1
|
Subramaniam JD, Hattori Y, Asanoma F, Nishino T, Yasuhara K, Martin CJ, Rapenne G. Synthesis of Ce(IV) Heteroleptic Double-Decker Complex with a New Helical Naphthalocyanine as a Potential Gearing Subunit. Chemistry 2024; 30:e202402470. [PMID: 39073203 DOI: 10.1002/chem.202402470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
This paper describes the synthesis of a cerium(IV)-based molecular gear composed of a thioether functionalized phthalocyanine anchoring ligand, and a helical naphthalocyanine rotating cogwheel functionalized with four carbazoles. The naphthalocyanine ligand 9 was obtained after eleven steps (overall yield of 0.2 %) as a mixture of three geometrical isomers, two of which are chiral and exhibit high levels of steric hindrance, as shown by DFT calculations. Their attributions have been made using 1H-NMR based on their different symmetry groups. The ratio of isomers was also determined and the prochiral C4h naphthalocyanine shown to be the major compound (55 %). Its heteroleptic complexation with cerium (IV) and the anchoring phthalocyanine ligand 10 gave the targeted molecular gear in a 16 % yield.
Collapse
Affiliation(s)
- Jeevithra Dewi Subramaniam
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Yohei Hattori
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Fumio Asanoma
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Toshio Nishino
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Colin J Martin
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| |
Collapse
|
2
|
Sakata Y, Kobayashi S, Yamamoto M, Doken K, Kamezawa M, Yamaki S, Akine S. Non-threaded and rotaxane-type threaded wheel-axle assemblies consisting of dinickel(II) metallomacrocycle and dibenzylammonium axle. Commun Chem 2024; 7:166. [PMID: 39080496 PMCID: PMC11289445 DOI: 10.1038/s42004-024-01246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Rotaxanes are typically prepared using covalent bonds to trap a wheel component onto an axle molecule, and rotaxane-type wheel-axle assembly using only noncovalent interactions has been far less explored. Here we show that a dinickel(II) metallomacrocycle forms two different types of wheel-axle assemblies with a dibenzylammonium axle molecule based only on noncovalent interactions. The non-threaded assembly was obtained by introduction of Ni2+ into the macrocycle before the complexation with the axle molecule (metal-first method). The non-threaded assembly was in rapid equilibrium with each of the components in solution. The threaded assembly was obtained by introduction of Ni2+ after the formation of a pseudorotaxane from the non-metalated wheel and the axle molecule (axle-first method). The threaded assembly was not in equilibrium with the dissociated species even though it was maintained only by noncovalent interactions. Thus, formation of one of the non-threaded and threaded wheel-axle assemblies over the other is governed by the assembly pathway.
Collapse
Affiliation(s)
- Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Seiya Kobayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Misato Yamamoto
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Katsuya Doken
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Mayu Kamezawa
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Sachiko Yamaki
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
3
|
Paul I, Valiyev I, Ghosh A, Schmittel M. Dynamic negative allosteric effect: regulation of catalysis via multicomponent rotor speed. Chem Commun (Camb) 2024; 60:7085-7088. [PMID: 38896476 DOI: 10.1039/d4cc02144d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Nanorotor R1 (420 kHz) was assembled from five components utilizing three orthogonal interactions. Post-modification at the distal position generated the advanced six component rotor R2 (45 kHz). The decrease in R2 speed leads to the inhibition of a three-component reaction by reducing catalyst release.
Collapse
Affiliation(s)
- Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Amit Ghosh
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Technology, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| |
Collapse
|
4
|
Maity P, Pradhan H, Das A, Dalapati M, Samanta D. Improving Fatigue Resistance and Autonomous Switching of pH Responsive Hydrazones by Pulses of a Chemical Fuel. Chemistry 2024; 30:e202400328. [PMID: 38646974 DOI: 10.1002/chem.202400328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/26/2024] [Accepted: 04/21/2024] [Indexed: 04/25/2024]
Abstract
The chemically triggered reversible switching of pH-responsive hydrazones involves rotary motion-induced configurational changes, serving as a prototype for constructing an array of molecular machines. Typically, the configurational isomerization of such switches into two distinct forms (E/Z) occurs through the alteration of the pH the medium, achieved by successive additions of acid and base stimuli. However, this process results in intermittent operation due to the concomitant accumulation of salt after each cycle, limiting switching performance to only a few cycles (5-6). In this context, we introduce a novel strategy for the autonomous E/Z isomerization of hydrazones in acetonitrile using pulses of trichloroacetic acid as a chemical fuel. The use of this transient acid enabled reversible switching of hydrazones even after 50 cycles without causing significant fatigue. To test the broad viability of the fuel, a series of ortho/para-substituted hydrazones were synthesized and their switching performance was investigated. The analysis of kinetic data showed a strong dependency of switching operations including the lifetime of transient state, on the electronic properties of substituents. Finally, a distinct color change from yellow to orange due to reversible switching of the para-methoxy substituted hydrazone was employed for the creation of rewritable messages on commercially available paper.
Collapse
Affiliation(s)
- Pankaj Maity
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Harekrushna Pradhan
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Asesh Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Monotosh Dalapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| | - Dipak Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, Bhubaneswar, Jatni, Khurda, Odisha, 752050, India
| |
Collapse
|
5
|
Chen R, Hammoud A, Aoun P, Martínez-Aguirre MA, Vanthuyne N, Maruchenko R, Brocorens P, Bouteiller L, Raynal M. Switchable supramolecular helices for asymmetric stereodivergent catalysis. Nat Commun 2024; 15:4116. [PMID: 38750046 PMCID: PMC11096402 DOI: 10.1038/s41467-024-48412-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/29/2024] [Indexed: 05/18/2024] Open
Abstract
Despite recent developments on the design of dynamic catalysts, none of them have been exploited for the in-situ control of multiple stereogenic centers in a single molecular scaffold. We report herein that it is possible to obtain in majority any amongst the four possible stereoisomers of an amino alcohol by means of a switchable asymmetric catalyst built on supramolecular helices. Hydrogen-bonded assemblies between a benzene-1,3,5-tricarboxamide (BTA) achiral phosphine ligand coordinated to copper and a chiral BTA comonomer are engaged in a copper-hydride catalyzed hydrosilylation and hydroamination cascade process. The nature of the product stereoisomer is related to the handedness of the helices and can thus be directed in a predictable way by changing the nature of the major enantiomer of the BTA comonomer present in the assemblies. The strategy allows all stereoisomers to be obtained one-pot with similar selectivities by conducting the cascade reaction in a concomitant manner, i.e. without inverting the handedness of the helices, or sequentially, i.e. by switching the handedness of the supramolecular helices between the hydrosilylation and hydroamination steps. Supramolecular helical catalysts appear as a unique and versatile platform to control the configuration of molecules or polymers embedding several stereogenic centers.
Collapse
Affiliation(s)
- Ran Chen
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Ahmad Hammoud
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Paméla Aoun
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Mayte A Martínez-Aguirre
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Nicolas Vanthuyne
- Aix Marseille Université, Centrale Marseille, CNRS, iSm2, UMR 7313, 13397, Marseille, Cedex 20, France
| | - Régina Maruchenko
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Patrick Brocorens
- Service de Chimie des Matériaux Nouveaux, Institut de Recherche sur les Matériaux, Université de Mons, 20B-7000, 20 B-7000, Mons, Belgium
| | - Laurent Bouteiller
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France
| | - Matthieu Raynal
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
6
|
Shah SJ, Singh A, Goswami D, Ishida M, Rath SP. Reversible open-closed conformational switching of nano-size metalloporphyrin dimers triggered by light and temperature. Dalton Trans 2024; 53:6758-6765. [PMID: 38533553 DOI: 10.1039/d4dt00223g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The current work demonstrates the reversible control of substantial molecular motion in 'nano-sized' molecules, where two structural isomers can 'open' and 'close' their cavities in response to light or heat. The isomers differ widely in their photophysical properties, including colour, polarity, two-photon absorption and π-conjugation, and can easily be separated through column chromatography and thus have wide applicability.
