitschke B, Schulze P, Leutzsch M, List B. Toward a Formyl-to-Phenyl Conversion: An Unexpected Photochemical Fulvene Rearrangement. Angew Chem Int Ed Engl 2023; 62:e202303119. [PMID: 37329283 DOI: 10.1002/anie.202303119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/19/2023]
Abstract
Toward a conversion of aldehydes into arenes, we designed a sequence involving the initial reaction of an aldehyde to give a fulvene, followed by photochemical and platinum-catalyzed rearrangements into a Dewar benzene derivative, which finally isomerizes into the targeted arene. While computational studies support the plausibility of this route, we found that fulvene irradiation resulted in an unexpected isomerization into a spiro[2.4]heptadiene. This unusual photorearrangement has been investigated mechanistically and provides access to a variety of spiro[2.4]heptadienes with different substituents.
Collapse
Affiliation(s)
- Monika M Lindner
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - M Wasim Alachraf
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin Mitschke
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Philipp Schulze
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Markus Leutzsch
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
Kelleghan AV, Bulger AS, Witkowski DC, Garg NK. Strain-promoted reactions of 1,2,3-cyclohexatriene and its derivatives. Nature 2023; 618:748-754. [PMID: 37075803 PMCID: PMC10460091 DOI: 10.1038/s41586-023-06075-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Since 18251, compounds with the molecular formula C6H6-most notably benzene-have been the subject of rigorous scientific investigation2-7. Of these compounds, 1,2,3-cyclohexatriene has been largely overlooked. This strained isomer is substantially (approximately 100 kcal mol-1) higher in energy compared with benzene and, similar to its relatives benzyne and 1,2-cyclohexadiene, should undergo strain-promoted reactions. However, few experimental studies of 1,2,3-cyclohexatriene are known8-12. Here we demonstrate that 1,2,3-cyclohexatriene and its derivatives participate in a host of reaction modes, including diverse cycloadditions, nucleophilic additions and σ-bond insertions. Experimental and computational studies of an unsymmetrical derivative of 1,2,3-cyclohexatriene demonstrate the potential for highly selective reactions of strained trienes despite their high reactivity and short lifetimes. Finally, the integration of 1,2,3-cyclohexatrienes into multistep syntheses demonstrates their use in rapidly assembling topologically and stereochemically complex molecules. Collectively, these efforts should enable further investigation of the strained C6H6 isomer 1,2,3-cyclohexatriene and its derivatives, as well as their application in the synthesis of important compounds.
Collapse
Affiliation(s)
- Andrew V Kelleghan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ana S Bulger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dominick C Witkowski
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
VanderWeide A, Prokopchuk DE. Cyclopentadienyl ring activation in organometallic chemistry and catalysis. Nat Rev Chem 2023:10.1038/s41570-023-00501-1. [PMID: 37258685 DOI: 10.1038/s41570-023-00501-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
The cyclopentadienyl (Cp) ligand is a cornerstone of modern organometallic chemistry. Since the discovery of ferrocene, the Cp ligand and its various derivatives have become foundational motifs in catalysis, medicine and materials science. Although largely considered an ancillary ligand for altering the stereoelectronic properties of transition metal centres, there is mounting evidence that the core Cp ring structure also serves as a reservoir for reactive protons (H+), hydrides (H-) or radical hydrogen (H•) atoms. This Review chronicles the field of Cp ring activation, highlighting the pivotal role that Cp ligands can have in electrocatalytic H2 production, N2 reduction, hydride transfer reactions and proton-coupled electron transfer.
Collapse
|
24
|
Li LJ, Wang X, Xu H, Dai HX. Construction of polysubstituted pentafulvenes via palladium-catalyzed deacetylation of enones. Chem Commun (Camb) 2023; 59:3269-3272. [PMID: 36820796 DOI: 10.1039/d2cc06644k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, we report an efficient synthetic method for polysubstituted pentafulvenes via palladium-catalyzed deacetylative [2+2+1] annulation of enones with alkynes. Aryl-, alkenyl-, and alkyl-substituted α,β-enones were suitable substrates, affording the pentafulvene products in moderate to good yields. This protocol shows excellent compatibility with sensitive halides, free hydroxyl groups, and heterocycles. One-pot gram-scale synthesis and further applications in the late-stage modification of natural products demonstrate the synthetic utility of this method.
Collapse
Affiliation(s)
- Ling-Jun Li
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Xing Wang
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui Xu
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui-Xiong Dai
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China. .,University of Chinese Academy of Sciences, Beijing 100049, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute of Advanced Study, Hangzhou 310024, China
| |
Collapse
|
25
|
Ohki H, Kinoshita H, Miura K. Palladium-Catalyzed Synthesis of 3,6-Diaryl-1-silylfulvenes: A Promising Entry for Preparing 1,3,6-Triarylfulvenes Bearing Three Different Aryl Groups. Org Lett 2023. [PMID: 36809002 DOI: 10.1021/acs.orglett.3c00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
We developed a synthetic methodology for preparing (E)-1,3,6-triarylfulvenes bearing three different aryl groups. The reaction of 1,4-diaryl-1-bromo-1,3-butadienes with silylacetylenes in the presence of a palladium catalyst produced (E)-3,6-diaryl-1-silyl-fulvenes in good to excellent yields. The (isopropoxy)silylated fulvenes thus obtained were converted to (E)-1,3,6-triarylfulvenes bearing different types of aryl substituents. (E)-3,6-Diaryl-1-silyl-fulvenes are promising templates for the synthesis of diverse (E)-1,3,6-triarylfulvenes.
Collapse
Affiliation(s)
- Hayato Ohki
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hidenori Kinoshita
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Katsukiyo Miura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
26
|
Prakash M, Samanta S. Base-promoted cyclization of ortho-hydroxyacetophenones with in situ generated cyclopropenes: diastereoselective access to spirobenzo[ b]oxepines and related precursors. Org Biomol Chem 2023; 21:2001-2014. [PMID: 36789745 DOI: 10.1039/d3ob00077j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
An unprecedented [5 + 2] spirocyclization route to obtain a vital class of functionalized spirobenzo[b]oxepine-cyclopropanes in good to high yields with excellent diastereoselectivities is reported. This domino reaction proceeds through a regioselective oxa-Michael addition of ortho-hydroxyacetophenones as 1,5-binucleophiles to in situ produced highly reactive cyclopropenes from 2-aroyl-1-chlorocyclopropanecarboxylates triggered by Cs2CO3 and the subsequent intramolecular aldol reaction under heating conditions, enabling the formation of new C-O and C-C bonds for benzo[b]oxepine ring synthesis. Moreover, at ambient temperature, the above C-O/C-C bond-forming event takes place preferentially via a [4 + 2] annulation path over a spirocyclization route, leading to substituted fused-cyclopropanes with good diastereoselectivities. Gratifyingly, further alterations of the obtained spirobenzo[b]oxepines and tetrahydrocyclopropa[b]chromenes afford fascinating classes of 4H-chromen-4-ones and cyclopenta[c]chromenes, respectively, under metal-free conditions.
Collapse
Affiliation(s)
- Meher Prakash
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| | - Sampak Samanta
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| |
Collapse
|
27
|
Kudo E, Oba Y, Yamamoto K, Murahashi T. Di- and trinuclear sandwich complexes of a cross-conjugated fulvene. Dalton Trans 2023; 52:1568-1573. [PMID: 36651809 DOI: 10.1039/d2dt03521a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We report di- and trinuclear palladium sandwich complexes of cross-π-conjugated fulvenes. Structural and theoretical analysis revealed that a fulvene sandwich framework holds a metal-metal bonded moiety, where the dinuclear and trinuclear bonds feature strong donation and back-donation, respectively. The trinuclear fulvene sandwich complex undergoes a unique reversible extrusion of a Pd atom from inside to outside the sandwich framework.