Collapse
Affiliation(s)
- Syed Jehanger Shah
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Ajitesh Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Debabrata Goswami
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Masatoshi Ishida
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Sankar Prasad Rath
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| |
Collapse
|
7
|
Dohmen C, Paululat T, Ihmels H. Reversible Restrain and Release of the Dynamic Valence Isomerization in a Shape-shifting Bullvalene by Complex Formation. Chemistry 2024; 30:e202304311. [PMID: 38275100 DOI: 10.1002/chem.202304311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/27/2024]
Abstract
In search for structural features that enable the control of the valence isomerization of the fluxional bullvalene, a bullvalene-bis(harmane) conjugate is identified that acts as chelating ligand in complexes with metal ions. Spectrometric titrations show that this ligand forms 1 : 1 complexes with Ag+, Cu+, Cu2+, and Zn2+. Most importantly, detailed NMR-spectroscopic analysis at different temperatures reveals that the complexation with Ag+ strongly affects the dynamic isomerization of the bullvalene unit of the ligand such that only one predominant valence isomer is formed, even at 5 °C. Detailed 1H-NMR-spectroscopic studies disclose an increased barrier (~11 kJ mol-1) of the Cope rearrangement. Furthermore, the addition of hexacyclene displaces the Ag+ from the complex, so that the valence isomerization is accelerated and an equilibrium with two predominant isomers is formed. In turn, repeated addition of Ag+ regains the complex with the restrained isomerization of the bullvalene unit. This method to control the valence isomerism by straightforward chemical stimuli may be used to simplify structural analysis at elevated temperatures, i. e. a feature not available so far with bullvalenes, and it may be employed as functional element in dynamic supramolecular assemblies.
Collapse
Affiliation(s)
- Christoph Dohmen
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Thomas Paululat
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| | - Heiko Ihmels
- Department of Chemistry-Biology, and Center of Micro-and Nanochemistry and (Bio)Technology (Cμ), University of Siegen, Adolf-Reichwein-Str. 2, 57068, Siegen, Germany
| |
Collapse
|
8
|
Nag R, Sivaiah A, Rao CP. Supramolecular Logic Gates Based on the Conjugates of Calixarenes and Carbohydrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4579-4591. [PMID: 38386016 DOI: 10.1021/acs.langmuir.3c03707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
In the era of application-oriented research, laboratory to real life translation is highly regarded and in great demand. This could mean that molecular science developed for sensing and detecting a variety of chemical species awaits conversion to devices. In that, the molecular logic gates are the most promising ones where the information storage and/or data processing can be easily carried out in terms of molecular inputs and electrical response outputs. This would facilitate the simultaneous execution of a diverse array of molecular sensing functions. The recent progress in molecular logic gates based on supramolecular optical receptors, in particular, fluorescent ones, such as calixarene derivatives and carbohydrate conjugates will have a transformative impact on molecular devices and will encourage this science to yield technology. Therefore, this review provides a critical evaluation of recent publications on molecular logic gates based on the derivatives of calixarenes and glyco-conjugates, including several from our own research group, with the view that the corresponding applications are a beneficiary in laboratory-to-device translation. In addition, this review is also expected to assist young researchers in planning their research focus in the broad area of supramolecular-based logic gates targeting some specific applications.
Collapse
Affiliation(s)
- Rahul Nag
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405 Orsay, France
| | - Areti Sivaiah
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat - Surat-Dumas Road, Surat 395007, India
| | - Chebrolu Pulla Rao
- Department of Chemistry, School of Engineering and Applied Sciences, SRM University AP, Neerukonda (P.O.), Guntur, Andhra Pradesh 522240, India
| |
Collapse
|
9
|
Msellem P, Dekthiarenko M, Hadj Seyd N, Vives G. Switchable molecular tweezers: design and applications. Beilstein J Org Chem 2024; 20:504-539. [PMID: 38440175 PMCID: PMC10910529 DOI: 10.3762/bjoc.20.45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/12/2024] [Indexed: 03/06/2024] Open
Abstract
Switchable molecular tweezers are a unique class of molecular switches that, like their macroscopic analogs, exhibit mechanical motion between an open and closed conformation in response to stimuli. Such systems constitute an essential component of artificial molecular machines. This review will present selected examples of switchable molecular tweezers and their potential applications. The first part will be devoted to chemically responsive tweezers, including stimuli such as pH, metal coordination, and anion binding. Then, redox-active and photochemical tweezers will be presented.
Collapse
Affiliation(s)
- Pablo Msellem
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005, Paris, France
| | - Maksym Dekthiarenko
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005, Paris, France
| | - Nihal Hadj Seyd
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005, Paris, France
| | - Guillaume Vives
- Sorbonne Université, UMR CNRS 8232, Institut Parisien de Chimie Moléculaire, 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
10
|
Valiyev I, Paul I, Li YF, Elramadi E, Schmittel M. Interconversion between multicomponent slider-on-deck and palladium capsule: regulation of catalysis and encapsulation. Dalton Trans 2024; 53:3454-3458. [PMID: 38305461 DOI: 10.1039/d3dt04300b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
When the slider-on-deck [Cu3(1)(2)]3+ and guest G were treated with palladium(II) ions, the biped 2 was released from [Cu3(1)(2)]3+ generating the nanocage [Pd2(2)4(G)]4+ with guest G being encapsulated (NetState-II). This transformation that was reversed by the addition of DMAP enabled modulation of both the overall fluorescence and the activity of copper(I) catalyzing an aza Hopf cyclization.
Collapse
Affiliation(s)
- Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Yi-Fan Li
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Emad Elramadi
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, School of Science and Engineering, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany.
| |
Collapse
|
11
|
Stockerl WJ, Reißenweber L, Gerwien A, Bach NN, Thumser S, Mayer P, Gschwind RM, Dube H. Azotriptycenes: Photoswitchable Molecular Brakes. Chemistry 2024; 30:e202302267. [PMID: 37779321 DOI: 10.1002/chem.202302267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
The control of molecular motions is a central topic of molecular machine research. Molecular brakes are fundamental building blocks towards such goal as they allow deliberately decelerating specific motions after an outside stimulus is applied. Here we present azotriptycenes as structural framework for light-controlled molecular brakes. The intrinsic kinetics and their changes upon azotriptycene isomerization are scrutinized comprehensively by a mixed theoretical and variable temperature NMR approach. With azotriptycenes C-N bond rotation rates can be decelerated or accelerated reversibly by up to five orders of magnitude. Rate change effects are highly localized and are strongest for the C-N bond connecting a triptycene rotor fragment to the central diazo group. The detailed mechanistic insights provide a solid basis for further conscious design and applications in the future.
Collapse
Affiliation(s)
- Willibald J Stockerl
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Lilli Reißenweber
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Aaron Gerwien
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Nicolai N Bach
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Stefan Thumser
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Peter Mayer
- Department of Chemistry and Center for Integrated Protein Science CIPSM, Ludwig-Maximilians Universität München, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Ruth M Gschwind
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Henry Dube
- Department of Chemistry and Pharmacy, Friedrich-Alexander Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
12
|
Abe T, Sanada N, Takeuchi K, Okazawa A, Hiraoka S. Assembly of Six Types of Heteroleptic Pd 2L 4 Cages under Kinetic Control. J Am Chem Soc 2023; 145:28061-28074. [PMID: 38096127 PMCID: PMC10755705 DOI: 10.1021/jacs.3c09359] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023]
Abstract
Heteroleptic assemblies composed of several kinds of building blocks have been seen in nature. It is still unclear how natural systems design and create such complicated assemblies selectively. Past efforts on multicomponent self-assembly of artificial metal-organic cages have mainly focused on finding a suitable combination of building blocks to lead to a single multicomponent self-assembly as the thermodynamically most stable product. Here, we present another approach to selectively produce multicomponent Pd(II)-based self-assemblies under kinetic control based on the selective ligand exchanges of weak Pd-L coordination bonds retaining the original orientation of the metal centers in a kinetically stabilized cyclic structure and on local reversibility given in certain areas of the energy landscape in the presence of the assist molecule that facilitates error correction of coordination bonds. The kinetic approach enabled us to build all six types of Pd2L4 cages and heteroleptic tetranuclear cages composed of three kinds of ditopic ligands. Although the cage complexes thus obtained are metastable, they are stable for 1 month or more at room temperature.