Collapse
Affiliation(s)
- Eiji Kudo
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Yuki Oba
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Koji Yamamoto
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
| | - Tetsuro Murahashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan.
| |
Collapse
|
28
|
Eilers M, Schwitalla K, Dirksen T, Schmidtmann M, Fischer M, Beckhaus R. The Parent Allene H 2C═C═CH 2 as an Allyl Ligand Precursor in Reactions with Bis(pentafulvene)titanium Complexes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Marcel Eilers
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Kevin Schwitalla
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Tobias Dirksen
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Malte Fischer
- Institut für Anorganische Chemie und Kristallographie, Universität Bremen, Leobener Straße 7, D-28359 Bremen, Germany
| | - Rüdiger Beckhaus
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| |
Collapse
|
29
|
de Graaff S, Elma A, Schmidtmann M, Beckhaus R. (Carbazol-9-ido-κ N)di-chlorido-(η 5:η 1-2,3,4,5-tetra-methyl-penta-fulvene)tantalum(V). IUCRDATA 2022; 7:x221201. [PMID: 36628193 PMCID: PMC9815124 DOI: 10.1107/s2414314622012019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
The reaction of (η5:η1-2,3,4,5-tetra-methyl-penta-fulvene)tantalum(V) dicarbazolide chloride (1) with etheric HCl results in the formation of the title compound (2), [Ta(C10H14)(C12H8N)Cl2]. The TaV atom has a distorted tetra-hedral coordination environment in a three-legged piano-stool fashion. The conformation of the penta-fulvene exocyclic C atom to the three other ligands is staggered and not eclipsed, as found in the crystal structure of 1. Inter-molecular inter-actions include π-π stacking, H⋯π inter-actions and weak C-H⋯Cl hydrogen bonds.
Collapse
Affiliation(s)
- Simon de Graaff
- Carl von Ossietzky Universität Oldenburg, Fakultät V - Mathematik und Naturwissenschaften, Institut für Chemie, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany
| | - Aylişa Elma
- Carl von Ossietzky Universität Oldenburg, Fakultät V - Mathematik und Naturwissenschaften, Institut für Chemie, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany
| | - Marc Schmidtmann
- Carl von Ossietzky Universität Oldenburg, Fakultät V - Mathematik und Naturwissenschaften, Institut für Chemie, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany
| | - Rüdiger Beckhaus
- Carl von Ossietzky Universität Oldenburg, Fakultät V - Mathematik und Naturwissenschaften, Institut für Chemie, Carl-von-Ossietzky-Strasse 9-11, D-26111 Oldenburg, Germany
| |
Collapse
|
30
|
Jenek NA, Balschun M, Boyt SM, Hintermair U. Connect Four: Tetraarylated Dihydropentalenes and Triarylated Monocyclic Pentafulvenes from Cyclopentadienes and Enones. J Org Chem 2022; 87:13790-13802. [PMID: 36196644 DOI: 10.1021/acs.joc.2c01507] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In search of novel pentalenide ligands for use in organometallic chemistry and homogeneous catalysis, we report the scope of a straightforward base-promoted Michael annulation of cyclopentadienes with α,β-unsaturated ketones that allows the introduction of symmetrical as well as unsymmetrical aryl and alkyl substitution patterns including electron-donating as well as electron-withdrawing substituents. More than 16 examples of various isomers of 1,3,4,6-tetraarylated dihydropentalenes have been synthesized in isolated yields of up to 78%, representing a substantial expansion of the range of dihydropentalene scaffolds known to date. Double bond isomerization between the two pentacyclic rings in 1,2-dihydropentalenes with electronically different substituents occurred depending on the polarization of the molecule. The melting points of the air-stable dihydropentalenes decrease, and their solubilities in organic solvents improve with increasing substitution and decreasing symmetry of the molecule. A competitive pseudo-retro-aldol pathway produces 1,3,6-triarylated monocyclic pentafulvenes as side products in yields of 9-68%, which can be cleanly isolated (8 new examples) and used for other synthetic purposes, including separate cyclization to other dihydropentalenes.