Collapse
Affiliation(s)
- Tsukasa Abe
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Naoki Sanada
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Keisuke Takeuchi
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | - Atsushi Okazawa
- Department
of Electrical Engineering and Bioscience, Waseda University, Tokyo 169-8555, Japan
| | - Shuichi Hiraoka
- Department
of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| |
Collapse
|
13
|
Liu Y, Liu FZ, Li S, Liu H, Yan K. Biasing the Formation of Solution-Unstable Intermediates in Coordination Self-Assembly by Mechanochemistry. Chemistry 2023; 29:e202302563. [PMID: 37670119 DOI: 10.1002/chem.202302563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Due to the reversible nature of coordination bonds and solvation effect, coordination self-assembly pathways are often difficult to elucidate experimentally in solution, as intermediates and products are in constant equilibration. The present study shows that some of these transient and high-energy self-assembly intermediates can be accessed by means of ball-milling approaches. Among them, highly aqueous-unstable Pd3 L11 and Pd6 L14 open-cage intermediates of the framed Fujita Pd6 L14 cage and Pd2 L22 , Pd3 L21 and Pd4 L22 intermediates of Mukherjee Pd6 L24 capsule are successfully trapped in solid-state, where Pd=tmedaPd2+ , L1=2,4,6-tris(4-pyridyl)-1,3,5-triazine and L2=1,3,5-tris(1-imidazolyl)benzene). Their structures are assigned by a combination of solution-based characterization tools such as standard NMR spectroscopy, DOSY NMR, ESI-MS and X-ray diffraction. Collectively, these results highlight the opportunity of using mechanochemistry to access unique chemical space with vastly different reactivity compared to conventional solution-based supramolecular self-assembly reactions.
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shi Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hua Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
14
|
Nédellec T, Boitrel B, Le Gac S. Parallel Chirality Inductions in Möbius Zn(II) Hexaphyrin Transformation Networks. J Am Chem Soc 2023. [PMID: 38037277 DOI: 10.1021/jacs.3c10835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Networked chemical transformations are key features of biological systems, in which complex multicomponent interactions enable the emergence of sophisticated functions. Being interested in chirality induction phenomena with dynamic Möbius π-systems, we have designed a pair of Möbius [28]hexaphyrin ligands in order to investigate mixtures rather than isolated molecules. Thus, a hexaphyrin bearing a chiral amino arm was first optimized and found to bind a ZnOAc moiety, triggering an impressive quasi-quantitative chirality induction over the Möbius π-system. Second, this amino-type hexaphyrin was mixed with a second hexaphyrin bearing a chiral carboxylate arm, affording at first ill-defined coordination assemblies in the presence of zinc. In contrast, a social self-sorting behavior occurred upon the addition of two exogenous achiral effectors (AcO- and BuNH2), leading to a well-defined 1:1 mixture of two Möbius complexes featuring a sole Möbius twist configuration (parallel chirality inductions). We next successfully achieved compartmentalized switching, i.e., a single-component transformation from such a complex mixture. The BuNH2 effector was selectively protected with Boc2O, owing to a lower reactivity of the arm's NH2 function intramolecularly bound to zinc, and subsequent addition of BuNH2 restored the initial mixture, retaining parallel chirality inductions (five cycles). By changing the nature and twist configuration of only one of the two complexes, at initial state or by switching, this approach enables a "two-channel" tuning of the chiroptical properties of the ensemble. Such multiple dynamic chirality inductions, controlled by selective metal-ligand recognition and chemical reactivity, set down the basis for Möbius-type stereoselective transformation networks with new functions.
Collapse
Affiliation(s)
- Thomas Nédellec
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| | - Bernard Boitrel
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000 Rennes, France
| |
Collapse
|
15
|
Ahmadi M, Sprenger C, Pareras G, Poater A, Seiffert S. Self-organization of metallo-supramolecular polymer networks by free formation of pyridine-phenanthroline heteroleptic complexes. SOFT MATTER 2023; 19:8112-8123. [PMID: 37846598 DOI: 10.1039/d3sm01136d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Nature employs spontaneous self-organization of supramolecular bonds to create complex matter capable of adaptation and self-healing. Accordingly, the self-sorting of unlike ligands towards a cooperative heteroleptic complex or narcistic homoleptic association in a mixed ligand system is frequently employed to form interchangeable stimuli-responsive complex geometries with a wide range of applications. This notion is however just rarely employed in the organization of polymer networks. In this paper, we report the free-formation of heteroleptic complexes between tetra-am poly(ethylene glycol) (tetraPEG) precursors functionalized either with pyridine (tetraPy) or phenanthroline (tetraEPhen). Among a wide range of studied metal ions, tetraPy could form a network only in combination with Pd2+, presumably with a square-planar geometry, highlighting the importance of complex strength and stability in forming gels with monodentate ligands. Also, mixed networks with tetraEPhen form only in combination with Pd2+ and Fe2+, with strengths surpassing those of individual components and stabilities incomparable to those of parent networks, indicative of heteroleptic complexation. Extensive rheological, UV-vis, and DFT simulation studies revealed the coexistence of different coordination geometries, with an octahedral arrangement prevailing in the presence of Fe2+ and a square-planar geometry in the presence of Pd2+. Therefore, this study offers new opportunities for the development of stimuli-responsive topology-switching polymer networks.
Collapse
Affiliation(s)
- Mostafa Ahmadi
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Cora Sprenger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Gerard Pareras
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Catalonia 08193, Spain
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
16
|
Duan XF, Zhou LP, Li HR, Hu SJ, Zheng W, Xu X, Zhang R, Chen X, Guo XQ, Sun QF. Excited-Multimer Mediated Supramolecular Upconversion on Multicomponent Lanthanide-Organic Assemblies. J Am Chem Soc 2023; 145:23121-23130. [PMID: 37844009 DOI: 10.1021/jacs.3c06775] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Upconversion (UC) is a fascinating anti-Stokes-like optical process with promising applications in diverse fields. However, known UC mechanisms are mainly based on direct energy transfer between metal ions, which constrains the designability and tunability of the structures and properties. Here, we synthesize two types of Ln8L12-type (Ln for lanthanide ion; L for organic ligand L1 or L2R/S) lanthanide-organic complexes with assembly induced excited-multimer states. The Yb8(L2R/S)12 assembly exhibits upconverted multimer green fluorescence under 980 nm excitation through a cooperative sensitization process. Furthermore, upconverted red emission from Eu3+ on the heterometallic (Yb/Eu)8L12 assemblies is also realized via excited-multimer mediated energy relay. Our findings demonstrate a new strategy for designing UC materials, which is crucial for exploiting photofunctions of multicomponent lanthanide-organic complexes.