Collapse
Affiliation(s)
- Niko A Jenek
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Marek Balschun
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Stuart M Boyt
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.,Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
31
|
Andrés JL, Suárez E, Martín M, Sola E. Mechanistic Versatility at Ir(PSiP) Pincer Catalysts: Triflate Proton Shuttling from 2-Butyne to Diene and [3]Dendralene Motifs. Organometallics 2022; 41:2622-2630. [PMID: 36185395 PMCID: PMC9518705 DOI: 10.1021/acs.organomet.2c00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Indexed: 11/28/2022]
Abstract
![]()
The five-coordinate
hydrido complex [IrH(OTf)(PSiP)]
(1) catalytically transforms 2-butyne into a mixture
of its isomer
1,3-butadiene, and [3]dendralene and linear hexatriene dimerization
products: (E)-4-methyl-3-methylene-1,4-hexadiene
and (3Z)-3,4-dimethyl-1,3,5-hexatriene, respectively.
Under the conditions of the catalytic reaction, benzene, and 363 K,
the hexatriene further undergoes thermal electrocyclization into 2,3-dimethyl-1,3-cyclohexadiene.
The reactions between 1 and the alkyne substrate allow
isolation or nuclear magnetic resonance (NMR) observation of catalyst
resting states and possible reaction intermediates, including complexes
with the former PSiP pincer ligands disassembled into PSi and PC chelates,
and species coordinating allyl or carbene fragments en route to products.
The density functional theory (DFT) calculations guided by these experimental
observations disclose competing mechanisms for C–H bond elaboration
that move H atoms either classically, as hydrides, or as protons transported
by the triflate. This latter role of triflate, previously recognized
only for more basic anions such as carboxylates, is discussed to result
from combining the unfavorable charge separation in the nonpolar solvent
and the low electronic demand from the metal to the anion at coordination
positions trans to silicon. Triflate deprotonation of methyl groups
is key to release highly coordinating diene products from stable allyl
intermediates, thus enabling catalytic cycling.
Collapse
Affiliation(s)
- José L. Andrés
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, Facultad de Ciencias, E50009 Zaragoza, Spain
| | - Elizabeth Suárez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, Facultad de Ciencias, E50009 Zaragoza, Spain
| | - Marta Martín
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, Facultad de Ciencias, E50009 Zaragoza, Spain
| | - Eduardo Sola
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC − Universidad de Zaragoza, Facultad de Ciencias, E50009 Zaragoza, Spain
| |
Collapse
|
32
|
Palladium-catalysed construction of butafulvenes. Nat Chem 2022; 14:1185-1192. [PMID: 35982234 DOI: 10.1038/s41557-022-01017-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Butafulvene is a constitutional isomer of benzene, comprising a cyclobutene skeleton bearing two exocyclic conjugated methylene units. As a result of the intrinsic high strain energy and anti-aromaticity, the preparation of butafulvene compounds has been a fundamental issue for the development of butafulvene chemistry. Here an efficient palladium-catalysed coupling protocol involving propargylic compounds has been developed, providing a solid and versatile strategy for the rapid assembly of symmetric butafulvene derivatives. Based on mechanistic studies, two complementary mechanisms, both involving palladium catalysis, have been confirmed. With the mechanism unveiled, the synthesis of non-symmetric butafulvenes has also been achieved. Advantages of this strategy include tolerance to a wide range of propargylic molecules, mild reaction conditions, simple catalytic systems and easy scalability. The synthetic potential of the products as platform molecules for cyclobutene derivatives has also been demonstrated.
Collapse
|
33
|
Prakash M, Rani P, Samanta S. A substrate-dependent reaction of 1-aryl-2-alkyl-1,2-diketones with 2-aroyl-1-chlorocyclopropanecarboxylates: selective access to 2',5'-dicyclopropoxy-1,1':4',1''-teraryls and pentafulvenes. Org Biomol Chem 2022; 20:6445-6458. [PMID: 35894220 DOI: 10.1039/d2ob00971d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An interesting substrate-controlled one-pot approach to highly substituted 2',5'-dicyclopropoxy-1,1':4',1''-teraryls and 6-hydroxypentafulvenes involving various 1,2-diketones and 2-aroyl-1-chlorocyclopropanecarboxylates as 3C Michael acceptors triggered by Cs2CO3 has been developed. We noticed that 1,2-diketones play a decisive role in this reaction to determine the product's selectivity. For example, aryl rings having electron-poor functionalities at the para and meta-positions of 1,2-diketones led to 2,5-diarylhydroquinones selectively via a cyclodimerization/double oxa-Michael process with highly strained cyclopropenes. However, when 1-naphthyl/electron-donating aryl/ortho-aryl-substituted 1,2-diketones were chosen, the Michael-initiated ring expansion reaction (C-C and CC bonds) took place under the same conditions that gave the corresponding pentafulvenes predominately. Moreover, this reaction has several imperative features such as good to high diastereoselectivities, wide substrate scope, good functional group tolerance, transition metal-free process, etc.
Collapse
Affiliation(s)
- Meher Prakash
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| | - Poonam Rani
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| | - Sampak Samanta
- Indian Institute of Technology Indore, Discipline of Chemistry, 453552, Indore, India.
| |
Collapse
|
34
|
Pinkas J, Gyepes R, Polášek M, Mach K, Horáček M. Reactions of permethyltitanocene tucked-in derivatives with carbon dioxide. Dalton Trans 2022; 51:10198-10215. [PMID: 35748224 DOI: 10.1039/d2dt01344d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Both single tucked-in permethyltitanocene 1 and double tucked-in permethyltitanocene 2 react with excess CO2 by insertion into their Ti-CH2 bonds. The former one precipitates instantly a yellow carboxylate-tethered oligomer [3]n which is insoluble in aprotic solvents and in a vacuum it sublimes as a monomer without decomposition. Computations for n ≤ 4 optimised the structure of the monomer [3] and showed that open chain oligomers bound by dative O → Ti bonds were not sterically hindered. The latter bond dissociates when [3]n is oxidized by chlorination with CDCl3 or CD2Cl2 to give Ti(IV) chloride 4 or upon metathesis of [3]n with Me3SiCl yielding Ti(III) chloride 5. Oxidative addition of MeCN affords a C-C coupled dinuclear titanocene diimine 6. Compound [3]n also reacts with 1 to give the tethered carbodiolate 8 or with [Cp*2TiH] (where Cp* = η5-C5Me5) to give the half-tethered carbodiolate 10. The non-tethered carbodiolate 12 was obtained from [Cp*2TiH] and CO2 yielding titanocene formate by reaction of the latter with another equivalent of [Cp*2TiH]. All these carbodiolates contain Ti(III) metal atoms forming electronic triplet states of axial or orthorhombic symmetry. In contrast to the rapidly reacting 1 compound 2 reacts with excess CO2 slowly in m-xylene at 100 °C using only one of its two Ti-CH2 moieties. The structure of the obtained carbodiolate 13 indicates that the primary product analogous to 3 reacts with 2 more rapidly than with CO2.