Collapse
Affiliation(s)
- Xiao-Fang Duan
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Hao-Ran Li
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Wei Zheng
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xin Xu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, P. R. China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Qing Guo
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry, CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Bose I, Zhao Y. Supramolecular Regulation of Catalytic Activity in Molecularly Responsive Catalysts. J Org Chem 2023; 88:12792-12796. [PMID: 37584689 PMCID: PMC11095615 DOI: 10.1021/acs.joc.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Some enzymes switch between an open form and a closed form. We report a molecularly tuned catalyst that accommodates a substrate and a signal molecule simultaneously. Binding of the signal molecule helps direct the reactive group of the substrate to the catalytic group and enhances the catalytic activity. Subtle structural changes in either the substrate or the signal molecule are readily detected. The switching mechanism also allows the catalytic reaction to be turned on and off reversibly by specific molecular signals.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111, U.S.A
| |
Collapse
|
18
|
Takezawa Y, Mori K, Huang WE, Nishiyama K, Xing T, Nakama T, Shionoya M. Metal-mediated DNA strand displacement and molecular device operations based on base-pair switching of 5-hydroxyuracil nucleobases. Nat Commun 2023; 14:4759. [PMID: 37620299 PMCID: PMC10449808 DOI: 10.1038/s41467-023-40353-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/13/2023] [Indexed: 08/26/2023] Open
Abstract
Rational design of self-assembled DNA nanostructures has become one of the fastest-growing research areas in molecular science. Particular attention is focused on the development of dynamic DNA nanodevices whose configuration and function are regulated by specific chemical inputs. Herein, we demonstrate the concept of metal-mediated base-pair switching to induce inter- and intramolecular DNA strand displacement in a metal-responsive manner. The 5-hydroxyuracil (UOH) nucleobase is employed as a metal-responsive unit, forming both a hydrogen-bonded UOH-A base pair and a metal-mediated UOH-GdIII-UOH base pair. Metal-mediated strand displacement reactions are demonstrated under isothermal conditions based on the base-pair switching between UOH-A and UOH-GdIII-UOH. Furthermore, metal-responsive DNA tweezers and allosteric DNAzymes are developed as typical models for DNA nanodevices simply by incorporating UOH bases into the sequence. The metal-mediated base-pair switching will become a versatile strategy for constructing stimuli-responsive DNA nanostructures, expanding the scope of dynamic DNA nanotechnology.
Collapse
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Keita Mori
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Wei-En Huang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kotaro Nishiyama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tong Xing
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Takahiro Nakama
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
19
|
Edo-Osagie A, Serillon D, Ruani F, Barril X, Gourlaouen C, Armaroli N, Ventura B, Jacquot de Rouville HP, Heitz V. Multi-Responsive Eight-State Bis(acridinium-Zn(II) porphyrin) Receptor. J Am Chem Soc 2023; 145:10691-10699. [PMID: 37154483 DOI: 10.1021/jacs.3c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A multi-responsive receptor consisting of two (acridinium-Zn(II) porphyrin) conjugates has been designed. The binding constant between this receptor and a ditopic guest has been modulated (i) upon addition of nucleophiles converting acridinium moieties into the non-aromatic acridane derivatives and (ii) upon oxidation of the porphyrin units. A total of eight states has been probed for this receptor resulting from the cascade of the recognition and responsive events. Moreover, the acridinium/acridane conversion leads to a significant change of the photophysical properties, switching from electron to energy transfer processes. Interestingly, for the bis(acridinium-Zn(II) porphyrin) receptor, charge-transfer luminescence in the near-infrared has been observed.
Collapse
Affiliation(s)
- Amy Edo-Osagie
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Dylan Serillon
- Departament de Farmacia i Tecnología Farmaceutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
| | - Federica Ruani
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Xavier Barril
- Departament de Farmacia i Tecnología Farmaceutica, i Fisicoquímica, Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | - Christophe Gourlaouen
- Laboratoire de Chimie Quantique, Institut de Chimie de Strasbourg, CNRS/UMR 7177, 4 rue Blaise Pascal, 67000 Strasbourg, France
| | - Nicola Armaroli
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Barbara Ventura
- Istituto per la Sintesi Organica e la Fotoreattività (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via P. Gobetti 101, Bologna 40129, Italy
| | - Henri-Pierre Jacquot de Rouville
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, 4, rue Blaise Pascal, 67000 Strasbourg, France
| | - Valérie Heitz
- Laboratoire de Synthèse des Assemblages Moléculaires Multifonctionnels, Institut de Chimie de Strasbourg, CNRS/UMR 7177, 4, rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
20
|
Oka Y, Masai H, Terao J. Multistate Structural Switching of [3]Catenanes with Cyclic Porphyrin Dimers by Complexation with Amine Ligands. Angew Chem Int Ed Engl 2023; 62:e202217002. [PMID: 36625214 DOI: 10.1002/anie.202217002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/22/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Catenanes with multistate switchable properties are promising components for next-generation molecular machines and supramolecular materials. Herein, we report a ligand-controlled switching method, a novel method for the multistate switching of catenanes controlled by complexation with added amine ligands. To verify this method, a [3]catenane comprising cyclic porphyrin dimers with a rigid π-system has been synthesized. Owing to the rigidity, the relative positions among the cyclic components of the [3]catenane can be precisely controlled by complexation with various amine ligands. Moreover, ligand-controlled multistate switching affects the optical properties of the [3]catenanes: the emission intensity can be tuned by modulating the sizes and coordination numbers of integrated amine ligands. This work shows the utility of using organic ligands for the structural switching of catenanes, and will contribute to the further development of multistate switchable mechanically interlocked molecules.
Collapse
Affiliation(s)
- Yuki Oka
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan.,PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, 332-0012, Kawaguchi, Saitama, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The, University of Tokyo, 3-8-1 Komaba, Meguro-ku, 153-8902, Tokyo, Japan
| |
Collapse
|
21
|
Sakata Y, Nakamura R, Hibi T, Akine S. Speed Tuning of the Formation/Dissociation of a Metallorotaxane. Angew Chem Int Ed Engl 2023; 62:e202217048. [PMID: 36628483 DOI: 10.1002/anie.202217048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/12/2023]
Abstract
Switching between the formation/dissociation of rotaxanes is important to control the function of various types of rotaxane-based materials. We have developed a convenient and simple strategy, the so-called "accelerator addition", to make a static rotaxane dynamic without apparently affecting the chemical structure. As an interlocked molecule that enables tuning of the formation/dissociation speed, a metallorotaxane was quantitatively generated by the complexation of a triptycene-based dumbbell-shaped mononuclear complex, [PdL2 ]2+ (L=2,3-diaminotriptycene), with 27C9. As a result of the inertness of the Pd2+ -based coordination structure, the metallorotaxane was slowly formed (the static state). This rotaxane formation was accelerated 27 times simply by adding Br- as an accelerator (the dynamic state). A similar drastic acceleration was also demonstrated during the dissociation process when Cs+ was added to the metallorotaxane to form the free axle [PdL2 ]2+ and the 27C9-Cs+ complex.
Collapse
Affiliation(s)
- Yoko Sakata
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Ryosuke Nakamura
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Toshihiro Hibi
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| | - Shigehisa Akine
- Graduate School of Natural Science and Technology, Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan.,Nano Life Science Institute (WPI-NanoLSI), Kanazawa University Kakuma-machi, Kanazawa, 920-1192, Japan
| |
Collapse
|
22
|
Ahmadi M, Poater A, Seiffert S. Self-Sorting of Transient Polymer Networks by the Selective Formation of Heteroleptic Metal–Ligand Complexes. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Affiliation(s)
- Mostafa Ahmadi
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Albert Poater
- Institut de Química Computacional i Catàlisi, Departament de Química, Universitat de Girona, c/Ma Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain
| | - Sebastian Seiffert
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| |
Collapse
|
23
|
Zhang H, Li Y, Zhang YF, Qiao XJ, Sun LY, Li J, Wang YY, Han YF. Solvato-Controlled Assembly and Structural Transformation of Emissive Poly-NHC-Based Organometallic Cages and Their Applications in Amino Acid Sensing and Fluorescence Imaging. Chemistry 2023; 29:e202300209. [PMID: 36762405 DOI: 10.1002/chem.202300209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Stimuli-induced structural transformation of supramolecular cages has drawn increasing attention because of their sensitive feature to external variations as model systems to simulate biological processes. However, combining structural transformation and useful functions has remained a difficult task. This study reports the solvato-controlled self-assembly of two unique topologies with different emission characteristics, a water-soluble Ag8 L4 cage (A) and an Ag4 L2 cage (B), produced from the same sulfonate-pendant tetraphenylethene (TPE) bridged tetrakis-(1,2,4-triazolium) ligand. Both cages show interesting solvent-responsive reversible structural transformation, and the change of fluorescence signals can efficiently track the process. Additionally, water-soluble cage A exhibits unique properties in thermochromism, thiol amino acid sensing, and subcellular imaging in aqueous media.
Collapse
Affiliation(s)
- Heng Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yang Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yi-Fan Zhang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Xiu-Juan Qiao
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Li-Ying Sun
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Yao-Yu Wang
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| | - Ying-Feng Han
- Key Laboratory of Synthetic and, Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, P. R. China
| |
Collapse
|
24
|
Ayme JF, Bruchmann B, Karmazin L, Kyritsakas N. Transient self-assembly of metal-organic complexes. Chem Sci 2023; 14:1244-1251. [PMID: 36756320 PMCID: PMC9891378 DOI: 10.1039/d2sc06374c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Implementing transient processes in networks of dynamic molecules holds great promise for developing new functional behaviours. Here we report that trichloroacetic acid can be used to temporarily rearrange networks of dynamic imine-based metal complexes towards new equilibrium states, forcing them to express complexes otherwise unfavourable in their initial equilibrium states. Basic design principles were determined for the creation of such networks. Where a complex distribution of products was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily yielded a simplified output, forcing a more structured distribution of products. Where a single complex was obtained in the initial equilibrium state of the system, the transient rearrangement temporarily modified the properties of this complex. By doing so, the mechanical properties of an helical macrocyclic complex could be temporarily altered by rearranging it into a [2]catenane.
Collapse
Affiliation(s)
- Jean-François Ayme
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Bernd Bruchmann
- BASF SE, Joint Research Network on Advanced Materials and Systems (JONAS) Carl-Bosch Str. 38 67056 Ludwigshafen Germany
| | - Lydia Karmazin
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| | - Nathalie Kyritsakas
- Service de Radiocristallographie, Fédération de chimie Le Bel FR2010, Université de Strasbourg 1 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
25
|
Omoto K, Shi M, Yasuhara K, Kammerer C, Rapenne G. Extended Tripodal Hydrotris(indazol-1-yl)borate Ligands as Ruthenium-Supported Cogwheels for On-Surface Gearing Motions. Chemistry 2023; 29:e202203483. [PMID: 36695199 DOI: 10.1002/chem.202203483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
This paper reports the synthesis of ruthenium-based molecular gear prototypes composed of a brominated or non-brominated pentaphenylcyclopentadienyl ligand as an anchoring unit and a tripodal ligand with aryl-functionalized indazoles as a rotating cogwheel. Single crystal structures of the ruthenium complexes revealed that the appended aryl groups increase the apparent diameter of the cogwheel rendering them larger than the diameter of the anchoring units and consequently making them suitable for intermolecular gearing motions once the complexes will be adsorbed on a surface.
Collapse
Affiliation(s)
- Kenichiro Omoto
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Menghua Shi
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan
| | - Kazuma Yasuhara
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan.,Center for Digital Green-innovation, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Claire Kammerer
- CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| | - Gwénaël Rapenne
- Division of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, 630-0192, Japan.,CEMES, Université de Toulouse, CNRS, 29, rue Marvig, 31055, Toulouse, France
| |
Collapse
|
26
|
Cáceres-Vásquez J, Jara DH, Costamagna J, Martínez-Gómez F, Silva CP, Lemus L, Freire E, Baggio R, Vera C, Guerrero J. Effect of non-covalent self-dimerization on the spectroscopic and electrochemical properties of mixed Cu(i) complexes. RSC Adv 2023; 13:825-838. [PMID: 36686905 PMCID: PMC9810106 DOI: 10.1039/d2ra05341a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
A series of six new Cu(i) complexes with ([Cu(N-{4-R}pyridine-2-yl-methanimine)(PPh3)Br]) formulation, where R corresponds to a donor or acceptor p-substituent, have been synthesized and were used to study self-association effects on their structural and electrochemical properties. X-ray diffraction results showed that in all complexes the packing is organized from a dimer generated by supramolecular π stacking and hydrogen bonding. 1H-NMR experiments at several concentrations showed that all complexes undergo a fast-self-association monomer-dimer equilibrium in solution, while changes in resonance frequency towards the high or low field in specific protons of the imine ligand allow establishing that dimers have similar structures to those found in the crystal. The thermodynamic parameters for this self-association process were calculated from dimerization constants determined by VT-1H-NMR experiments for several concentrations at different temperatures. The values for K D (4.0 to 70.0 M-1 range), ΔH (-1.4 to -2.6 kcal mol-1 range), ΔS (-0.2 to 2.1 cal mol-1 K-1 range), and ΔG 298 (-0.8 to -2.0 kcal mol-1 range) are of the same order and indicate that the self-dimerization process is enthalpically driven for all complexes. The electrochemical profile of the complexes shows two redox Cu(ii)/Cu(i) processes whose relative intensities are sensitive to concentration changes, indicating that both species are in chemical equilibrium, with the monomer and the dimer having different electrochemical characteristics. We associate this behaviour with the structural lability of the Cu(i) centre that allows the monomeric molecules to reorder conformationally to achieve a more adequate assembly in the non-covalent dimer. As expected, structural properties in the solid and in solution, as well as their electrochemical properties, are not correlated with the electronic parameters usually used to evaluate R substituent effects. This confirms that the properties of the Cu(i) complexes are usually more influenced by steric effects than by the inductive effects of substituents of the ligands. In fact, the results obtained showed the importance of non-covalent intermolecular interactions in the structuring of the coordination geometry around the Cu centre and in the coordinative stability to avoid dissociative equilibria.
Collapse
Affiliation(s)
- Joaquín Cáceres-Vásquez
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Danilo H. Jara
- Facultad de Ingenieria y Ciencias, Universidad Adolfo IbáñezAv. Padre Hurtado 750Viña del MarChile
| | - Juan Costamagna
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile,Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Fabián Martínez-Gómez
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile,Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Carlos P. Silva
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Luis Lemus
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Eleonora Freire
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía AtómicaAvenida Gral. Paz 1499, 1650, San MartínBuenos AiresArgentina,Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín, Argentina and Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía AtómicaBuenos AiresArgentina,Member of CONICETArgentina
| | - Ricardo Baggio
- Gerencia de Investigación y Aplicaciones, Centro Atómico Constituyentes, Comisión Nacional de Energía AtómicaAvenida Gral. Paz 1499, 1650, San MartínBuenos AiresArgentina
| | - Cristian Vera
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| | - Juan Guerrero
- Laboratorio de Compuestos de Coordinación y Química Supramolecular, Facultad de Química y Biología, Universidad de Santiago de ChileAv. Libertador Bernardo O'Higgins 3363, Estación Central, Casilla 40, Correo 33SantiagoChile
| |
Collapse
|
27
|
Li K, Zhang S, Hu Y, Kang S, Yu X, Wang H, Wang M, Li X. Shape-Dependent Complementary Ditopic Terpyridine Pair with Two Levels of Self-Recognition for Coordination-Driven Self-Assembly. Macromol Rapid Commun 2023; 44:e2200303. [PMID: 35666548 DOI: 10.1002/marc.202200303] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/28/2022] [Indexed: 01/11/2023]
Abstract
Molecular recognition in biological systems plays a vital role in the precise construction of biomacromolecules and the corresponding biological activities. Such recognition mainly relies on the highly specific binding of complementary molecular pairs with complementary sizes, shapes, and intermolecular forces. It still remains challenging to develop artificial complementary motif pairs for coordination-driven self-assembly. Herein, a series of shape-dependent complementary motif pairs, based on ditopic 2,2':6',2″-terpyridine (TPY) backbone, are designed and synthesized. The fidelity degrees of self-assemblies from these motifs are carefully evaluated by multi-dimensional mass spectrometry, nuclear magnetic resonance spectroscopy, and molecular modeling. In addition, two levels of self-recognition in both homoleptic and heteroleptic assembly are discovered in the assembled system. Through finely tuning the shape and size of the ligands, a complementary pair is developed with error-free narcissistically self-sorting at two levels of self-recognition, and the intrinsic principle is carefully investigated.