Collapse
Affiliation(s)
- Jiří Pinkas
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Róbert Gyepes
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic. .,Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 40 Prague 2, Czech Republic.
| | - Miroslav Polášek
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Karel Mach
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| | - Michal Horáček
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 182 23 Prague 8, Czech Republic.
| |
Collapse
|
35
|
Elwahy AHM, Shaaban MR, Abdelhamid IA. Recent Advances in the Functionalization of Azulene Through Rh‐, Ir‐, Ru‐, Au‐, Fe‐, Ni‐, and Cu‐catalyzed Reactions. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Mohamed R. Shaaban
- Chemistry Department, Faculty of Applied Sciences, Makkah Almukkarramah, Umm AL‐Qura University Saudi Arabia
| | | |
Collapse
|
36
|
Hore S, Singh A, De S, Singh N, Gandon V, Singh RP. Polyarylquinone Synthesis by Relayed Dehydrogenative [2 + 2 + 2] Cycloaddition. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Soumyadip Hore
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Abhijeet Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Shreemoyee De
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Center for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d’Orsay, CNRS UMR 8182, Université Paris Saclay, Orsay Cedex 91405, France
- Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, Route de Saclay, Palaiseau Cedex 91128, France
| | - Ravi P. Singh
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
37
|
New 1,3-disubstituted ferrocene. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Malouf DM, Richardson AD, L’Heureux SJ, McDonough EA, Henry AM, Sheng JY, Medhurst EA, Canales AE, Fleischer CJ, Cecil TB, Thurman SE, McMullen CC, Costanzo PJ, Bercovici DA. Ylidenenorbornadiene Carboxylates: Experimental Kinetic Analysis of a Nucleophile-Induced Fragmentation Reaction. Org Lett 2022; 24:2793-2797. [DOI: 10.1021/acs.orglett.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David M. Malouf
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Abigail D. Richardson
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Scott J. L’Heureux
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Elizabeth A. McDonough
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Ava M. Henry
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Jerry Y. Sheng
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Erica A. Medhurst
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Angel E. Canales
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Cameron J. Fleischer
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Ty B. Cecil
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Spencer E. Thurman
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Cameron C. McMullen
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Philip J. Costanzo
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| | - Daniel A. Bercovici
- Department of Chemistry and Biochemistry, California Polytechnic State University, 1 Grand Avenue, San Luis Obispo, California 93407, United States
| |
Collapse
|
39
|
Liu S, Wang J, Ma Y, Cao X, Zhang WD, Li A. Construction of alkyl-substituted 7-norbornenones through Diels−Alder cycloaddition of electron-deficient olefins and a cyclopentadienone derivative generated in situ. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Abstract
Carborynes (1,2-dehydro-o-carborane and 1,3-dehydro-o-carborane), three-dimensional analogues of benzyne, can be generated in situ from the precursors 1-X-2-Li-1,2-C2B10H10 (X = Br, I, OTs, OTf), or 1-Me3Si-2-[IPh(OAc)]-1,2-C2B10H10 or [1-Li-3-N2-1,2-C2B10H10][BF4]. They are a class of very useful synthons for the synthesis of a large variety of functionalized carborane derivatives for potential application in medicine, materials science and organometallic/coordination chemistry. The experimental data demonstrate that there is a correspondence between the reactions of carborynes and those of benzyne with alkenes, dienes, alkynes, aromatics or heteroaromatics in a pericyclic reaction fashion. On the other hand, carborynes have unique properties of their own owing to their steric/electronic features. They undergo regioselective sp2/sp3 C-H bond and N-Li bond insertion reactions, which has not been observed for benzyne. This review provides a comprehensive overview of recent advances in this interesting research field with considerable attention devoted to the reaction modes and the mechanisms involved.