Collapse
Affiliation(s)
- Kehuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China.,College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shunran Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China.,Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Yaqi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Shimin Kang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, Guangdong, 523808, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Ming Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
28
|
Huang X, Chen L, Jin J, Kim H, Chen L, Zhang Z, Yu L, Li S, Stang PJ. Host–Guest Encapsulation to Promote the Formation of a Multicomponent Trigonal-Prismatic Metallacage. Inorg Chem 2022; 61:20237-20242. [DOI: 10.1021/acs.inorgchem.2c03701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Xuechun Huang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Luyi Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Jianan Jin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Hyunuk Kim
- Energy Materials and Convergence Research Department, Korea Institute of Energy Research, Daejeon 305-343, Republic of Korea
| | - Luyao Chen
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zibin Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Ling Yu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Shijun Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Peter J. Stang
- Department of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
29
|
Panneerselvam M, Deepan Kumar M, Nisanth P, Jaccob M, Vijay Solomon R. Quantum mechanical study on complexation phenomenon of pillar[5]arene towards neutral dicyanobutane. Supramol Chem 2022. [DOI: 10.1080/10610278.2022.2151366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Murugesan Panneerselvam
- Department of Chemistry, Sri Moogambigai College of Arts and Science for Women (SMCAS), Palacode, Dharmapuri, India
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, chennai, India
| | - Madhu Deepan Kumar
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, chennai, India
- Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, India
| | - Prasannan Nisanth
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, chennai, India
| | - Madhavan Jaccob
- Department of Chemistry & Computational Chemistry Laboratory, Loyola Institute of Frontier Energy (LIFE), Loyola College, chennai, India
| | - Rajadurai Vijay Solomon
- Department of Chemistry, Madras Christian College (Autonomous), (Affiliated to University of Madras) Tambaram East, Chennai, India
| |
Collapse
|
30
|
Rajasekaran VV, Ghosh A, Kundu S, Mondal D, Paululat T, Schmittel M. Synchronizing Two Distinct Nano-Circular Sliding Motions in Six-Component Machinery for Double Catalysis. Angew Chem Int Ed Engl 2022; 61:e202212473. [PMID: 36197751 PMCID: PMC9828345 DOI: 10.1002/anie.202212473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/05/2022]
Abstract
The heteroleptic multi-component double slider-on-deck system DS3 exhibits tight coupling of motional speed of two distinct nano-circular sliders (k298 =77 and 41 kHz) despite a 2.2 nm separation. In comparison, the single sliders in DS1 and DS2 move at vastly different speed (k298 =1.1 vs. 350 kHz). Synchronization of the motions in DS3 remains even when one slows the movement of the faster slider using small molecular brake pads. In contrast to the individual DS1 and DS2 systems, DS3 is a powerful catalyst for a two-step reaction by using the motion of both sliders to drive two catalytic processes.
Collapse
Affiliation(s)
- Vishnu Verman Rajasekaran
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Amit Ghosh
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Sohom Kundu
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Debabrata Mondal
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Thomas Paululat
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IIUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)TechnologyOrganische Chemie IUniversity of SiegenAdolf-Reichwein Str. 257068SiegenGermany
| |
Collapse
|
31
|
Hosseinzadeh B, Ahmadi M. Coordination geometry in metallo-supramolecular polymer networks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214733] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Stimuli-responsive chirality inversion of metallohelices and related dynamic metal complexes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Das N, Maity C. Switchable aqueous catalytic systems for organic transformations. Commun Chem 2022; 5:115. [PMID: 36697818 PMCID: PMC9814960 DOI: 10.1038/s42004-022-00734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.
Collapse
Affiliation(s)
- Nikita Das
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India
| | - Chandan Maity
- Department of Chemistry, School of Advanced Sciences (SAS), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
34
|
Benny R, Sahoo D, George A, De S. Recent Advances in Fuel-Driven Molecular Switches and Machines. ChemistryOpen 2022; 11:e202200128. [PMID: 36071446 PMCID: PMC9452441 DOI: 10.1002/open.202200128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular switches and machines arena has entered a new phase in which molecular machines operate under out-of-equilibrium conditions using appropriate fuel. Unlike the equilibrium version, the dissipative off-equilibrium machines necessitate only one stimulus input to complete each cycle and decrease chemical waste. Such a modus operandi would set significant steps towards mimicking the natural machines and may offer a platform for advancing new applications by providing temporal control. This review summarises the recent progress and blueprint of autonomous fuel-driven off-equilibrium molecular switches and machines.
Collapse
Affiliation(s)
- Renitta Benny
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Diptiprava Sahoo
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Ajith George
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Soumen De
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| |
Collapse
|
35
|
Thangavel MK, Harrowfield J, Bailly C, Karmazin L, Stadler AM. Modulation of the structural information in shape-defined heterocyclic strands: the case of a (pyridine-hydrazone) 2pyrazine ligand. Dalton Trans 2022; 51:14107-14117. [PMID: 36043361 DOI: 10.1039/d2dt01684b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal ions (Ag+, Cd2+, Eu3+, Sm3+) and protons can, through coordination and protonation, modulate in three specific ways the structural information contained in the pyrazine-based heterocyclic strand L (obtained from 2,5-bis(methylhydrazino)pyrazine and 2 equivalents of 2-pyridinecarboxaldehyde), thus generating two linear rod-like conformations and a bent one. This conformational diversity is associated with a structural one that consists of two diprotonated forms (H2L(PF6)2 and H2L(CF3SO3)2), a polymeric architecture [AgL]n(CF3SO3)n, two rack-like complexes ([Eu2H2L3(CF3SO3)6](PF6)2 and [Sm2H2L3(CF3SO3)6](PF6)2) and a grid-like structure ([Cd4L4](CF3SO3)8).
Collapse
Affiliation(s)
- Muthu Kumar Thangavel
- Institut de Chimie, Université de Strasbourg, Strasbourg, France.,Institut de Science et d'Ingénierie Supramoléculaires (ISIS), UMR 7006, CNRS - Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France.
| | - Jack Harrowfield
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), UMR 7006, CNRS - Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France.
| | - Corinne Bailly
- Service de Radiocristallographie, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Lydia Karmazin
- Service de Radiocristallographie, Université de Strasbourg, 1 Rue Blaise Pascal, 67000 Strasbourg, France
| | - Adrian-Mihail Stadler
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), UMR 7006, CNRS - Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France. .,University of Strasbourg Institute for Advanced Study (USIAS), 5 Allée du Général Rouvillois, 67083 Strasbourg, France.,Institut für Nanotechnologie (INT), Karlsruhe Institut für Technologie (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
36
|
Das R, Linseis M, Scheerer S, Zoller K, Senft L, Ivanović-Burmazović I, Winter RF. Reversible Multielectron Release from Redox-Active Three-Dimensional Molecular Barrels with Ruthenium-Alkenyl Moieties. Inorg Chem 2022; 61:12662-12677. [PMID: 35917328 DOI: 10.1021/acs.inorgchem.2c01608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three-dimensional molecular barrels Ru6-4 and Ru6-5 were synthesized in high yields from dinuclear ruthenium-vinyl clamps and tritopic triphenylamine-derived carboxylate linkers and characterized by multinuclear NMR spectroscopy including 1H-1H COSY and 1H DOSY measurements, high-resolution electrospray ionization mass spectrometry, and X-ray crystallography. The metal frameworks of the cages adopt the shape of twisted trigonal prisms, and they crystallize as racemic mixtures of interdigitating Δ- and Λ-enantiomers with a tight columnar packing in Ru6-4. Electrochemical studies and redox titrations revealed that the cages are able to release up to 11 electrons on the voltammetric timescale and that their cage structures persist up to the hexacation level. IR and UV-vis-near-infrared spectroelectrochemical studies confirm substituent-dependent intramolecular electronic communication within the π-conjugated 1,3-divinylphenylene backbone in the tricationic states, where all three divinylphenylene-bridged diruthenium clamps are present in mixed-valent radical cation states. The formation of 1:3 charge-transfer salts with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane as the electron acceptor is also demonstrated.
Collapse
Affiliation(s)
- Rajorshi Das
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Michael Linseis
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Scheerer
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Katrin Zoller
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Laura Senft
- Department Chemie, Ludwig-Maximilians Universität München, Butenandtstraße 5-13, Haus D, 81377 München, Germany
| | - Ivana Ivanović-Burmazović
- Department Chemie, Ludwig-Maximilians Universität München, Butenandtstraße 5-13, Haus D, 81377 München, Germany
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| |
Collapse
|
37
|
Kundu S, Ghosh A, Paul I, Schmittel M. Multicomponent Pseudorotaxane Quadrilateral as Dual-Way Logic AND Gate with Two Catalytic Outputs. J Am Chem Soc 2022; 144:13039-13043. [PMID: 35834720 DOI: 10.1021/jacs.2c05065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multicomponent pseudorotaxane quadrilateral was reversibly toggled between three distinct switching states. Switching in the forward conversion was achieved by addition of H+ and K+ ions, and switching in the reverse direction was performed by addition of 18-crown-6 and 1-aza-18-crown-6. In both the forward and backward ways, the inputs operated an AND gate with distinct catalytic outputs. While in the forward direction the logic AND operation starting from a heteroleptic five-component assembly turned "ON" an imine hydrolysis as output (AND-1), in the inverse direction a Michael addition was ignited as the output starting from a seven-component aggregate following the AND gate logic (AND-2).
Collapse
Affiliation(s)
- Sohom Kundu
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Indrajit Paul
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
38
|
Tetraruthenium Macrocycles with Laterally Extended Bis(alkenyl)quinoxaline Ligands and Their F4TCNQ•− Salts. INORGANICS 2022. [DOI: 10.3390/inorganics10060082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report on the tetraruthenium macrocycles Ru4-5 and -6 with a π-conjugated pyrene-appended 5,8-divinylquinoxaline ligand and either isophthalate or thiophenyl-2,5-dicarboxylate linkers and their charge-transfer salts formed by oxidation with two equivalents of F4TCNQ. Both macrocyclic complexes were characterized by NMR spectroscopy, mass spectrometry, cyclic and square-wave voltammetry, and by IR, UV–vis–NIR, and EPR spectroscopy in their various oxidation states.
Collapse
|
39
|
Sudan S, Fadaei‐Tirani F, Scopelliti R, Ebbert KE, Clever GH, Severin K. LiBF 4 -Induced Rearrangement and Desymmetrization of a Palladium-Ligand Assembly. Angew Chem Int Ed Engl 2022; 61:e202201823. [PMID: 35348279 PMCID: PMC9320841 DOI: 10.1002/anie.202201823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 02/02/2023]
Abstract
Thirteen palladium-ligand assemblies with different structures and topologies were investigated for the ability to bind lithium ions. In one case, the addition of LiBF4 resulted in a profound structural rearrangement, converting a dincluclear [Pd2 L4 ]4+ complex into a low-symmetry [Pd4 L8 ]8+ assembly with two binding pockets for solvated LiBF4 ion pairs. The rearrangement could only be induced by Li+ , indicating highly specific host-guest interactions. A structural analysis of the [Pd4 L8 ]8+ receptor revealed a compact structure with multiple intramolecular interactions, reminiscent of what is seen for natural and synthetic foldamers.
Collapse
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| | - Kristina E. Ebbert
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44227DortmundGermany
| | - Guido H. Clever
- Fakultät für Chemie und Chemische BiologieTechnische Universität Dortmund44227DortmundGermany
| | - Kay Severin
- Institut des Sciences et Ingénierie ChimiquesEcole Polytechnique Fédérale de Lausanne (EPFL)1015LausanneSwitzerland
| |
Collapse
|
40
|
Elsayed Moussa M, Kahoun T, Ackermann MT, Seidl M, Bodensteiner M, Timoshkin AY, Scheer M. Coordination Chemistry of Anionic Pnictogenylborane Compounds. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mehdi Elsayed Moussa
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Tobias Kahoun
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Matthias T. Ackermann
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Seidl
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Michael Bodensteiner
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Alexey Y. Timoshkin
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya emb. 7/9, 199034 St. Petersburg, Russia
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
41
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
42
|
Howlader P, Schmittel M. Heteroleptic metallosupramolecular aggregates /complexation for supramolecular catalysis. Beilstein J Org Chem 2022; 18:597-630. [PMID: 35673407 PMCID: PMC9152274 DOI: 10.3762/bjoc.18.62] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/11/2022] [Indexed: 12/25/2022] Open
Abstract
Supramolecular catalysis is reviewed with an eye on heteroleptic aggregates/complexation. Since most of the current metallosupramolecular catalytic systems are homoleptic in nature, the idea of breaking/reducing symmetry has ignited a vivid search for heteroleptic aggregates that are made up by different components. Their higher degree of functional diversity and structural heterogeneity allows, as demonstrated by Nature by the multicomponent ATP synthase motor, a more detailed and refined configuration of purposeful machinery. Furthermore, (metallo)supramolecular catalysis is shown to extend beyond the single "supramolecular unit" and to reach far into the field and concepts of systems chemistry and information science.
Collapse
Affiliation(s)
- Prodip Howlader
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Center of Micro- and Nanochemistry and (Bio)Technology, Universität Siegen, Organische Chemie I, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
43
|
Liu Y, Liu FZ, Yan K. Mechanochemical Access to a Short-Lived Cyclic Dimer Pd 2 L 2 : An Elusive Kinetic Species En Route to Molecular Triangle Pd 3 L 3 and Molecular Square Pd 4 L 4. Angew Chem Int Ed Engl 2022; 61:e202116980. [PMID: 35191567 DOI: 10.1002/anie.202116980] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Pd-based molecular square Pd4 L4 and triangle Pd3 L3 represent the molecular ancestors of metal-coordination polyhedra that have been an integral part of the field for the last 30 years. Conventional solution-based reactions between cis-protected Pd ions and 2,2'-bipyridine exclusively give Pd4 L4 and/or Pd3 L3 as the sole products. We herein show that, under solvent-free mechanochemical conditions, the self-assembly energy landscape can be thermodynamically manipulated to form an elusive cyclic dimer Pd2 L2 for the first time. In the absence of solvent, Pd2 L2 is indefinitely stable in the solid-state, but converts rapidly to its thermodynamic products Pd3 L3 and Pd4 L4 in solution, confirming Pd2 L2 as a short-lived kinetic species in the solution-based self-assembly process. Our results highlight how mechanochemistry grants access to a vastly different chemical space than available under conventional solution conditions. This provides a unique opportunity to isolate elusive species in self-assembly processes that are too reactive to both "see" and "capture".