Collapse
Affiliation(s)
- Zaozao Qiu
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China
| | - Zuowei Xie
- Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Rd, Shanghai 200032, China.,Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The Chinese University of Hong Kong, Shatin, N. T, Hong Kong, China.
| |
Collapse
|
41
|
Fischer M, Roy MMD, Hüller S, Schmidtmann M, Beckhaus R. Reaction of a bis(pentafulvene)titanium complex with an N-heterocyclic olefin: C-H-activation leads to resonance between a titanium vinyl and titanium alkylidene complex. Dalton Trans 2022; 51:10690-10696. [PMID: 35166757 DOI: 10.1039/d2dt00014h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-heterocyclic olefin (NHO) ImMe4CH2 (2) (ImMe4CH2 = (MeCNMe)2CCH2) was employed for the synthesis of the titanium complex 3 derived from an NHO ligand precursor. By reacting 2 with the bis(π-η5:σ-η1-pentafulvene)titanium complex 1a, the terminal ylidic methylene unit of 2 is deprotonated by the quaternary exocyclic carbon atom of one pentafulvene ligand of 1a yielding the titanium complex 3 which bears an anionic NHO ligand (ImMe4CH-). 3 was characterized by NMR spectroscopy, single crystal X-ray diffraction and quantum chemical calculations. The latter highlight that 3 is best described as a titanium vinyl complex with significant contribution of the titanium alkylidene resonance structure.
Collapse
Affiliation(s)
- Malte Fischer
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK. .,Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany.
| | - Matthew M D Roy
- Department of Chemistry, Catalysis Research Center and Institute for Silicon Chemistry, Technische Universität München, Germany
| | - Sascha Hüller
- Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany.
| | - Marc Schmidtmann
- Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany.
| | - Rüdiger Beckhaus
- Institut für Chemie, Fakultät für Mathematik und Naturwissenschaften, Carl von Ossietzky Universität Oldenburg, Postfach 2503, D-26111 Oldenburg, Germany.
| |
Collapse
|
42
|
Asim W, Waheeb AS, Awad MA, Kadhum AM, Ali A, Mallah SH, Iqbal MA, Kadhim MM. Recent advances in the synthesis of zirconium complexes and their catalytic applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Wang Y, Wang H, Li H, Hu Y, Fan Q, King RB, Schaefer HF. Substituent, Solvent, and Dispersion Effects on the Zwitterionic Character and Dimerization Thermochemistry of the Group 6 Fulvene Metal Tricarbonyl Complexes. J Phys Chem A 2022; 126:365-372. [PMID: 35023736 DOI: 10.1021/acs.jpca.1c07276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dimerizations of fulvene metal tricarbonyl complexes of the type (C5H4CRR')M(CO)3 (R, R' = MeO, Me, H; M = Cr, Mo, W) to form a metal-metal bond and a new carbon-carbon bond, thereby giving binuclear cyclopentadienyl metal carbonyl derivatives, are predicted to be thermochemically favored but to have significant activation energies ranging from ΔE = 19 to 42 kcal/mol. However, the introduction of dimethylamino but not methoxy substituents onto the exocyclic carbon atom changes the situation drastically so that the monomers [C5H4CH(NMe2)]M(CO)3 and [C5H4C(NMe2)2]M(CO)3 become strongly thermochemically favored, lying ΔE = 43 kcal/mol (M = W) to 63 kcal/mol (M = Cr) below their corresponding dimers. In such dimethylamino-substituted (fulvene)M(CO)3 derivatives, the M-C distance to the exocyclic fulvene carbon is lengthened beyond the bonding distance to give a zwitterionic structure with a pentahapto fulvene ligand. Such M-C distances in (fulvene)M(CO)3 complexes, which have preferred zwitterionic structures, increase with increasing solvent polarity (i.e., dielectric constant) until a saturation point is reached.
Collapse
Affiliation(s)
- Yanshu Wang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, China 610039
| | - Huijie Wang
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, China 610039
| | - Huidong Li
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, China 610039.,Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Yucheng Hu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, China 610039
| | - Qunchao Fan
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu, China 610039
| | - R Bruce King
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Henry F Schaefer
- Center for Computational Quantum Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
44
|
Tanaka K, Asada Y, Hoshino Y. A new cycloaddition profile for ortho-quinone methides: photoredox-catalyzed [6+4] cycloadditions for synthesis of benzo[ b]cyclopenta[ e]oxepines. Chem Commun (Camb) 2022; 58:2476-2479. [PMID: 35014637 DOI: 10.1039/d1cc06332d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Visible-light-induced [6+4] cycloaddition reactions of ortho-quinone methides have been developed. The reaction of ortho-quinone methides with pentafulvenes in the presence of a thioxanthylium photoredox catalyst afforded benzo[b]cyclopenta[e]oxepines. The present reaction represents a promising tool for the synthesis of natural products and bioactive compounds that contain a benzoxepine structure.