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
44
|
Photogearing as a concept for translation of precise motions at the nanoscale. Nat Chem 2022; 14:670-676. [PMID: 35437331 DOI: 10.1038/s41557-022-00917-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
One of the major challenges for harnessing the true potential of functional nano-machinery is integrating and transmitting motion with great precision. Molecular gearing systems enable the integration of multiple motions in a correlated fashion to translate motions from one locality to another and to change their speed and direction. However, currently no powerful methods exist to implement active driving of gearing motions at the molecular scale. Here we present a light-fuelled molecular gearing system and demonstrate its superiority over passive thermally activated gearing. Translation of a 180° rotation into a 120° rotation is achieved while at the same time the direction of the rotation axis is shifted by 120°. Within such photogearing processes, precise motions at the nanoscale can be changed in direction and decelerated in a manner similar to macroscopic bevel-gear operations in an energy consuming way-a necessary prerequisite to employ gearing as an active component in future mechanical nano-systems.
Collapse
|
45
|
Sudan S, Fadaei‐Tirani F, Scopelliti R, Ebbert KE, Clever GH, Severin K. LiBF
4
‐Induced Rearrangement and Desymmetrization of a Palladium‐Ligand Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sylvain Sudan
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei‐Tirani
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Rosario Scopelliti
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kristina E. Ebbert
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie Technische Universität Dortmund 44227 Dortmund Germany
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
46
|
Wang J, Wang F, Dong Q, Chen M, Jiang Z, Zhao H, Liu D, Jiang Z, Su P, Li Y, Liu Q, Liu H, Wang P. Tetratopic Terpyridine Building Unit as a Precursor to Wheel-Like Metallo-Supramolecules. Inorg Chem 2022; 61:5343-5351. [PMID: 35324194 DOI: 10.1021/acs.inorgchem.2c00123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In an effort to construct molecules with distinct shapes and functions, the design and synthesis of multitopic ligands are often able to play an important role. Here, we report the synthesis of a novel tetratopic organic ligand LA, which can be viewed as a bis-tenon with successive angular orientations in space. The particular ligand has been treated with different tailored metal-organic ligands to afford new members of the molecular wheel family (multi-rhomboidal-shaped wheel and bis-trapezium-shaped wheel) that show enhanced stability. Two-dimensional (2D) diffusion nuclear magnetic resonance (NMR) spectroscopy (DOSY), electrospray ionization (ESI) mass spectrometry, traveling wave ion mobility (TWIM), and gradient tandem mass spectrometry (gMS2) experiments, as well as molecular modeling, have been employed to provide structural information and differentiate the isomeric separation process. In addition, considering that LA has rotational properties, it is expected to open the door to functional supramolecules and stimuli-responsive materials.
Collapse
Affiliation(s)
- Jun Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Feng Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qiangqiang Dong
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhiyuan Jiang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - He Zhao
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Die Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Hui Liu
- School of Metallurgy and Environment, Central South University, Changsha, Hunan410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, China.,Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
47
|
Kennedy ADW, DiNardi RG, Fillbrook LL, Donald WA, Beves JE. Visible-Light Switching of Metallosupramolecular Assemblies. Chemistry 2022; 28:e202104461. [PMID: 35102616 PMCID: PMC9302685 DOI: 10.1002/chem.202104461] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Indexed: 11/11/2022]
Abstract
A photoswitchable ligand and palladium(II) ions form a dynamic mixture of self-assembled metallosupramolecular structures. The photoswitching ligand is an ortho-fluoroazobenzene with appended pyridyl groups. Combining the E-isomer with palladium(II) salts affords a double-walled triangle with composition [Pd3 L6 ]6+ and a distorted tetrahedron [Pd4 L8 ]8+ (1 : 2 ratio at 298 K). Irradiation with 410 nm light generates a photostationary state with approximately 80 % of the E-isomer of the ligand and results in the selective disassembly of the tetrahedron, the more thermodynamically stable structure, and the formation of the triangle, the more kinetically inert product. The triangle is then slowly transformed back into the tetrahedron over 2 days at 333 K. The Z-isomer of the ligand does not form any well-defined structures and has a thermal half-life of 25 days at 298 K. This approach shows how a thermodynamically preferred self-assembled structure can be reversibly pumped to a kinetic trap by small perturbations of the isomer distribution using non-destructive visible light.
Collapse
Affiliation(s)
| | - Ray G. DiNardi
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Lucy L. Fillbrook
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - William A. Donald
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| | - Jonathon E. Beves
- School of ChemistryThe University of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
48
|
Liu Y, Liu F, Yan K. Mechanochemical Access to a Short‐Lived Cyclic Dimer Pd
2
L
2
: An Elusive Kinetic Species En Route to Molecular Triangle Pd
3
L
3
and Molecular Square Pd
4
L
4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - Fang‐Zi Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - KaKing Yan
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| |
Collapse
|
49
|
Kumar A, Banerjee R, Zangrando E, Mukherjee PS. Solvent and Counteranion Assisted Dynamic Self-Assembly of Molecular Triangles and Tetrahedral Cages. Inorg Chem 2022; 61:2368-2377. [PMID: 35029966 DOI: 10.1021/acs.inorgchem.1c03797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-assembly of naked PdII ions separately with newly designed bis(3-pyridyl)benzothiadiazole (L1) and bis(3-pyridyl)thiazolo[5,4-d]thiazole (L2) donors separately, under varying experimental conditions, yielded Pd4L8 (L= L1 or L2) tetrahedral cages and their homologous Pd3L6 (L= L1 or L2) double-walled triangular macrocycles. The resulting assemblies exhibited solvent, temperature, and counteranion induced dynamic equilibrium. Treatment of L1 with Pd(BF4)2 in acetonitrile (ACN) resulted in selective formation of a tetrahedral cage [Pd4(L1)8](BF4)8 (1a), which is in dynamic equilibrium with its homologue triangle [Pd3(L1)6](BF4)6 (2a) in dimethyl sulfoxide (DMSO). On the other hand, similar self-assembly using L2 instead of L1 yielded an equilibrium mixture of tetrahedral cage [Pd4(L2)8](BF4)8 (3a) and triangle [Pd3(L2)6](BF4)6 (4a) forms in both ACN and DMSO. The assembles were characterized by multinuclear NMR and ESI-MS while the structure of the tetrahedral cage (1a) was determined by single crystal X-ray diffraction. Existence of a dynamic equilibrium between the assemblies in solution has been investigated via variable temperature 1H NMR. The equilibrium constant K = ([Pd4L8]3/[Pd3L6]4) was calculated at each experimental temperature and fitted with the Van't Hoff equation to determine the standard enthalpy (ΔH°) and entropy (ΔS°) associated with the interconversion of the double-walled triangle to tetrahedral cage. The thermodynamic feasibility of structural interconversion was analyzed from the change in ΔG°, which suggests favorable conversion of Pd3L6 triangle to Pd4L8 cage at elevated temperature for L1 in DMSO and L2 in ACN. Interestingly, similar self-assembly reactions of L1 and L2 with Pd(NO3)2 instead of Pd(BF4)2 resulted in selective formation of a tetrahedral cage [Pd4(L1)8](NO3)8 (1b) and double-walled triangle [Pd3(L2)6](NO3)6 (4b), respectively.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ranit Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
50
|
Valiyev I, Ghosh A, Paul I, Schmittel M. Concurrent base and silver(I) catalysis pulsed by fuel acid. Chem Commun (Camb) 2022; 58:1728-1731. [PMID: 35024705 DOI: 10.1039/d1cc06398g] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Treatment of a crown-ether receptor and a silver(I)-loaded cyclam derivative (NetState-I) with a fuel acid reversibly afforded the protonated cyclam and the silver(I)-loaded crown ether (NetState-II). While NetState-I was catalytically OFF, a base-catalysed Michael addition and a silver(I)-catalysed oxime cyclisation reaction was pulsed under dissipative conditions in NetState-II.
Collapse
Affiliation(s)
- Isa Valiyev
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Amit Ghosh
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Indrajit Paul
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| | - Michael Schmittel
- Center of Micro and Nanochemistry and (Bio)Technology, Organische Chemie I, Universität Siegen, Adolf-Reichwein-Str. 2, Siegen D-57068, Germany.
| |
Collapse
|