Collapse
Affiliation(s)
- Kenta Tanaka
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Yosuke Asada
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| | - Yujiro Hoshino
- Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan.
| |
Collapse
|
45
|
Tanaka K. Synthesis and Application of Highly Substituted Cyclopentadienes. TOP ORGANOMETAL CHEM 2022. [DOI: 10.1007/3418_2021_75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Elwahy AHM, Abdelhamid IA, Shaaban MR. Recent Advances in the Functionalization of Azulene Through Pd‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202103357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Mohamed R. Shaaban
- Chemistry Department Faculty of Science Cairo University Giza Egypt
- Chemistry Department Faculty of Applied Science Umm Al-Qura University Makkah Almukkarramah Saudi Arabia
| |
Collapse
|
47
|
Huang R, Yu B, Li R, Huang H. Palladium-Catalyzed Aminomethylative Oppolzer-Type Cyclization of Enynes: Access to Aminomethylated Benzofulvenes. Org Lett 2021; 23:9510-9515. [PMID: 34846898 DOI: 10.1021/acs.orglett.1c03720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel palladium-catalyzed Oppolzer-type cyclization reaction aided by the aminomethyl cyclopalladated complex has been developed, which provides rapid access to functionalized benzofulvenes with excellent stereoselectivity. The corresponding products can undergo Diels-Alder reaction with maleimides, providing a series of complex polycyclic compounds with excellent regio- and stereoselectivities.
Collapse
Affiliation(s)
- Renbin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Renren Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
48
|
Tatemura R, Yasutake M, Kinoshita H, Miura K. Electrochemical Properties and Electrochromism of 6-Aryl-1,3-bis(trimethylsilyl)fulvenes and Their Derivatives. J Org Chem 2021; 87:172-183. [PMID: 34913709 DOI: 10.1021/acs.joc.1c02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we have disclosed intriguing electrochromic properties of 6-aryl-1,3-bissilylfulvenes. The electrolyte solutions (0.1 M n-Bu4NClO4 in acetonitrile or dichloromethane) of some 6-aryl-1,3-bissilylfulvenes showed notable color changes when superimposed negative voltages were applied to the solutions. Investigation of the substituents at position 6 revealed that the solution of 1,3-bissilyl-6-anthracenylfulvene exhibited chromic changes under both applied superimposed negative and positive voltages and exhibited a three-color electrochromism. Electrochromic properties of 1,6-diarylfulvenes derived from 6-aryl-1,3-bissilylfulvenes were also investigated. The aryl group at position 1 also contributed to the electrochromism of fulvenes.
Collapse
Affiliation(s)
- Ryota Tatemura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Mikio Yasutake
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Hidenori Kinoshita
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| | - Katsukiyo Miura
- Department of Applied Chemistry, Graduate School of Science and Engineering, Saitama University, 255 Shimo-ohkubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
49
|
Mikhailov IE, Dushenko GA, Minkin VI. Pentacarboxycyclopentadienes in Organic Synthesis. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021110014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
de Graaff S, Chandi A, Schmidtmann M, Beckhaus R. Cooperative Reactions of Pentafulvene Niobium Complexes: Formation of Alkylidene, Imido, Hydrazido, and Niobaaziridine Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simon de Graaff
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Amrit Chandi
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Marc Schmidtmann
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| | - Rüdiger Beckhaus
- Institut für Chemie, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Federal Republic of Germany
| |
Collapse
|